nature : : SUPPLEMENTARY INFORMATION
biomedical cngimecering https://doi.org/10.1038/541551-020-0542-0

In the format provided by the authors and unedited.

Stabilization of a brain-computer interface
via the alignment of low-dimensional spaces
of neural activity

Alan D. Degenhart®'234514 William E. Bishop ®3¢74, Emily R. Oby?34>8, Elizabeth C. Tyler-Kabara>>°",
Steven M. Chase®31213%5 Aaron P. Batista*3*#5'> and Byron M. Yu® 131213150

'Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. 2Department of Bioengineering, University of
Pittsburgh, Pittsburgh, PA, USA. 3Center for the Neural Basis of Cognition, Pittsburgh, PA, USA. “Brain Institute, University of Pittsburgh, Pittsburgh,

PA, USA. °Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA, USA. ®Department of Machine Learning, Carnegie Mellon University,
Pittsburgh, PA, USA. "Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. 8Department of Neurobiology, School of Medicine,
University of Pittsburgh, Pittsburgh, PA, USA. °Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA. °Department of Physical
Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA. "McGowan Institute for Regenerative Medicine, University of Pittsburgh,
Pittsburgh, PA, USA. ?Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA. *Department of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA. “These authors contributed equally: Alan D. Degenhart, William E. Bishop. ®These authors jointly supervised this work:
Steven M. Chase, Aaron P. Batista, Byron M. Yu. Be-mail: byronyu@cmu.edu

NATURE BIOMEDICAL ENGINEERING | www.nature.com/natbiomedeng


http://orcid.org/0000-0002-8369-8517
http://orcid.org/0000-0003-2257-5115
http://orcid.org/0000-0003-4450-6313
http://orcid.org/0000-0003-2252-6938
mailto:byronyu@cmu.edu
http://www.nature.com/natbiomedeng

Table of contents

Supplementary Fig. 1 | Visualization of stabilized [ate@nt StAteS.......c.cccceeeiiiiiiiecie ettt re et s reesaae e srbeesaee e 2
Supplementary Fig. 2 | Stabilization accurately recovers factor analysis parameters to account for instabilities..................... 3
Supplementary Fig. 3 | Factors influencing stabilization PerformanCe.............ooouiiieiii e e
Supplementary Fig. 4 | Stabilization overcomes natural neural recording instabilities......

Supplementary Fig. 5 | Multi-day experiment for Monkey L.........cccvevvieeeeeecieecieeciieeeneens

Supplementary Fig. 6 | Stabilization is robust to increases in manifold dimensionality
Supplementary Fig. 7 | Effect of number of alignment electrodes and assumed latent dimensionality on stabilization

X< oY 2 ¥ [ ol TSRS 12
Supplementary Fig. 8 | Effect of non-uniform kinematic sampling on stabilizer performance .........ccccocveecieerciecceeccieeceeeen, 13
[0S =T =T ool YRR 14



Baseline evaluation Stabilizer evaluation Instability evaluation

[o2)

Latent dim. 2 (counts / 45 ms)

'
—_
—_

a

A Latentdim. 4 (counts / 45 ms) ©

Lo

[¢)]

