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Abstract

We propose a dimensionality reduction method
to identify linear projections that capture interac-
tions between two or more sets of variables. The
method, distance covariance analysis (DCA), can
detect both linear and nonlinear relationships, and
can take dependent variables into account. On
previous testbeds and a new testbed that system-
atically assesses the ability to detect both linear
and nonlinear interactions, DCA performs better
than or comparable to existing methods, while
being one of the fastest methods. To showcase
the versatility of DCA, we also applied it to three
different neurophysiological datasets.

1 Introduction

We consider the problem of understanding interactions be-
tween multiple sets of variables. This problem arises, for
example, when studying interactions between populations
of neurons in different brain areas (Semedo et al., 2014)
or between different groups of genes (Winkelmann et al.,
2007). These interactions are likely nonlinear (e.g., a gat-
ing mechanism between brain areas), and can be captured
by a nonlinear dimensionality reduction method, such as
kernel canonical correlation analysis (KCCA) (Hardoon
et al., 2004; Bach and Jordan, 2002). However, nonlin-
ear dimensionality reduction methods have two important
limitations. First, the amount of data that is collected in
real-world experiments is often insufficient to sample the
high-dimensional space densely enough for many of these
methods (Van Der Maaten et al., 2009; Cunningham and
Yu, 2014). Second, most nonlinear methods provide only
a low-dimensional embedding, but do not provide a direct
mapping from the low-dimensional embedding to the high-
dimensional data space. As a result, it is difficult to compare
the topology of different low-dimensional spaces. For these
reasons, many scientific (e.g., neuroscience or genetics)
studies rely on linear dimensionality reduction methods,
such as principal component analysis (PCA) and canonical
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correlation analysis (CCA) (Witten and Tibshirani, 2009;
Cunningham and Yu, 2014; Kobak et al., 2016; Cowley
et al., 2016).

Recently, methods that identify linear projections have been
developed that can detect both linear and nonlinear interac-
tions for multiple sets of variables. For example, hsic-CCA
(Chang et al., 2013) maximizes a kernel-based correlational
statistic called the Hilbert-Schmidt independence criterion
(HSIC) (Gretton et al., 2007), and is a hybrid between CCA,
which identifies linear projections but can only detect linear
interactions, and KCCA, which can detect both linear and
nonlinear interactions but identifies nonlinear projections.
Thus, hsic-CCA has the interpretability of CCA as well
as KCCA’s ability to detect nonlinear relationships. Still,
hsic-CCA is limited to identifying dimensions for two sets
of variables, and cannot be used to identify dimensions for
three or more sets of variables.

In this work, we propose distance covariance analysis
(DCA), a dimensionality reduction method to identify linear
projections that maximize the Euclidean-based correlational
statistic distance covariance (Székely and Rizzo, 2009). As
with HSIC, distance covariance can detect linear and nonlin-
ear relationships (Sejdinovic et al., 2013). DCA has several
important advantages over existing linear methods that can
detect both linear and nonlinear relationships, such as hsic-
CCA. First, DCA can identify dimensions for more than
two sets of variables. Second, DCA can take into account
dependent variables for which dimensions are not identified.
Finally, DCA is computationally fast—in some cases, or-
ders of magnitude faster than competing methods—without
sacrificing performance. DCA can be applied to continuous
and categorical variables, order the identified dimensions
based on the strength of interaction, and scale to many vari-
ables and samples. Using simulated data for one, two, and
multiple sets of variables, we found that DCA performed
better than or comparable to existing methods, while being
one of the fastest methods. We then applied DCA to real
data in three different neuroscientific contexts.

2 Distance covariance

Distance covariance is a statistic that tests for independence
between paired random vectors X ∈ Rp and Y ∈ Rq, and
can detect linear and nonlinear relationships between X
and Y (Székely and Rizzo, 2009). The intuition is that
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if there exists a relationship between X and Y , then for
two similar samples Xi, Xj ∈ Rp, the two correspond-
ing samples Yi, Yj ∈ Rq should also be similar. In other
words, the Euclidean distance between Xi and Xj covaries
with that of Yi and Yj . To compute the sample distance
covariance ν(X,Y ) for N samples, one first computes the
N × N distance matrices DX and DY for X and Y , re-
spectively, where DX

ij = ‖Xi −Xj‖2 for i, j = 1, . . . , N .
DY is computed in a similar manner. To take the covari-
ance between distance matrices DX and DY , the row, col-
umn, and matrix means must all be zero. This is achieved
by computing the re-centered distance matrix RX , where
RXij = DX

ij − D̄X
·j − D̄X

i· + D̄X
·· and the D̄X terms are the

row, column, and matrix means. RY is defined in a similar
manner. The (squared) distance covariance ν2(X,Y ), a
scalar, is then computed as:

