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Neural Variability in Premotor Cortex Provides a Signature
of Motor Preparation
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We present experiments and analyses designed to test the idea that firing rates in premotor cortex become optimized during motor
preparation, approaching their ideal values over time. We measured the across-trial variability of neural responses in dorsal premotor
cortex of three monkeys performing a delayed-reach task. Such variability was initially high, but declined after target onset, and was
maintained at a rough plateau during the delay. An additional decline was observed after the go cue. Between target onset and movement
onset, variability declined by an average of 34%. This decline in variability was observed even when mean firing rate changed little. We
hypothesize that this effect is related to the progress of motor preparation. In this interpretation, firing rates are initially variable across
trials but are brought, over time, to their “appropriate” values, becoming consistent in the process. Consistent with this hypothesis,
reaction times were longer if the go cue was presented shortly after target onset, when variability was still high, and were shorter if the go
cue was presented well after target onset, when variability had fallen to its plateau. A similar effect was observed for the natural variability
in reaction time: longer (shorter) reaction times tended to occur on trials in which firing rates were more (less) variable. These results
reveal a remarkable degree of temporal structure in the variability of cortical neurons. The relationship with reaction time argues that the
changes in variability approximately track the progress of motor preparation.
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Introduction
Voluntary movements are believed to be “prepared” before they
are executed (Keele, 1968; Kutas and Donchin, 1974; Wise, 1985;
Day et al., 1989; Riehle and Requin, 1993; Ghez et al., 1997;
Padoa-Schioppa et al., 2002). An important line of evidence
comes from tasks in which a delay separates an instruction stim-
ulus from a subsequent go cue. Reaction times (RTs) (from the go
cue until movement onset) are shorter when delays are longer,
suggesting that some time-consuming preparatory process is
given a head start by the delay (Rosenbaum, 1980; Riehle and
Requin, 1989; Crammond and Kalaska, 2000). Neurons in a
number of brain areas, including dorsal premotor cortex (PMd),
exhibit activity during the delay (Tanji and Evarts, 1976; Wein-
rich and Wise, 1982; Weinrich et al., 1984; Godschalk et al., 1985;
Kurata, 1989; Riehle and Requin, 1989; Snyder et al., 1997).
Delay-period activity is typically tuned for the instruction and

can be predictive of RT (Riehle and Requin, 1993; Bastian et al.,
2003). Electrical disruption of that activity largely erases the RT
savings earned during the delay (Shenoy and Churchland, 2004).
It is therefore suspected that delay-period activity is the substrate
of motor preparation occurring at that time (Wise, 1985; Riehle
and Requin, 1993; Bastian et al., 2003).

Assuming this is so, why does motor preparation take time,
and how is its progress reflected in the neural activity? Perhaps
activity must rise above a threshold to trigger the movement, as
seems likely for saccades (Carpenter and Williams, 1995; Hanes
and Schall, 1996; Roitman and Shadlen, 2002). An instructed
delay could allow activity to approach threshold, shortening the
subsequent RT (Erlhagen and Schoner, 2002). Supporting this
“rise-to-threshold” hypothesis, higher firing rates are often asso-
ciated with shorter RTs (Riehle and Requin, 1993; Bastian et al.,
1998, 2003), although Crammond and Kalaska (2000) found that
peak firing rates after the go cue (when the movement is presum-
ably triggered) were on average lower after an instructed delay.

An alternate hypothesis, illustrated in Figure 1, assumes that
the movement produced is a function of the state of preparatory
activity, at the time some trigger is applied. For each possible
movement, there would be an “optimal” subspace of firing rates,
appropriate to generate a sufficiently accurate movement. Motor
preparation might therefore be an “optimization”: bringing fir-
ing rates from their initial state to the appropriate subspace. Ac-
tivity might drift somewhat while waiting to execute, but motor
preparation would remain “complete” as long as firing rates re-
main within the optimal subspace. The most obvious predictions
of this hypothesis are trivially true: delay-period firing rates oc-
cupy a smallish subspace (of the total space possible), and this
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subspace is different for each instructed movement. However, is
there evidence that the brain actively attempts to bring firing rates
to that subspace? Is some penalty paid, perhaps a longer RT, if
firing rates are elsewhere? We show that these questions can be
addressed by measuring the variability of firing rates.