4.5
Latent dim. 3 (counts / 45 ms)

Supplementary Fig. 1 | Visualization of stabilized latent states. Shown are two projections of the latent states for the
single-day experiment depicted in Fig. 4 (L20160325). The left column shows neural activity during the baseline evaluation
block, before the introduction of a neural recording instability. Following the introduction of the instability and application of
stabilization, the structure of the neural activity during the stabilizer evaluation block (middle) closely matches that of the
baseline evaluation block, allowing BCl performance to be restored. The neural activity during the instability evaluation block
(right) is shifted relative to that during the baseline evaluation block, which results in a decrease in BCI performance when
using a non-stabilized decoder. Each row corresponds to a different two-dimensional orthogonal projection of the same 10-
dimensional latent space. Neural activity is colored by target position (see panel inset). The projections shown are those
capturing the most shared variance of the trials used to calibrate the base decoder and stabilizer parameters, which
correspond to the top four orthonormalized dimensions of the base factor analysis model. Axes represent orthonormalized
dimensions of the base factor analysis model (e.g., latent dimension 1 is the first orthonormalized dimension). Latent
dimensions 1, 2, 3, and 4 capture 56.4%, 14.1%, 8.1% and 5.3% of the shared variance of the calibration trials for this
experiment, respectively. Spike counts are mean-centered during factor analysis, which allows spike count values to be
negative.
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Supplementary Fig. 2 | Stabilization accurately recovers factor analysis parameters to account for instabilities. To better
understand how stabilization is able to correct for neural recording instabilities, we compared the parameters of the factor
analysis (FA) model (describing the relationship of the recorded neural activity to the manifold) with and without
stabilization. Specifically, we compared the mean vector and loading matrix of the FA model with and without stabilization to
the “target” parameters representing perfect recovery by stabilization. Target mean and loading matrix parameters were
formed by using knowledge of the applied instabilities to modify the baseline FA parameters. a, Target mean parameters for
each electrode and mean parameters of the FA model with and without stabilization for an example combination-instability
experiment (L20160324). Rows of the mean vectors have been sorted so that rows corresponding to electrodes with unit-
drops, tuning changes and baseline shifts are grouped together. b-d, Histograms of average errors between target and FA
model mean parameters across all combination-instability experiments (9 experiments total) for each of the different types
of applied instabilities. Average error across experiments is significantly reduced with stabilization for electrodes with unit
drop-outs and tuning changes (p < 0.001 in both cases, permutation test). Average error for tuning changes with stabilization
is non-zero because tuning change instabilities also included a baseline shift. Average error across experiments was not
significantly different (p = 0.38, permutation test) when considering electrodes with baseline shifts. This is likely due to the
small baseline shifts which were applied (offsets were drawn from a V' (0.375 cnts/bin, (0.25 cnts/bin)?) distribution). For
each experiment, the average error between target and FA model means was calculated for each group of electrodes with
different types of instabilities. The average error for a single experiment was the average absolute value of the difference