ν2(X,Y ) =
1

N2

N∑
i,j=1

RXijR
Y
ij (1)

If ν = 0, then X and Y are independent (Székely and
Rizzo, 2009). The formulation of distance covariance uti-
lizes both small and large Euclidean distances, in contrast
to the locality assumption of many nonlinear dimensionality
reduction methods (Van Der Maaten et al., 2009). Whereas
nonlinear dimensionality reduction methods seek to identify
a nonlinear manifold, distance covariance seeks to detect
relationships between sets of variables.

3 Optimization framework for DCA

In this section, we first formulate the DCA optimization
problem for identifying a dimension1 of X that has the
greatest distance covariance with Y . We then extend this
formulation for multiple sets of variables by identifying a
dimension for each set that has the greatest distance covari-
ance with all other sets. In Section 4, we propose the DCA
algorithm to identify orthonormal linear dimensions ordered
by decreasing distance covariance for each set of variables.

3.1 Identifying a DCA dimension for one set of
variables

Consider maximizing the distance covariance between uTX
and Y with respect to dimension u ∈ Rp. We compute the
(squared) distance covariance ν2(uTX,Y ) defined in (1),
with re-centered distance matrix RX(u) for uTX . The
optimization problem is:

max
u

‖u‖≤1

1

N2

N∑
i,j=1

RYijR
X
ij (u) (2)

1In this work, we use the phrase “linear dimensions” or “di-
mensions” of a random vector X ∈ Rp to refer to either a set
of orthonormal basis vectors that define a subspace in Rp, or the
projection of X onto those vectors, depending on the context.

This problem was proposed in Sheng and Yin (2013), where
it was proven that the optimal solution u∗ is a consistent
estimator of β ∈ Rp such that X is independent of Y given
βTX . Similar guarantees exist for HSIC-related methods,
such as kernel dimensionality reduction (KDR) (Fukumizu
et al., 2004). However, Sheng and Yin (2013) only con-
sidered the case of identifying one dimension for one set
of variables, and optimized with an approximate-gradient
method (Matlab’s fmincon).

Instead, we optimize this problem using projected gradient
descent with backtracking line search. The gradient of the
objective function with respect to u is:

∂ν2

du
=

1

N2

N∑
i,j=1

RYij(δij(u)− δ̄·j(u)− δ̄i·(u) + δ̄··(u))

(3)
where δij(u) = (Xi −Xj) sign(uT (Xi −Xj)) and the δ̄
terms are the derivatives of the row, column, and matrix
means that are used to re-center the distance matrix. For
large numbers of samples, we can also make use of the fact
that each gradient step is computationally inexpensive to
employ stochastic projected gradient descent (with a mo-
mentum term (Hu et al., 2009) and a decaying learning rate
τ = 0.9).

We found that projected gradient descent performed better
and was faster than other optimization approaches, such as
Stiefel manifold optimization (Cunningham and Ghahra-
mani, 2015). This is likely the case because we only opti-
mize one dimension at a time, and do not optimize directly
for multiple dimensions (see Section 4).

3.2 Identifying DCA dimensions for multiple sets of
variables

Consider identifying dimensions u1 ∈ Rp1 and u2 ∈ Rp2
for two sets of variables X1 ∈ Rp1 and X2 ∈ Rp2 , where
p1 need not equal p2, that maximize the distance covariance
by extending (2):

max
u1,u2

‖u1‖,‖u2‖≤1

1

N2

N∑
i,j=1

R1
ij(u

1)R2
ij(u

2) (4)

To optimize, we alternate optimizing u1 and u2, whereby
on each iteration we first fix u2 and optimize for u1, then
fix u1 and optimize for u2. Because of the symmetry of the
objective function, each alternating optimization reduces to
solving (2).