Parts of this work have been published previously in abstract
form (Churchland et al., 2004).

Materials and Methods
Subjects. Subjects were three adult male macaque monkeys (Macaca mu-
latta) trained to reach to visual targets for juice reward. Animal protocols
were approved by the Stanford University Institutional Animal Care and
Use Committee. After initial training, we performed a sterile surgery
during which monkeys were implanted with a head restraint. At this
time, we also implanted either a silicon 96 electrode array (monkey G) or
a standard recording cylinder (monkeys A and B). The electrode array
(Cyberkinetics, Foxborough, MA) was implanted in caudal PMd (adja-
cent to primary motor cortex), as estimated visually from local anatom-
ical landmarks. Cylinders (Crist Instruments, Hagerstown, MD) were
centered over caudal PMd, located according to a previous magnetic
resonance imaging scan. Cylinders were placed surface normal to the
cortex. The skull within the cylinder was left intact and covered with a
thin layer of dental acrylic. For both the array and for the cylinders, we
confirmed our estimate of the arm representation (initially made from
the pattern of sulci) via intracortical microstimulation at a number of
sites.

Task apparatus. During experiments, monkeys sat in a customized
chair (Crist Instruments) with the head restrained via the surgical im-
plant and the left arm loosely restrained using a tube and a cloth sling.
Experiments were controlled and data collected under computer control
(Tempo; Reflective Computing, St. Louis, MO). Stimuli were back pro-
jected on a frontoparallel screen �27 cm from the monkey (the exact
distance depending on the size of the monkey). A photocell was used to
record the timing of the video frames with 1 ms resolution. A small
reflective hemisphere was taped to the middle digits of the right arm, �1
cm from their tips. The position of this hemisphere was tracked optically
in the infrared (60 Hz, 0.35 mm root mean square accuracy; Polaris
system; Northern Digital, Waterloo, Ontario, Canada). An infrared mir-
ror, transparent to visible light, was positioned at a 45° angle (facing
upwards) immediately in front of the nose. Eye position was then tracked
using an overhead infrared camera (estimated accuracy of 1°; Iscan, Bur-
lington, MA). A clear acrylic shield prevented the monkey from touching
the mirror or from bringing the reflective hemisphere to his mouth. A
tube fixed to this shield dispensed juice rewards.

Task design and training. Experiments consisted of a sequence of “tri-
als,” each of which lasted a few seconds, and ended with a juice reward if
successful. Trials began with the appearance of a central spot. After this
spot was touched and held (400 –500 ms for monkey A and B, 1000 ms for
monkey G), the target appeared. For monkey A and B, the target jittered
(2 mm SD), and cessation of motion provided the go cue. For monkey G,
the go cue was a slight enlargement of the target. In both cases, the central
spot concurrently disappeared. Reaches were rewarded if they were brisk
and accurate, with RTs between 150 and 500 ms. Reward was delivered
after the target was held for 300 ms, with the next trial beginning a few
hundred milliseconds later.

Different experiments/datasets used different ranges of delay periods.
For experiments using long (e.g., 400 – 800 ms) delay durations, we in-
cluded (with one exception; see below) occasional (one in five) “catch”
trials with short delays (e.g., 30 –230 ms). These trials were presented
simply as an incentive to rapid motor preparation and were not included
in the subsequent analyses of neural data, which were designed to apply
to the longer range.

We found that, after monkeys began each trial by touching the central
spot, it was common for them to occasionally make small adjustments to
their hand position within the next 0.5 s or so, after which these move-
ments became less common. For each monkey, the initial hold period
was made sufficiently long to minimize such movements by the time of
target onset. In pilot studies, we found that this was likely important. If

the hand was still “settling down” at the time of target onset, then the
main effects observed in the neural variability (see below) were superim-
posed on a baseline that was already declining before target onset. This
effect may also have been related to the alignment of data (which could
have different initial hold times) to the time of target onset. Regardless of
the cause, using a long baseline period (400 –1000 ms depending on the
monkey) ensured that neural variability was at a plateau before target
onset.

