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HISTORICAL NEWS AND VIEWS: NEURAL CODING

Whither variability?
Variability is a ubiquitous aspect of neural recordings. In an influential paper, Churchland et al. (2010) compiled 
data from many cortical areas to demonstrate that variability generally decreases upon presentation of a stimulus. 
What are the implications of this finding?

Adrienne L. Fairhall

In a standard artificial neural network 
trained for image classification, units  
are active when inputs are presented to  

it and silent otherwise. In contrast, the  
brain, right down to the early visual  
system, displays a swirling mess of ongoing 
activity, even in the apparent absence of 
stimuli. The form of this internal activity, 
how it interacts with incoming information, 
and what all of this tells us about the nature 
of neural computation are long-standing 
puzzles, the answers to which are truly 
fundamental to our understanding of  
brain processing.

Alongside the dynamic variations 
that constitute spontaneous activity, 
sensory responses are also variable, in 
that the same input generally leads to a 
spiking response that differs from trial 
to trial. The amount of variability varies 
with the strength of the input and the 
state of the animal; for instance, whether 
it is awake or anesthetized. In a now-
classic paper from 2010, Churchland and 
collaborators1 set out to determine the 
general characteristics of the relationship 
between the variability before stimulus 
onset and the variability during stimulus 
presentation in multiple brain areas. 
Given the prevalence of background 
fluctuation, several outcomes are all 
quite plausible a priori (Fig. 1): ongoing 
background activity might be the cause 
of the variability seen during stimulus 
presentation, in which case total variation 
will stay about the same; background 
variability might sum with additional 
stimulus-driven variability; there may 
even be a nonlinear interaction between 
stimulus and background that amplifies 
total variability; or the total variability 
might be reduced as the system engages in 
its presumed function.

Different outcomes would suggest 
different interpretations with respect to 
information processing. If variability is 
simply noise, active mechanisms may work 
to suppress it to improve the decodability 
of sensory responses. Variations may also 
be signatures of state-dependent processing 

and/or serve computational functions that 
we have not yet fully grasped.

To explore this issue, teams from an 
impressive number of labs contributed 
data from multiple cortical areas toward 
a common analysis of variability change 
during stimulus onset. Results were 
compiled both from sensory areas during 
a stimulus presentation, including from 
visual areas V1 (recorded both extra- and 
intracellularly) and V4 and from middle 
temporal visual area, driven both by plaids 
and dots; and from motor-related areas 
during the execution of a stereotyped task, 
including from the lateral intraparietal 
area, the parietal reach region, dorsal 

premotor cortex, and orbitofrontal cortex. 
A common result emerged in each of  
these cortical regions: stimulus or motor 
onset reduces, or ‘quenches’, the level  
of variability.

The analysis computed measures of 
variability both at the single-neuron level 
and across the network. Single-neuron 
variability was measured using the Fano 
factor, the ratio of spike-count variance to 
mean, computed across trials as a function 
of time in sliding time windows across 
stimulus (or movement) onset. Considerable 
care was taken to address potential 
confounds. It is possible, for example, 
that at the higher firing rates produced in 
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Fig. 1 | Scenarios for network variability. a, Possible trial-by-trial dynamics suggested in ref. 1 at the 
onset of a stimulus: there may be a stimulus-driven decline in variability, a stimulus-driven increase in 
variability, or a stimulus-driven decline in variability with little change in mean rate. Image reproduced 
from ref. 1, Nature Publishing Group. b, Potential sources of variability in cortical firing include noise in 
inputs, nonlinear dynamics within the network itself, the effects of specific top-down or unobserved 
inputs, and global state-dependent modulation.
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response to a stimulus, the spike counts 
will regularize due to refractory effects. 
Such effects were ruled out by controlling 
for mean firing rate. This approach yielded 
the surprising finding that even when a 
neuron did not change its mean firing rate, 
such that it would not have been identified 
as responsive to the stimulus, its variability 
nonetheless generally decreased upon 
stimulus onset.