To identify dimensions for multiple sets of variables, we
extend the definition of distance covariance in (1) to cap-
ture pairwise dataset interactions across M sets of variables
X1, . . . , XM (with Xm ∈ Rpm), where each set may con-
tain a different number of variables:

ν(X1, . . . , XM ) =
1(
M
2

) ∑
1≤m<n≤M

ν(Xm, Xn) (5)
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Using (5), we extend the optimization problem of (4) to
multiple sets of variables, where we desire one dimension
for each set of variables that maximizes the distance co-
variance. We can also include information from Q sets
of dependent variables Y 1, . . . , Y Q for which we are not
interested in identifying dimensions but are interested in
detecting their relationship with dimensions of each Xm.
An example of this is a neuroscientific experiment where we
identify dimensions of the recorded activity of neurons that
are related across M subjects (X1, . . . , XM ) and related to
both stimulus (Y 1) and behavioral (Y 2) information.

We seek to identify dimensions u1, . . . ,uM , where
um ∈ Rpm , that maximize the distance covariance
ν(u1TX1, . . . ,uM

T
XM , Y 1, . . . , Y Q). Using (5), the op-

timization problem is:

max
u1,...,uM

‖um‖≤1

1(
M
2

) 1

N2

∑
1≤m<n≤M

〈Rm(um), Rn(un)〉

+
1

M

1

N2

M∑
m=1

〈Rm(um), RD〉 (6)

where Rm(um) is the re-centered distance matrix of
umTXm, 〈Rm, Rn〉 =

∑
ij R

m
ijR

n
ij , and RD =

1
Q

∑Q
q=1R

q (i.e., the average of the re-centered distance
matrices R1, . . . , RQ of the sets of dependent variables
Y 1, . . . , Y Q). The first term is the distance covariance for
multiple sets of variables as defined in (5), and the second
term is the distance covariance between each set of variables
and the sets of dependent variables. Similar to optimizing
for two sets of variables, we optimize each um in an al-
ternating manner which reduces solving (6) to solving (2)
because we only consider terms that include um.

4 DCA algorithm

For the optimization problem (6), we identify only one di-
mension for each set of variables. We now present the DCA
algorithm (Algorithm 1), which identifies a set of DCA
dimensions ordered by decreasing distance covariance for
each set of variables. Given K desired DCA dimensions,
DCA identifies the kth DCA dimension umk for each of the
M datasets by iteratively optimizing u1

k, . . . ,u
M
k in (6) un-

til some criterion is reached (e.g., the fraction of change
in the objective function for two consecutive iterations is
less than some ε). Then, the data are projected onto the
orthogonal subspace of the k previously-identified dimen-
sions before optimizing for the (k + 1)th DCA dimension.
This ensures that all subsequently-identified dimensions are
orthogonal to the previously-identified dimensions. DCA
returns the identified dimensions as columns in the matrices
U1, . . . , UM , where Um ∈ Rpm×K , and the corresponding
ordered distance covariances d1, . . . , dK .

To determine the number of DCA dimensions needed, one
can test if the distance covariance of the kth dimension is

Algorithm 1: DCA algorithm

Input: {X1, . . . , XM}, {Y 1, . . . , Y Q}, K desired dims
Output: {U1, . . . , UM}, {d1, . . . , dK}
initialize {U1, . . . , UM} randomly;
for k = 1, . . . ,K do

while criterion not reached do
for m = 1, . . . ,M do

umk ←
max ν(u1

k
T
X1, . . . ,uMk

T
XM , Y 1, . . . , Y Q)

w.r.t. umk s.t. ‖umk ‖2 ≤ 1
end

end
dk ← ν(u1

k
T
X1, . . . ,uMk

T
XM , Y 1, . . . , Y Q);

for each of the M datasets, Um(:, k)← umk /‖umk ‖2;
for each of the M datasets, Xm ← project Xm onto
orthogonal space of Um(:, 1:k);

end

significant by a permutation test. Samples are first projected
onto the orthogonal space of the previously-identified (k−1)
dimensions, because those dimensions are not considered
when optimizing the kth dimension. Then, the samples are
shuffled within datasets to break any relationships across
datasets. A dimension is statistically significant if its dis-
tance covariance is greater than a large percentage of the
distance covariances for many shuffled runs (e.g., 95% for
significance level p = 0.05)