between the FA mean parameters and the target mean parameters across electrodes. Histograms show the number of
experiments with error values in the indicated binned ranges with (green) and without (gray) stabilization. Arrows near the
top of each plot denote the average error across experiments. Arrows in the bottom indicate the measured average errors
for the sample experiment shown in (a). We note that stabilization was not given knowledge of which electrodes
corresponded to unit drop-out or tuning change instabilities, meaning that the ability of stabilization to recover the
appropriate parameters in these cases is not trivial. e, The target loading matrix and the loading matrix of the FA model with
and without stabilization for the same experiment as in (a). Rows are sorted as in (a). f-h, Same as in (b-d), but for the errors
between target loadings and loadings with and without stabilization. Error for an electrode is defined as the L2 distance
between its row in the target loading matrix and its row in an FA model's loading matrix. Across experiments, stabilization
significantly reduced the average error of loadings for subsets of electrodes with unit drop-outs and tuning changes (p <
0.001, permutation test). For baseline shifts, error was higher with stabilization (p < 0.001, permutation test). However, the
target loadings for electrodes with baseline shifts was defined to be equal to their loadings in the baseline FA model, so the
measured error between the target loadings and those without stabilization for baseline shift electrodes was by definition O.
All statistical tests in (b-d) and (f-h) are two-sided.
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Supplementary Fig. 3 | Factors influencing stabilization performance. To investigate why stabilization performance varied
across single-day experiments, we measured the correlation between stabilizer performance recovery and a set of factors
hypothesized to affect stabilization. Stabilization recovery was defined as the mean target acquisition rate (TAR) during the
stabilization evaluation block divided by the mean TAR during the baseline evaluation block. A stabilization recovery value of
1 indicates stabilization performance equal to that observed during the baseline evaluation block, whereas stabilization
recovery values less than 1 indicate that stabilization did not fully recover the performance observed during the baseline
evaluation block. p-values indicating significance of Pearson’s correlation, assessed using a two-sided permutation test (10*
permutations), are reported in each panel. a, Effect of the number of dropped-out neural units on stabilization recovery. The
drop-out of neural units may lead to a reduction in cursor velocity information in the neural activity, possibly resulting in
lower stabilization performance. We found a small but statistically insignificant decrease in stabilizer performance for larger
numbers of dropped-out electrodes. This suggests there was sufficiently redundant cursor velocity information in the neural
activity recorded from the remaining electrodes to sustain decoding performance. b, Effect of the number of unstable
electrodes used for alignment on stabilization performance. Our ability to properly align manifolds could decrease if our
method for identifying stable electrodes mistakenly identifies unstable electrodes as stable, possibly resulting in poorer
stabilizer performance. We found a small but statistically insignificant decrease in performance as more unstable electrodes
are used for alignment. This suggests that stabilization performance is robust to a small number of unstable electrodes
incorrectly used for manifold alignment. ¢, Effect of manifold recovery on stabilizer performance. Variability in our ability to
recover the underlying manifold could conceivably affect stabilizer performance. The amount of manifold overlap, quantified
by the percent variance captured (see Methods), was calculated between the baseline calibration manifold and final
stabilizer manifold. The percentage of variance captured computes how much of the variance of the latent state described by
one manifold is also captured by another. If the manifold identified by the stabilizer matches perfectly with the manifold
identified during baseline calibration, the percent of variance captured would be 100%. We observed a slight but statistically
insignificant increase in stabilizer performance with higher degrees of manifold overlap. However, for all single day
experiments the stabilizer manifold captured over 70% of the variance of the baseline calibration manifold. This indicates
that even though the degree of manifold overlap varied across experiments, it was still high in all cases. d, Effect of the
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strength of cursor direction signals during stabilizer evaluation trials on stabilization recovery. Even if stabilization is able to
perfectly correct for recording instabilities, stabilization performance could vary if the amount of directional information in
the neural activity changes over time. We used a decoding analysis to measure the strength of directional information in the
neural activity before and after stabilization. We calibrated decoders to predict intended cursor velocity during the baseline
and stabilizer evaluation blocks of each experiment. Separate decoders were calibrated for each evaluation block. These
decoders were used only for assessing the amount of directional information in the neural activity and were separate from
those used during closed-loop control. Calibration was performed using neural activity from the final two bins (90ms) of the
initial 300ms “freeze” period at the beginning of each BCl trial. During this period, the animal could see the BCl target and
begin to modulate their neural activity, but was not yet provided control of the cursor. We chose to decode neural activity
from the open-loop period in order to minimize the influence of corrective movements which can occur during closed-loop
control. We found a significant relationship between the amount of cursor-related information in the neural activity (as
quantified using normalized angular error) and stabilization performance. Decoders were calibrated and angular error was
calculated in the same manner as described in the “Comparing stabilization to supervised retraining” section of the Methods.
Average angular error of decoded cursor velocities during the stabilizer evaluation block was normalized by dividing by the
error of the baseline evaluation block. Even though stabilization can outperform supervised recalibration because it is less
sensitive to the amount of directional information present in the neural activity than supervised recalibration (cf. Fig. 8),
decoding performance with stabilization is still sensitive to the amount of direction information present in the neural activity.