Neural recordings. For monkeys with implanted cylinders (monkeys A
and B), recordings were made using single electrodes (Frederick Haer
Company, Bowdoinham, ME) driven by a hydraulic microdrive (David
Kopf Instruments, Tujunga, CA). Electrodes were introduced through
small holes drilled by hand through the acrylic and skull, under ket-
amine/xylazine anesthesia. This method provided excellent recording
stability, even in the upper layers of cortex, and eliminated the need for a
penetrating guide tube. Neural signals were amplified, filtered, and
sorted using the Plexon (Dallas, TX) system. Single units were isolated
manually, and electrode position was adjusted when needed to maintain
isolation. An effort was made to isolate delay-period responsive neurons,
and nearly all (88%) showed significantly tuned ( p � 0.05; ANOVA)
changes in delay activity. All were included in subsequent analyses.

Signals from the implanted array (monkey G) were amplified and
manually sorted using the Cerebus system (Cyberkinetics). Isolations
were classified as either single unit or multiunit depending on their qual-
ity. The latter likely included spikes from one to four neurons. Both were
included in our analysis if (1) they possessed tuned ( p � 0.05) delay-
period activity with reasonable modulation [more than five spikes per
second (spikes/s)], and (2) the delay-period firing rate for the preferred
direction was at least 20% of the peak rate during the preferred move-
ment. For this comparison, delay-period rate was averaged over the delay
period, excluding the first 150 ms (to exclude the initial, possibly “visual”
transient response), whereas movement activity was considered from 100
ms before to 200 ms after movement onset. The goal of these criteria was
to select, from the 100 –200 isolations (single unit and multiunit) only
those that were responsive and selective during the delay period. We also
wanted to exclude neurons whose activity was dominated almost entirely
by movement-related responses. Although subsequent analyses indicate
that this is likely a minor concern, for such neurons it was in principal
possible that the observed delay activity could be attributable in part to
tiny hand movements or undetected muscle contractions.

Datasets. We collected and analyzed a number of “datasets.” For mon-
keys A and B, an individual dataset consisted of recordings from many
neurons across many days but using the same experimental design. For
monkey A, we collected one dataset (60 neurons) using a delay-period
range of 400 – 800 ms and including 30 –230 ms catch trials. For monkey
B, we collected two datasets. The first (51 neurons) used a delay-period
range of 500 –900 ms and did not include catch trials. The second (31
neurons) was collected some months later, used a delay-period range of
400 – 800 ms, and included 30 –330 ms catch trials. For monkey G, each
dataset consisted of the recording from a single day and included �40
single-unit and multiunit recordings (see text and figure legends for exact
numbers). For the basic experiment, using a 200 –700 ms delay, we col-
lected five datasets for monkey G, with very similar results each time. For
the experiment using three discrete delay durations (30, 130, and 230 ms,
presented in random order), we collected two datasets from monkey G,
again with very similar results for both.

Fixation requirements. Ocular fixation was tracked for all three mon-
keys but enforced only for monkey G. In this case, a small purple cross
appeared near the initial central spot (1.5 cm lateral and 1.5 cm above its
center). The trial began only once the central spot was touched and the
purple cross was fixated. Fixation requirements were quite forgiving (�3
cm), but actual fixation was much more accurate (�6 and 9 mm SD of
horizontal and vertical eye position). After the onset of the target, the
purple cross was moved near the target, and fixation was enforced there
for the duration of the delay (thus, a saccade was made during the delay).
However, for experiments with three discrete delay durations, fixation
was enforced near the central spot throughout the delay. This was done
so as to ensure that changes in neural activity/RT were not indirectly the
result of saccadic behavior.
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For monkeys A and B, the point of fixation was tracked but not en-
forced (no purple cross was used). Monkey B typically fixated the reach
target �200 ms after its appearance (i.e., a saccade was made during the
delay). Monkey A showed the opposite pattern of behavior, typically
fixating the central spot until after the go cue, executing a saccade to the
reach target in parallel with the reach (i.e., there was no saccade to the
target during the delay).

Target locations/reach speed requirements. Some of the datasets (those
for monkeys A and B) come from experiments that were designed to
address a number of issues, only some of which are considered in the
current study. For this reason, the different datasets differ modestly in the
task details. For the first dataset for monkey B, targets were presented at
five distances (30 –120 mm) in the preferred and null directions of the
neuron under study. For the secondary dataset from monkey B, and for
monkeys A and G, targets were presented in seven directions (e.g., 0, 45,
90, 135, 180, and 225°) and two distances (e.g., 60 and 100 mm). The
exact target locations varied slightly from monkey to monkey, depending
on arm length and comfortable working range. We always omitted the
target location nearest downwards, which was obscured by the out-
stretched arm. For monkeys A and B, target color instructed reach speed
(red, rapid; green, moderate), a feature of the task incidental to the cur-
rent study. These variations in design across datasets serve, if anything, to
strengthen the result of this study because similar effects were found
regardless of the details of the task.