5 Performance on previous testbeds

We compared the performance of DCA to existing methods
on testbeds used in previous work. We first considered the
setting of identifying dimensions for X that are related to
Y . We replicated the testbed used for KDR (Fukumizu
and Leng, 2014), which included five different relationships
between X and Y , ranging from sinusoidal to a 4th-degree
polynomial (Fig. 1A). The five simulations are labeled as
“A”, “B”, “C-a”, “C-b”, and “D”, matching the labeling in
Fukumizu and Leng (2014). Each simulation had 10 or
50 variables, 1,000 samples, and a ground truth β whose
columns determined which dimensions of X related to Y .

We then measured performance by computing the mean
prinicipal angle between β and the identified β̂. Existing
methods included the HSIC-based methods KDR (Fuku-
mizu and Leng, 2014) and supervised PCA (SPCA) (Bar-
shan et al., 2011), the distance-based method supervised
distance preserving projections (SDPP) (Zhu et al., 2013),
the distance covariance-based method DCOV (Sheng and
Yin, 2016), and as a control, PCA. Note that DCA, which
optimizes dimensions sequentially, is a statistically different
method than DCOV, which optimizes for all dimensions at
once. For existing methods across all testbeds in this work,
we used publicly available code cited by the methods’ cor-
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Figure 1: (A)
KDR testbeds.
(B) hsic-CCA
testbeds. Error
bars: standard
deviation over
100 runs.

responding papers, as well as their suggested procedures to
fit hyperparameters, such as kernel bandwidths. We found
that DCA was among the best performing methods for each
simulation (Fig. 1A, red). Simulation D showed worse per-
formance for all methods compared to the other simulations
because it required identifying 10 dimensions for 50 vari-
ables, while the other methods required identifying only a
few dimensions for 10 variables.

Next, we considered the setting of identifying dimensions
for both X and Y . We replicated the testbed used for hsic-
CCA (Chang et al., 2013), which comprised three different
relationships between variables in X (5 variables) and Y
(4 variables) with 1,000 samples (Fig. 1B). We measured
performance by computing the principal angles between the
ground truth dimensions β and the identified dimensions β̂
for both X and Y , and taking the average. Existing methods
included those that can detect only linear interactions, such
as CCA (Hotelling, 1936) and partial least squares (PLS)
(Höskuldsson, 1988; Helland, 1988), as well as methods that
can detect both linear and nonlinear interactions by maxi-
mizing a correlational statistic. These methods include least
squares canonical dependency analysis (LSCDA, minimiz-
ing the squared-loss mutual information) (Karasuyama and
Sugiyama, 2012), hsic-CCA (maximing the kernel-based
HSIC statistic) (Chang et al., 2013), semiparametric canon-
ical analysis (SCA, minimizing the prediction error of a
local polynomial smoother) (Xia, 2008), and AB-canonical
analysis (ABCA, maximizing the alpha-beta divergence)
(Mandal and Cichocki, 2013).

Similar to the results in Fig. 1A, we found that DCA was
among the best performing methods for the “linear” and
“sine” simulations. The “circle” simulation proved chal-
lenging for all methods, with ABCA and hsic-CCA having
the best mean performance (but within the error margin for
DCA). The results of the two testbeds in Fig. 1 demonstrate
that DCA is highly competitive with existing methods at
detecting both linear and nonlinear interactions. However,
these simulations tested only a small handful of linear and
nonlinear relationships, and it is unclear how well these
results generalize to other types of nonlinearities.

6 Performance on novel testbeds

Because the previous testbeds probed a small number of
nonlinearities, we designed a testbed that allowed us to
systematically vary the relationship between datasets from

linear to highly nonlinear. Because existing methods are typ-
ically only applicable to one setting (identifying dimensions
for one, two, or multiple sets of variables), we tested DCA
separately on the three different settings for comparison.
None of the existing methods can be applied to all three
settings, which highlights the versatility of DCA.