The amount of directional information present in the neural activity can vary possibly due to the animals’ motivation in
volitionally modulating its neural activity or because the animals sometimes attempted to compensate for the instability in a
way that leads the neural activity to have less directional information. Note that while the we decode neural activity from the
same trials used to measure stabilization recovery, this analysis is not circular because we fit new decoders during the cross-
validation procedure. Furthermore, these analyses use data from non-overlapping parts of the trials; stabilization
performance is measured during the closed-loop part of the trial, whereas the offline decoding is based on the open-loop
part of the trial. Finally, it is important to note that in contrast to Fig. 8d, which shows how stabilizer performance varies with
the amount of directional information in the data used for stabilization, this analysis shows how directional information in
the stabilizer evaluation block (when the parameters of the stabilizer were fixed) is related to stabilizer performance
recovery. Results in (a-d) are based on 42 independent experiments.
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Supplementary Fig. 4 | Stabilization overcomes natural neural recording instabilities. a, Waveforms from 5 selected
electrodes over the first 6 recording days following electrode implantation for Monkey N. Data were recorded during a
center-out reaching task where the animal was cued to reach to one of 8 possible targets. Day numbers indicate the number
of days after electrode implantation. For some electrodes (e.g., electrodes 4, 5, 23, and 34) the waveform shape changes
across days, indicating the presence of neural recording instabilities. For other electrodes (e.g., electrode 88), the waveforms
are consistent across days, suggesting the existence of a stable set of electrodes to be used in stabilization. b, Tuning curves
for selected electrodes for the same days as shown in panel (a). Average firing rate, estimated over a 500ms window aligned
to the onset of the reaching movement, is plotted as a function of target direction. The tuning curves for the selected
electrodes with variable waveform shapes (electrodes 4, 5, 23, and 34) exhibit changes over the course of the 6 recording
sessions, indicative of neural recording instabilities. The color of each tuning curve corresponds to the recording day, as
indicated in panel (a). Tuning curves were calculated based on 500 trials per day, randomly distributed across target direction
(range: 51-80 trials/target direction). ¢, Hand velocity decoding performance using fixed (red), daily-recalibrated (blue), and
stabilized (green) decoders. Stabilization is able to sustain decoding performance in the presence of neural recording
instabilities, significantly outperforming the non-stabilized decoder for each of the 6 days tested (p < 10 each day, two-sided
Wilcoxon signed-rank test). Furthermore, stabilization outperforms the daily-recalibrated decoder for the first 4 days (days
20to 23, p < 1073, two-sided Wilcoxon signed-rank test), suggesting that the stabilized decoder is able to compensate for
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natural recording instabilities that occur during this time period. In all three cases, a base decoder was calibrated on 128
target-balanced trials collected at the beginning of the first recording day (Day 20). We then compared performance of the
three methods over the course of 6 days. For the non-stabilized decoder, the decoder calibrated on the first day was used for
all subsequent days. For the daily-recalibrated decoder, a new decoder was calibrated each day using 128 target-balanced
trials collected at the beginning of the day. For the stabilized decoder, stabilization parameters were updated every 16 trials
using a 128-trial sliding window. Decoding performance is quantified by the mean-squared error between the actual and
decoded hand velocities using each of the three methods. The same set of evaluation trials was used for all three methods.
Note that performance of the daily-recalibrated decoder improves over the course of the 6 days due to the strengthening of
neural signals recorded by the electrode array post-implant. As the signals on the array improve (e.g., through an increase in
the number of isolatable single units), the information about user intent is increases, leading to improvements in the
performance of the daily-recalibrated decoder. Error bars represent the 95% confidence interval of the mean. For this
analysis, we used all available electrodes (96) in the decoder, set number of alignment electrodes (B) to 75, and used an
alignment threshold (T) of 0.01 counts/bin (see Methods, “Identifying stable electrodes”).
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Supplementary Fig. 5 | Multi-day experiment for Monkey L. Success rate (top) and target acquisition time (bottom) are
shown over the course of a 5-day experiment for Monkey L. Same conventions as in Fig. 7.
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Supplementary Fig. 6 | Stabilization is robust to increases in manifold dimensionality. We investigated the performance of
stabilization as the dimensionality of the underlying manifold increases, as could be the case for tasks with increasing task
complexity (e.g., controlling a robotic limb with many degrees of freedom). To do this, we assessed how stabilization was able
to recover simulated m-dimensional control signals embedded in an m-dimensional manifold in the presence of applied
recording instabilities. Conceptually, the control signals can be thought of as representing the independent task parameters
that a BCl user seeks to control (e.g., velocity of different joints of a robotic limb). Stabilization performance was quantified as
the R? between ground-truth control signals and those estimated with stabilization after the introduction of instabilities
(mean + SE). Stabilization performance was compared to an upper bound on performance (“best possible”), which was
calculated by estimating control signals with a ground-truth stabilizer which perfectly captured the instabilities applied in
each simulation. Upper-bound performance decreases with increasing dimensionality due to the need to estimate an
increasing number of control signals from a fixed number of electrodes. We found that stabilization performance decreases
relative to that of the upper bound with increasing manifold dimensionality. This is due to the need to estimate more
parameters defining a manifold with a fixed amount of data. We find that increasing the amount of data used for stabilization
(e.g., going from 16 to 128 trials) recovers performance, suggesting that stabilization should continue to work with
increasingly complex BCl tasks as long as sufficient data is used for stabilization.