Measuring neural variability. Many of our analyses rely on the mea-
surement of neural variability, across trials of the same type, made as a
function of time. A central assumption of this approach is that the mea-
sured variability is attributable to both cell-intrinsic variability in spike
production and to “true” variability in the underlying firing rate on each
trial Our goal was to isolate the latter, as best as possible, by normalizing
with respect to the estimated contribution of the former. To do so, we
compute the variance of firing rate across trials and normalize by the
mean firing rate, all as a function of time. We term the resulting mea-
surement the normalized variance (NV). The logic behind this metric is
as follows. Intrinsic spiking variability is thought to be near Poisson for
cortical neurons, so that its variance scales linearly with mean firing rate.
Thus, if the measured across-trial variability were attributable solely to
intrinsic spiking variability (i.e., the underlying firing rate were identical
on each trial), the NV should be unity. In the presence of variability in
underlying firing rate, the NV should be greater than unity. In particular,
we were interested in whether variability in underlying firing rate de-
clined during the course of the trial (Fig. 1). In this case, the NV should
decline from above one to near one. The simulations in Figure 2 illustrate
that the NV behaves as expected for a simulated neuron with Poisson
spiking statistics. When the underlying firing rate is the same on every
trial (black trace at top), the NV (black trace at bottom) remains near
unity throughout the trial and is largely unaffected by changes in mean
firing rate. When the underlying firing rate is initially variable across
trials (gray traces at top), the NV is initially elevated (gray trace at bot-
tom) and declines to unity as firing rates become consistent.

To compute the NV, the spikes of each trial were smoothed with a
Gaussian (SD of 30 ms) to estimate rate (in spikes/s) as a function of time.
The basic unit of analysis was the “set” of trials recorded from one isola-
tion for one target condition (by target condition, we simply mean target
location, except for monkeys B and A, in which data were further segre-
gated depending on whether target color instructed a fast or slow reach).
For each such set, the NV was computed using the following:

NV�t� � c �

�
trial�1

n
�rtrial�t� � r��t��2

n � 1

r��t�
, (1)

where rtrial is firing rate on that trial, and r� is the mean firing rate across all
trials in that set. The numerator is simply the across-trial variance [units
of squared spikes per squared seconds (spikes 2/s 2)], whereas the denom-
inator is the mean firing rate (spikes/s). The NV thus has units of spikes/s.
The unitless constant c scales the NV so that (like the Fano factor) it will
be unity for a neuron with (1) Poisson spiking statistics and (2) the same

underlying rate on every trial. The value of c depends on the filter used
(c � 0.109 for our 30 ms Gaussian filter). Note that, for a “box” filter, c is
equal to the filter length in seconds, and the NV is then mathematically
identical to the Fano factor.

Our central measurement is the average NV across all sets. Despite our
fairly broad filter and the large number of trials often collected (up to 60

Figure 1. Illustration of the optimal-subspace hypothesis. The configuration of firing rates is
represented in a state space, with the firing rate of each neuron contributing an axis, only three
of which are drawn. For each possible movement, we hypothesize that there exists a subspace
of states that are optimal in the sense that they will produce the desired result when the
movement is triggered. Different movements will have different optimal subspaces (shaded
areas). The goal of motor preparation would be to optimize the configuration of firing rates so
that it lies within the optimal subspace for the desired movement. For different trials (arrows),
this process may take place at different rates, along different paths, and from different starting
points.