6.1 Identifying dimensions for one set of variables

To systematically vary the relationship between X and Y ,
we generated the data (1,000 samples for each of 10 runs)
as follows. Let X = [x1, . . . , x50]T , where xi ∼ N (0, 1),
and let β ∈ R50×5, where each element is drawn from a
standard Gaussian. The columns β1, . . . , β5 are then or-
thonormalized. Define each element of Y = [y1, . . . , y5]T

as yi = sin( 2π
α fβi

TX). We chose the sine function be-
cause for f = 1, it is approximately linear (i.e., sin(x) ≈ x
for [−π4 ,

π
4 ]), and increases in nonlinearity with increas-

ing f . To ensure that βTi X did not exceed the domain
of [−π4 ,

π
4 ], we included a normalization constant α =

8
√

50 · ‖[X1 . . . X1000]‖∞. The 45 dimensions in X not
related to Y represent noise, although further noise could
be added to Y . We measure the performance of a method
by comparing the mean principal angle between identified
dimensions β̂ and the ground truth β.

We tested DCA against existing methods that identified di-
mensions forX related to Y . We found that DCA performed
well (error < 10°) for low frequencies, and outperformed
the other methods for 60 < f < 100 (Fig. 2A, top panel).
DCA also ran remarkably fast— orders of magnitude faster
than KDR and SPCA, which require fitting kernel band-
widths, as well as DCOV, which relies on an approximate
gradient descent method (Fig. 2A, bottom panel). We con-
firmed that fitting kernel bandwidths to the data was the
cause of the large computation time for KDR and SPCA by
selecting a kernel bandwidth σ a priori (equal to the median
of the Euclidean distances between data points). In this case,
KDR-σ and SPCA-σ required similar running times as DCA
(Fig. 2A, bottom panel). We note that for f ≤ 40, SDPP
and KDR-σ performed better than DCA with comparable
running times. Thus, these methods are more appropriate
for detecting linear interactions between X and Y , while
DCA is more appropriate for detecting nonlinear interac-
tions. Since DCA is a nonconvex optimization problem, we
confirmed that for 100 random starts for the same X and
Y (at f = 30), the solutions were consistent, with mean
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Figure 2: Top panels show error (measured by angle of overlap) for identifying dimensions for (A) one set, (B) two sets, and
(C) multiple sets of variables. We varied the degree of nonlinearity in A and B, and the number of datasets in C. Bottom
panels show running time in log scale. Error bars: standard deviations over 10 runs.

principal angle 7.78°± 0.27°.

6.2 Identifying dimensions for two sets of variables

In the case of two sets of variables, we sought to identify
dimensions for both X and Y . We used the same simulated
data as in Section 6.1, and assessed how well a method
recovered β, the dimensions of X related to Y (Fig. 2B).
There are three main findings. First, DCA performed well
(error < 10°) for low frequencies and outperformed the
other methods for 80 < f < 110. CCA, SCA, and ABCA
were better able to capture linear interactions than DCA,
although ABCA was much slower. We also confirmed
that DCA performed well for non-orthonormalized β’s and
added Gaussian noise to Y (Supp. Fig. 1). Second, DCA
performed better when it removed previously-identified di-
mensions of Y that could mask other relevant dimensions
of Y (Fig. 2B, red curve) than when DCA did not identify
dimensions of Y (Fig. 2A, red curve, e.g., compare with
Fig. 2B for f = 90). This is an advantage shared by SCA,
ABCA, and hsic-CCA (Chang et al., 2013). Finally, DCA
was fast—an order of magnitude faster than some competing
methods (Fig. 2B, bottom panel).

6.3 Identifying dimensions for multiple sets of
variables

In the case of multiple sets of variables, we aimed to iden-
tify dimensions for up to M = 20 datasets. To test per-
formance, we extended the previous testbed in the follow-
ing way. First, we generated 500 samples of Z ∈ R5,
where each element was drawn from a standard Gaussian.
Then, for each set of variablesX1, . . . , XM ∈ R10, we gen-

erated a random orthonormal basis βm = [βm1 , . . . , β
m
5 ],

where βmi ∈ R5. The first five of ten variables in the mth
datasetXm = [xm1 , . . . , x

m
10]T were xmi = sin( 2π

α fβ
m
i
TZ)

for i = 1, . . . , 5, m = 1, . . . ,M , f = 30, and α =
8
√

5 · ‖[Z1 . . . Z500]‖∞. The remaining five variables of
Xm were shuffled versions of the first five variables (shuf-
fled across samples). By generating the data in this way,
we ensured that only the first five variables in each dataset
were related across datasets, and we defined ground truth
to be any 5-d subspace spanned by the first five variables.
To measure performance, we computed the mean principal
angle between the top five identified dimensions and the first
five standard basis dimensions {e1, . . . , e5}, and averaged
over the M datasets.