We simulated neural activity from 85 electrodes in the following way. Control signals were sampled from z, ~ NV (0, 1),
where / represents an m X m matrix. Neural activity was generated according to u; = Az, + i + €, for a matrix A € R8*™
and €; € R® where ¢, ~ (0, W) and ¥ € R85*85 is a diagonal covariance matrix. Parameters for this model were
randomly generated in a manner so that the statistics of simulated neural activity qualitatively matched that of the spike
counts recorded during the single-day experiments. Entries of A were drawn i.i.d. from a '(0.02, 0.272) distribution and
entries of p were drawn i.i.d. from a (2.1, 0.832) distribution, where means and standard deviations of these distributions
were selected to match those of the entries of A and p estimated during calibration of the single-day baseline stabilizers.
Diagonal entries of ¥ were drawn from a Uniform(1,2) distribution and then all entries of ¥ were scaled so that the percent
shared variance of the neural population, defined as 100 = trace(AAT) /trace(AAT + W), was equal to 32%, which was the
average percent shared variance measured across the single-day baseline stabilizer models.

Each simulation consisted of three blocks of trials: (1) a calibration block in which a baseline stabilizer was fit to data from
128 trials, (2) a stabilization block in which the stabilizer was updated using either 16 or 128 trials, and (3) a stabilization
evaluation block in which stabilization performance was evaluated using 16 trials. Between the calibration and stabilization
blocks, an instability was applied to the simulated neural activity. We chose to use either 16 or 128 trials for stabilization
updates because 16 trials was the minimum number of trials used for the first stabilization updates in the closed loop
experiments, and 128 trials was the number of trials used for stabilization updates when the sliding buffer of our
implemented stabilizer was full.

During normal BCl use, a decoder would estimate control signals from the latent state returned by the stabilizer. Here, the
latent state returned by the stabilizer, up to a rotation, is a direct representation of the control signals. Therefore, in place of
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a decoder we found a rotation on the baseline data to align the control signals estimated from the baseline stabilizer to the
ground truth control signals. This rotation was found and held fixed before updating the stabilizer to instabilities, just as the
decoder in closed-loop experiments was trained on baseline data and then held fixed.