This result pointed toward the 
importance of quantifying the variability 
of stimulus representation at the network 
level rather than singling out apparently 
responsive neurons. Multineuronal 
recordings from V1 and dorsal premotor 
cortex were analyzed using factor analysis, 
which parcels variability into ‘private’ and 
‘shared’, or network, components. While 
private noise was ascribed to ‘spiking 
process noise’—an attribution which may 
stand simply as a reasonable definition of 
what spike process noise is—the method 
allowed a convincing demonstration that 
the reductions in variability occur in a 
correlated way across the network.

What is the origin and meaning of  
neural variability? With some exceptions, 
very little variability arises from the process 
of spiking itself. Neurons fire precisely 
when driven by a fixed, time-varying input, 
although more randomly when the input  
is held stationary2, perhaps as a result  
of gain control amplifying the effects of  
small input fluctuations. While some 
variability is introduced through uncertainty 
in synaptic transmission, it is likely that  
the majority of variability observed in the 
brain arises from a combination of the 
influences of dynamic variables that have 
not been accounted for, as well as  
the intrinsic dynamics of networks 
themselves. These two contributions have 
quite different interpretations.

Variability due to ongoing brain 
processes reflects not noise but aspects of 
state that may be inaccessible to (or at least, 
unaccounted for by) the experimenter, yet 
are part of normal embodied computation: 
effects of respiration and arousal; top-
down influences such as attention, 
motivation, and expectation; efference 
copies of movements; and additional 
sensory or cognitive variables3–5. It should 
be possible to peel off the effects, additive 
or modulatory, of these contributions to 
activity one by one, as has been the case in 
recent years as the quality of behavioral and 

state monitoring has steadily improved6. 
This will in principle permit the design 
of experiments or selection of conditions 
during which these additional identified 
factors are controlled for.

Much theoretical work has focused on 
the second issue: generic models of neural 
networks intrinsically display chaotic 
dynamics. The amount of variation in a 
potentially chaotic network is determined by 
its inputs in ways that may cast mechanistic 
light on the Churchland et al. results. A 
steady input can drive an otherwise stable 
network into a chaotic regime. Yet a highly 
temporally structured input delivered to a 
chaotic network can clamp the network’s 
variability enormously, reducing the number 
of dimensions of variation from on the order 
of the number of neurons to only a few, 
albeit dimensions that can vary in time7.  
The degree of variability reduction in 
chaotic networks also shows a dependence 
on stimulus characteristics such as 
frequency8, a finding that has some 
experimental support9.

Many observations suggest, however,  
that spontaneous activity is not purely 
chaotic, but rather is quite structured. 
Spontaneous activity in visual cortex  
has been seen to reflect the structure of 
natural activity patterns10 and to do so 
increasingly throughout development11. 
It also has characteristics that recapitulate 
recently experienced inputs12. Researchers 
have thus speculated that spontaneous 
activity may reflect the carving into  
cortical networks of an internal model  
of the statistics of its inputs and, further,  
that instantaneous manifestations of activity 
may reflect random sampling from this 
learned distribution13.

A potentially alternate view, or at least 
one that requires reconciliation with 
previous findings, comes from recent 
widefield imaging studies that provide 
access to measures of neural activation 
across large regions of cortex. These 
images show that large-scale activity 
patterns propagate across cortical areas in 
waves14. Such spatiotemporally structured 
activity presumably also contributes to 
correlated variability. A study of stimulus-
driven reduction of variability in V4 
using widefield imaging found that, at 
these scales, the structure of spontaneous 
and driven variability is quite distinct 
and suggests that global activity patterns 
may underlie a significant fraction of 

spontaneous correlated variability15. 
Analogous to the Churchland et al. 
findings, these shifts in noise correlation 
upon stimulus onset were observed 
even for stimulus contrasts that barely 
changed mean firing rates. The possible 
computational roles of such global activity 
patterns are as yet unclear14.

In sum, the questions both addressed 
and raised by the Churchland et al. study 
are profound ones whose resolution is still 
in progress, aided by emerging techniques 
and the kind of data analysis this group has 
helped to pioneer. In particular, the work 
drew early attention to the importance of 
higher-order statistics of neural activity,  
the study of which is now well supported  
by current recording methods. Finally,  
the work stands as an example of the  
type of conceptual question that can be 
addressed in a comparative way by applying 
a common analysis to multiple diverse 
datasets, serving as a motivation for the 
open sharing of data. ❐
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