We found that as the number of datasets increased, the per-
formance of most methods improved (Fig. 2C, top panel).
This is because the methods had access to more samples to
better detect interactions between datasets. DCA showed
better performance than hyperalignment (“h-align.”) (Haxby
et al., 2011), whose PCA step returns random dimensions
because all variables in Xm have equal variance. We also
tested generalized CCA (gCCA) (Kettenring, 1971), which
can only detect linear interactions between datasets. gCCA
performed better than hyperalignment, presumably because
it detected weak linear interactions between datasets, but
performed worse than DCA. Finally, we tested generalized
canonical analysis (GCA), a method that can detect non-
linear interactions between multiple datasets (Iaci et al.,
2010), but this method performed worse and was orders of
magnitude slower than DCA (Fig. 2C, bottom panel). We
also tested the scalability of DCA by increasing the num-
ber of samples from 500 to 5,000. As expected, DCA with
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stochastic projected gradient descent outperformed the other
methods at detecting the nonlinear relationships between
datasets (Fig. 2C, “DCA-stoch”).

7 Applications

To demonstrate how DCA can be applied to real-world data,
we apply DCA to three datasets comprising recordings from
tens of neurons in primary visual cortex that represent the
three different settings (identifying dimensions for one, two,
and multiple sets of variables). Because we do not know
ground truth for these datasets, we do not compare DCA
with all existing methods. Here, the purpose is to highlight
how DCA returns sensible results in all three settings.

7.1 Identifying stimulus-related dimensions of neural
population activity

When recording the activity of neurons in response to a
sensory stimulus, there are typically aspects of the neural
responses that covary with the stimulus and those that do not
covary with the stimulus. Having recorded from a popula-
tion of neurons, we can define a multi-dimensional activity
space, where each axis represents the activity level of each
neuron (Cunningham and Yu, 2014). It is of interest to iden-
tify dimensions in this space in which the population activity
covaries with the stimulus (Kobak et al., 2016; Mante et al.,
2013). For example, one can record from neurons in primary
visual cortex (V1) and seek dimensions in which the popu-
lation activity covaries with the orientation of moving bars.
We analyzed a dataset in which we recorded the activity of
61 V1 neurons in response to drifting sinusoidal gratings
presented for 300 ms each with the same spatial frequency
and 49 different orientation angles (equally spaced between
0° and 180°) (Kelly et al., 2010). We computed the mean
spike counts taken in 300 ms bins and averaged over 120
trials.

If there were a strong relationship between the neural activ-
ity and grating orientation, we would expect to see nearby
neural responses encode similar grating orientations. How-
ever, when we applied PCA to the trial-averaged population
activity (Fig. 3A), we did not observe this similarity for
all nearby responses (Fig. 3A, red-outlined gratings). To
provide supervision, we sought to identify dimensions of
the trial-averaged population activity X (61 neurons × 49
orientations) that were most related to Y , the representation

of grating orientation. Because we did not seek to identify
dimensions in Y , this example is in the setting of identifying
dimensions for one dataset.

The mean response of a V1 neuron f(θ) to different orien-
tations θ can be described by a cosine tuning model with a
preferred orientation θpref (Shriki et al., 2012). If V1 neurons
were truly cosine-tuned, then f(θ) ∝ cos(2(θ − θpref)) =
α1 cos(2θ) + α2 sin(2θ), where α1 and α2 depend on θpref.
This motivates letting Y = [cos(2θ), sin(2θ)]T to define a
linear relationship between X and Y . DCA identified two
dimensions in firing rate space that strongly capture orienta-
tion (Fig. 3B, left panel). However, if instead we represented
orientation directly as Y = θ (therefore not utilizing domain
knowledge), X and Y would have a nonlinear relationship.
For this representation of orientation, DCA was still able
to identify two dimensions that strongly capture orientation
(Fig. 3B, right panel). For both cases, the two DCA dimen-
sions had nearly half of the cross-validated sum of squared
error (SSE), computed with linear ridge regression, than that
of the two PCA dimensions. This highlights the ability of
DCA to detect both linear and nonlinear relationships and
return sensible results.