Figure 2. Simulations illustrating how an increasing consistency in across-trial firing rate
could be detected using the NV metric. Simulations were based on the mean firing rate of one
recorded neuron (solid black trace at top). Baseline activity was artificially extended (to the left)
to allow longer simulations. For each of 10,000 simulated trials, spike trains were generated
using Poisson statistics. Two versions of the simulation were run. For the first version, the
underlying firing rate was identical (black trace at top) on all simulated trials. The resulting NV
is shown by the black trace at the bottom. For the second version, each trial had a different
underlying firing rate, generated by adding noise, filtered with a 30 ms SD Gaussian, to the
mean. The magnitude of this noise decayed with an exponential time constant of 200 ms after
target onset. Ten examples of the resulting underlying firing rates are shown in gray at top, and
the resulting spike trains (computed with Poisson statistics, with the time-varying mean taken
from the gray traces) are shown in the rasters. The NV computed from 10,000 such spike trains
is shown by the gray trace at the bottom.
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per set), for a minority of sets, the mean firing rate fell to zero at one or
more time points. We used three different methods to handle such in-
stances. To allow the same computation to be used for each, we used a
variation of Equation 1:

NV�t� � c �

� � �
trial�1

n
�rtrial�t� � r��t��2

n � 1

c�� � r��t�
, (2)

where � � �� � 0.01 (spikes 2/s 2 for �; spikes/s for ��). The inclusion of ��
in the denominator prevents division by 0 but otherwise has very little
impact. The multiplication of �� by c, and the inclusion of � in the nu-
merator forces the NV to default to unity if firing rates fall to 0 (but again,
with little impact otherwise). This allowed us three options when a set
had time points with a 0 mean firing rate. First, the NV for such points
could be allowed to maintain its value of 1 (a somewhat reasonable
default, assuming Poisson spiking statistics). Second, the NV for such
time points could be excluded from the overall (across-set) mean. Third,
the entire set (at all time points) could be excluded from the overall
mean. In practice, all three methods produced very similar results. Data
shown were calculated using the third method, which has the advantage
that all time points are computed from the same sets.

It is worth noting that the NV is closely related to the Fano factor but
is applied to the spike rate rather than spike count. It is also worth noting
that the Fano factor has typically been used to gauge intrinsic spiking
variability (Tolhurst et al., 1983; Gur et al., 1997; Bair and O’Keefe, 1998;
Averbeck and Lee, 2003); additional sources of variability are excluded if
possible. Here, any additional variability is the quantity of interest, and
we are attempting to factor out the influence of intrinsic spiking variabil-
ity. As with the Fano factor, a virtue of the NV is that, if firing rates are
consistent across trials, it will remain at unity regardless of the magnitude
of firing rate, assuming that intrinsic spiking statistics are Poisson. Thus,
to the degree that this assumption holds, changes in the NV can be
attributed to changes in the variability of firing rates across-trials. We
also note that the NV is somewhat forgiving of violations of the Poisson
assumption. It will remain constant regardless of firing rate as long as
there is a linear relationship between spiking variance and spike rate. The
slope need not be 1, as for a Poisson process. Indeed, we did sometimes
observe (especially around the time of movement onset) values of the NV
�1, indicating that spiking can be more regular than Poisson.

Finally, it is worth pointing out that there are other indices of neural
variability that could potentially be used. For example, one might use the
variance minus the mean. This would sidestep a disadvantage of the NV
(it normalizes the “additional” variability as well as the Poisson variabil-
ity) but at the expense of being more dependent on the Poisson assump-
tion (it is then key that the intrinsic variance scales with the mean with a
slope very near 1). We applied this metric to some of our datasets. To do
so, we computed the variance (as for the NV) and subtracted the mean
rate, times a constant k. k has units of spikes/s and is the expected slope of
the variance with the mean for a Poisson process, given the filter used
(k � 1/c � 9.14 for our filter). This method of measuring across-trial
variability produces results that are somewhat noisier than the NV but
show the same basic effect: a large decline after target onset (supplemen-
tal Fig. 2C, available at www.jneurosci.org as supplemental material).
However, given that we do sometimes observe values of the NV �1, we
considered it more appropriate to use the NV, which is more forgiving of
violations of the Poisson assumption.