During supervised calibration, a baseline stabilizer was fit to simulated neurons 1-75, leaving 10 electrodes to be used to
create tuning change instabilities. Between the supervised calibration and stabilization blocks, instabilities were introduced
into the model for generating neural activity. This was accomplished by randomly selecting 10 of the 75 neurons used in the
supervised calibration block and swapping them with the 10 held-out electrodes. Unit drop-out instabilities were applied to
an additional 5 electrodes. Baseline shifts were drawn i.i.d from a A" (0.375, 0.252) distribution and applied to the entries of
u for the remaining neurons. With these instabilities applied, additional trials of data were generated for fitting and
evaluating the stabilizer. Stabilization was performed in the same manner as during the closed-loop experiments, including
requiring the stabilizer to identify stable electrodes for alignment. Simulations were repeated 32 times for each manifold
dimensionality.
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Supplementary Fig. 7 | Effect of number of alignment electrodes and assumed latent dimensionality on stabilization
performance. To determine how stabilization performance varies with the number of alighnment electrodes and the assumed
dimensionality of the manifold, we used the stabilized BCI to decode hand velocity from neural activity recorded during a
center-out reaching task (see Supplementary Fig. 4). a, Stabilized BCI performance for different numbers of alignment
electrodes. Stabilization performance improves with the number of alignment electrodes used. When enough alignment
electrodes are used, stabilization (green) outperforms the non-stabilized decoder (red), and is better than or comparable to
the daily-recalibrated decoder (blue). While one might expect that using all electrodes for alignment would degrade
performance, as some unstable electrodes would then be used to determine the alignment of the manifolds, in practice we
did not observe this to be the case. While this might at first be surprising, we note that for these data the majority of
electrodes exhibited baseline shifts, a minority exhibited changes in tuning, and no electrodes exhibited drop-out. The
alignment process can accurately identify firing rate offsets and unit drop-out, leaving tuning change as the primary source of
alignment error. Electrodes with different tuning changes lead to different alignment errors and they can effectively cancel
each other out, as long as the number of stable electrodes included is sufficiently high. Performance is quantified using
mean-squared error (MSE), normalized each day to the error of the daily-recalibrated decoder. Error bars represent the 95%
confidence interval of the mean. For this analysis, we set the manifold dimensionality to 10 and the alignment threshold to
0.01 counts/bin, the same values as used in the BCl experiments reported in the main text. b, Stabilized BCI performance for
different assumed dimensionalities of the manifold. Same conventions as in (a), but for the number of latent dimensions
used in factor analysis. Error is normalized with respect to that the daily-recalibrated decoder using 10 dimensions. The
estimated dimensionality for these days, indicated by dashed black lines, was between 4 and 5. Dimensionality was
determined by first selecting the number of dimensions maximizing the cross-validated likelihood of 128 trials collected at
the beginning of each day. We then found the number of dimensions need to explain 95% of the shared variance of the
neural activity®. For this analysis, we set number of alighment electrodes to 75 and the alignment threshold to 0.01
counts/bin. Using an assumed dimensionality smaller than that of the recorded neural activity results in a dramatic increase
in error. Conversely, using an assumed dimensionality greater than the true dimensionality of the data results in a minimal
impact in stabilization performance; stabilizer mean-squared error is equal to or lower than that of the daily-recalibrated
decoder for 5 of the 6 days when using the maximum number of dimensions (20). Although one might have expected error
to increase if the number of latent dimensions used for stabilization is greater than the number of dimensions that can be
identified in the neural activity, these additional dimensions are unlikely to contain task-relevant information, and thus would
not be weighted highly in the BCI decoder. As long as the behaviorally-relevant dimensions of neural activity are
appropriately aligned by the stabilizer, inclusion of extra dimensions should not detrimentally affect performance. Mean-
squared error values were calculated based on 576, 1120, 1184, 1728, 1408, and 1232 trials for Days 20, 21, 22, 23, 24, and
27, respectively.
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Supplementary Fig. 8 | Effect of non-uniform kinematic sampling on stabilizer performance. To assess how stabilization
performance varies with non-uniform sampling of the kinematic space, we re-ran stabilization using data in which the
number of trials used per target was biased towards one half of the animal's workspace. For this analysis, we used neural
activity recorded during a center-out reaching task (see Supplementary Fig. 4). Stabilizer performance was compared to that
of fixed and daily-recalibrated decoders. Stabilization performance improves as the sampling becomes more uniform,
performing better than the non-stabilized decoder when the kinematic sampling was more uniform than 40:88 trials (40
trials from the under-sampled targets, 88 trials from the over-sampled targets). This suggests that stabilization is tolerant of
moderate non-uniformities in kinematic sampling, and can still yield performance improvements when approximately twice
the amount of data is used from one half of the workspace as from the other half. Furthermore, for non-uniformities in
kinematic sampling stabilization performs better for the oversampled targets (dark green) compared to the undersampled
targets (light green). This highlights how compromises must be made when the stabilizer is updated, and that the parameters
of the stabilizer are more appropriate for the targets for which there is more data. a, Example of non-uniform sampling of
trials. Sampling bias was varied from 0:128 to 64:64 (uniform sampling of all targets). The example shown corresponds to a
8:120 trial split, where 8 trials (2 per target) come from half of the workspace and the remaining 120 trials (30 per target)
come from the other half. b, Performance of the stabilizer (green), daily-recalibrated (blue) and non-stabilized (red) decoders.
Performance of the daily-recalibrated decoder provides a measure of the “best-case” scenario, where the decoding
parameters are recalibrated in an optimal manner at the beginning of the session to account for any instabilities. In contrast
to the analyses shown in Supplementary Figs. 4 and 7, where the stabilizer was updated continuously over the course of each
experimental session, in this analysis stabilization was performed using 128 trials collected only at the beginning of the
session and evaluated on the remaining trials. This was done because non-uniform sampling required sub-selecting trials to
use for stabilization; this meant that it was not possible to both run stabilization continuously and evaluate performance on
the same set of trials for each sampling bias condition. Performance was quantified using mean-squared error normalized
with respect to that of the daily-recalibrated decoder. Error bars represent the 95% confidence interval of the mean.
Stabilizer performance was averaged over the 8 possible oversampled/undersampled workspace splits. Parameters of the
non-stabilized decoder and those of the initial stabilizer were found using data from the first recording day (Day 20).
Parameters of the daily-recalibrated decoder were found using trials collected at the beginning of Day 27. In all cases,
decoder parameters were initialized using uniformly-sampled data. Decoding performance was then evaluated on trials from
Day 27, with parameters of the stabilizer subsequently updated using data with non-uniform sampling.
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