7.2 Identifying nonlinear relationships between
neural population activity recorded in two
distinct brain areas

An open question in neuroscience is how populations of neu-
rons interact across different brain areas. Previous studies
have examined linear interactions between brain areas V1
and V2 (Semedo et al., 2014). Here, we attempt to identify
nonlinear interactions between V1 and V2. We analyzed
a dataset in which we presented drifting sinusoidal grat-
ings (8 orientations, each with 400 trials; 1 sec stimulus
presentation for each trial) while simultaneously recording
population activity from 75 V1 neurons and 22 V2 neurons
(Zandvakili and Kohn, 2015). To focus on the moment-
by-moment interactions, we computed the residuals of the
activity by subtracting the mean spike counts from the raw
spike counts (100 ms bins) for each orientation.

We asked whether DCA could identify a relationship be-
tween V1 activity and V2 activity after the linear relation-
ship between them was removed. If so, this would imply
that a nonlinear relationship exists between V1 and V2, and
could be identified by DCA. We first applied CCA, PLS,
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DCA, and KCCA to the activity for each orientation. We
chose CCA and PLS because they can only detect linear
interactions, and KCCA because it can detect nonlinear in-
teractions. Dimensionality was determined as described in
Section 4 with a significance of p < 0.05. We found that
CCA, PLS, DCA, and KCCA all returned a dimensional-
ity greater than zero (Fig. 4A), indicating that interactions
exist between V1 and V2. We then subtracted the linear
contribution of V1 from the V2 activity (identified with
linear ridge regression). We confirmed that CCA and PLS,
both linear methods, identified zero dimensions for the V2
activity that had no linear contribution from V1 (Fig. 4B).
However, DCA identified 2 to 3 dimensions, suggesting that
nonlinear interactions exist between V1 and V2. KCCA also
identified a non-zero dimensionality (Fig. 4B), consistent
with DCA.

A key advantage of methods that identify linear projections
is that they can address certain types of scientific questions
more readily than nonlinear methods. For example, we
asked if the linear and nonlinear interactions between V1
and V2 occur along similar dimensions in the V1 activ-
ity space. It is difficult for KCCA to address this ques-
tion because it does not return a mapping between the low-
dimensional embedding and the high-dimensional activity
space. In contrast, DCA, which identifies linear dimensions
but can still detect nonlinear interactions, can readily be used
to address this question. We first computed the mean prin-
cipal angle between the dimensions identified by PLS and
DCA in Fig. 4A, and found that the dimensions overlapped
more than expected by chance (Fig. 4C, βDCA ∠ βPLS ,
green bar lower than gray bar). This suggests that some
DCA dimensions represent similar linear interactions as
those identified by PLS. Next, we asked if DCA returned
similar dimensions when considering the full activity (βDCA,
Fig. 4A) versus the activity minus any linear contributions
(βDCA-nonlin, Fig. 4B). As expected, the mean principal angle
was small compared to chance (Fig. 4C, βDCA-nonlin ∠ βDCA),

confirming that DCA detects similar nonlinear interactions
in both cases. Finally, we asked if the linear and nonlinear
interactions occur along similar dimensions. We found that
the mean principal angle between the PLS dimensions and
the DCA-nonlinear dimensions was smaller than chance
(Fig. 4C, βDCA-nonlin ∠ βPLS). This suggests that linear and
nonlinear interactions do occur along similar dimensions.
Similar results hold for CCA (albeit with larger principal
angles, ~60°).

To gain intuition about the nonlinear interactions identified
by DCA, we plotted the top DCA dimension for V1 versus
the top DCA dimension for V2 (Fig. 4D, top left, one repre-
sentative grating). We noticed that the variance of the V2
activity increased as the V1 activity increased—a nonlinear,
heteroskedastic interaction (Fig. 4D, bottom left). We hy-
pothesized that a linear-nonlinear-Poisson model, where V2
activity is generated by a Poisson process whose rate is a
linear projection of V1 activity passed through a hinge func-
tion, could explain this relationship. Indeed, when applying
DCA to data generated from the linear-nonlinear-Poisson
model, we found a similar trend as that of the real data
(Fig. 4D, right panels).