Measurement of neural covariance. Neural data recorded simulta-
neously using the implanted electrode array provided the possibility to
examine cross-trial covariance. The mean, absolute, across-trial covari-
ance was computed as follows. First, for each pair of isolations (i and j)
and each target location (l ), we computed the across-trial covariance in
spike rate:

�i, j,l�t� �
1

n �
trial�1

n

�ri,l,trial�t� � r�i,l�t���rj,l,trial�t� � r�j,l�t��, (3)

where ri,l,trial(t) is the firing rate at time t on one trial, and r�i,l(t) is the
mean firing rate across all trials for that target location. We then took the
mean value, �� i,j(t), across target locations. Some isolation pairs had over-
all positive covariances, and some had overall negative covariances. For
each pair, we therefore took the absolute value of the covariance and then
took the mean across all pairs (e.g., all m combinations of i and j):

�� �t� �
1

m �
pairs�1

m

��� i, j�t��, (4)

This quantity was then “corrected” by subtracting off the covariance that
would be expected by chance. This correction was calculated by recom-
puting the mean absolute covariance (as above), after shuffling the order
of the trials for Equation 3 (e.g., trial 3 for the first isolation might be
compared with trial 19 for the second isolation). Because trial counts
were finite and because the absolute value is taken for each neuron pair,
the value of this correction is always positive. For statistical power, we
repeated this shuffle correction 20 times and took the mean, which was
then subtracted from the mean absolute covariance, as computed in
Equation 4 above. We believe this correction to be important given the
inevitable contribution of noise. However, we note that the principal
effect that we observed (a decline in covariance) was present even in the
uncorrected analysis.

Not all isolation pairs were included in this analysis. First of all, we did
not consider the covariance between isolations recorded from the same
electrode (for which one might be concerned that spikes were occasion-
ally mis-sorted between isolations). Second, we noticed that the electrode
array exhibited small amounts of crosstalk between channels, presum-
ably because of the proximity of all 96 wires in a small and delicate
bundle. This was observed by computing, for each pair of electrodes, the
number of coincident (within 1 ms) spikes relative to that expected by
chance (given the mean firing rates over the relevant interval). For the
vast majority of electrode pairs, this number was very close to 0. How-
ever, a small number (10 total, or 0.3%) of electrode pairs showed a
coincidence rate (from 1–20 spikes/s) that indicated likely electrical
crosstalk. We thus excluded from analysis any pair of isolations that came
from a pair of electrodes whose coincidence rate was higher than 0.1
spike/s. This conservative cutoff excluded a fairly high (5%) proportion
of electrode pairs. We presume that, for most of these, there was actually
no electrical crosstalk and that the observed rate of coincidence was in
fact “real,” i.e., those neurons were either functionally connected or their
firing rates covaried with time. However, given that we could afford to
loose statistical power, we thought it best to be conservative and reject all
potentially suspect isolation pairs. Also in the interests of being conser-
vative, the above procedure was run once using baseline activity (in
which firing rates are fairly stationary with time) and then repeated using
an interval that included the response to target onset. Although it is not
ideal to use a time period in which firing rates are very nonstationary, we
did so because some neurons may have been silent during baseline. For
this latter version, we used a slightly less restrictive criterion for rejection
(0.2 spikes/s) because of the (presumed) higher incidence of real corre-
lations as a result of firing rates changing together after target onset. Only
one new electrode pair was rejected by this second analysis.

Analysis and presentation. For most analyses, we plot the NV and/or
mean firing rate as a function of time, with the data locked to either target
onset or movement onset. For summary purposes, we made measure-
ments of the decline in the NV at various time points: the median time of
the go cue and the time of movement onset. Both of these measurements
were made when data were locked to the movement onset. The values at
those time points were compared with the value 200 ms before target
onset, measured when data were locked to the target onset. p values were
computed using a two-tailed t test, with the variability in question being
that across isolations/target conditions (i.e., across sets). The duration of
the initial decline in the NV was estimated by taking the second deriva-
tive, locating the negative peak around the time the NV began to drop
and the positive peak around the time the NV plateaued.

When computing the NV for trials with short and long RTs, we ex-
cluded from analysis those trials (1– 4%) with RTs outside the normal
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range (150 – 450 ms). RT was computed via a velocity threshold (2.5
cm/s). Each set of trials (one set is all trials for a given isolation and
condition; see above), was divided into two groups, with RTs shorter and
longer than the median. For each group, we computed the NV, and, for
each time point, we computed the percentage difference: 100 � 2 �
(NVshort 	 NVlong)/(NVshort 
 NVlong). This procedure yielded many
NV differences (one time-varying difference for each set). The mean and
SE were computed across sets. The mean percentage difference in firing
rate was computed in the same manner. Note that computing the mean
percentage difference allows within-condition statistical power and is not
identical to the percentage difference of the two means.