7.3 Aligning neural population activity recorded
from different subjects

The recording time (i.e., number of trials) in a given exper-
imental session is typically limited by factors such as the
subject’s satiety or neural recording stability. To increase
the number of trials, one can consider combining many in-
dividual datasets into one large dataset for analysis. The
question is how to combine the different datasets given that
possibly different neurons are recorded in each dataset. One
way is to align population activity recorded from different
subjects, provided that the neurons are recorded in similar
brain locations. This is similar in spirit to methods that align
fMRI voxels across subjects (Haxby et al., 2011). DCA
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is well-suited for alignment because of its ability to iden-
tify dimensions that are similar across subjects and related
to stimulus information, and its ability to detect nonlinear
relationships across subjects. To showcase DCA as an align-
ment method, we analyzed a dataset in which V1 population
activity was recorded from 4 different monkeys (111, 118,
109, and 97 neurons, respectively) while drifting sinusoidal
gratings (8 orientations, each with 300 trials; 1 sec stimulus
presentation for each trial) were presented (Zandvakili and
Kohn, 2015). We applied DCA to the 4 datasets (taken in
1 sec bins). The ith trial for each monkey corresponded to
the same orientation (i = 1, . . . , 2400). Given no informa-
tion about orientation, DCA was able to identify dimensions
of each monkey’s population activity that capture orien-
tation (Fig. 5A), because these dimensions were the most
strongly related across monkeys. These dimensions were
approximately linearly related because the ordering of the
clusters around the circle was the same across monkeys (i.e.,
the DCA dimensions could be rotated to align clusters based
on color).

To make the task of aligning population activity more diffi-
cult, we introduced a nonlinear transformation by randomly
permuting the orientation labels across trials for each mon-
key. Importantly, trials that previously had the same label
still had the same label after permuting (i.e., we randomly
permuted the colors across clusters). After permuting, the
ith trial for one monkey might not have the same orientation
as the ith trial for another monkey (i = 1, . . . , 2400). As
before, the color labels were not provided to DCA. DCA
identified remarkably similar dimensions across monkeys
(Fig. 5B) as those without permutation (Fig. 5A), quanti-
fied by the mean principal angle between the dimensions
(chance angle: ~83°). Because the dimensions cannot sim-
ply be rotated to align the colors of the clusters, this shows
that DCA is able to detect nonlinear relationships across
datasets. These results illustrate how DCA can align neural
activity.

8 Discussion

We proposed DCA, a dimensionality reduction method that
combines the interpretability of linear projections with the
ability to detect nonlinear interactions. The biggest advan-
tage of DCA is its applicability to a wide range of problems,
including identifying dimensions in one or more sets of vari-
ables, with or without dependent variables. DCA is not reg-
ularized, unlike kernel-based methods (e.g., KDR, SPCA,
and hsic-CCA), whose bandwidth parameters provide a
form of regularization. However, fitting the bandwidth was
computationally demanding, and when a heuristic was used
to pre-select a kernel bandwidth, DCA was better able to
capture nonlinear interactions. In addition, DCA may be
directly regularized by the use of penalties, akin to sparse
CCA (Witten and Tibshirani, 2009).

We optimized for {u1, . . . ,uK} sequentially instead of di-
rectly optimizing for the orthonormal basis U ∈ Rp×K . The
sequential approach, also used by other methods (Chang
et al., 2013; Xia, 2008; Iaci et al., 2010; Mandal and Ci-
chocki, 2013), has the advantages of many smaller optimiza-
tion spaces rather that one large optimization space, and
the removal of previously-identified dimensions that could
otherwise mask other relevant dimensions (cf. Section 6.2).
Directly optimizing for U no longer orders dimensions by
relevance, making visualization and interpretation difficult.
Still, directly optimizing for U can detect certain relation-
ships between X and Y that would not be detected by the
sequential approach (e.g., the continuous version of XOR:
Y = sign(x1x2), where x1 and x2 are independent). Future
work can extend DCA to directly optimize for the subspaces.
The DCA source code for Matlab and Python can be found
at https://bit.ly/dca_code.
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