For statistical power, this analysis included all days with relevant data
(7 d for Figs. 10 B, 11; 2 d for Fig. 10 D). It is unclear to what degree the
implanted array recorded a similar set of neurons across days, and no
attempt was made to identify neurons across days. Thus, the added sta-
tistical power may be attributable to either the addition of more neurons
or simply the addition (in effect) of more trials per neuron.

For some analyses, we computed the “preferred direction” of each
neuron. This was done based on its mean delay-period firing rate, over

the period from 200 ms before the go cue until
the go cue. This period was chosen because the
analyses in question examined the NV at the
time of the go cue, and we wanted to compute
the preferred direction from firing rates at a
similar time. For each neuron, we computed the
“vector sum” of firing rates: for each target lo-
cation (including both distances and both in-
structed speeds when appropriate) we multi-
plied the mean firing rate by a vector pointing in
the target direction and then summed across
target locations (Georgopoulos et al., 1982).
The preferred direction was then taken to be the
closest direction (of those actually tested) to
that vector sum. Subsequent analysis computed
the NV as a function of target location relative
to the preferred direction. For example, we
computed the mean NV (across all neurons) for
targets in the preferred direction and then for
the next direction clockwise from the preferred
direction, and so on.

EMG recordings. EMG activity was recorded
using hook-wire electrodes (44 gauge with a 27
gauge cannula; Nicolet Biomedical, Madison,
WI) placed in the muscle for the duration of
single recording sessions. Recordings were
made from six muscle groups (deltoid, biceps
brachii, triceps brachii, trapezius, latissimus
dorsi, and pectoralis) for monkey B, three (del-
toid, biceps brachii, and triceps brachii) for
monkey G, and four (deltoid, biceps brachii,
pectoralis, and latissiumus dorsi) for monkey
A. Recordings were made one muscle at a time,
after completion of neural recording. Electrode
voltages were amplified, bandpass filtered
(150 –500 Hz, four pole, 24 db/octave), sampled
at 1000 Hz, and digitized. Off-line, raw traces
were differentiated (to remove any remaining
baseline), rectified, smoothed with a Gaussian
(SD of 15 ms) and averaged.

Results
Behavior
Figure 3 shows representative examples of
behavior during the task. Reach paths (A,
B) were usually fairly straight, although in
some cases showed noticeable curvature
(A). Note that this curvature was part of
the normal, rapid, reaching motion rather
than a subsequent correction. Reach paths

were typically quite repeatable across trials (different traces) and
were similar for different delay durations (B, compare solid, gray,
and dashed traces). Reach speed and duration scaled with dis-
tance in the expected manner (C, D). Reaches were brisk, with
durations �300 ms. Supplemental Figure 1A (available at www.
jneurosci.org as supplemental material) gives a representative ex-
ample of EMG activity during the task: the average signal re-
corded from the deltoid of monkey B. This muscle was active
throughout the hold and delay periods (to support the out-
stretched arm) but changed its activity little if at all in response to
target onset. The lack of change in activity was typical of all mus-
cles tested for all three monkeys, with one exception. The excep-
tion was the trapezius of monkey B (supplemental Fig. 1 B, avail-
able at www.jneurosci.org as supplemental material), which
showed a small increase in delay-period activity for rightward
reaches to slow (green) targets (note that this change was small

Figure 3. Analysis of behavior for monkeys B (A, C) and G (B, D). The behavior of monkey A is not shown but was very similar.
Top panels show reach trajectories in x–y space, with the targets and acceptance windows in gray. For ease of presentation, data
are shown for only one target distance (85 mm in A and 100 mm in B). Bottom panels show mean reach speed (in the direction of
the target), with each target direction receiving its own subpanel and each trace corresponding to a target distance. For monkey
B, neural recordings were made using either two directions and five distances or seven directions and two distances. The data
shown here are from an experiment (interleaved with the neural recordings) that used the entire range of target directions (7) and
distances (5), so as to fully describe behavior. Data shown are for the red “fast” targets. Data were similar for the green “slow”
targets, but reach velocities were�40% slower and the reaches themselves were somewhat straighter (reach durations were still
�300 ms). For monkey G, data are from the dataset analyzed below in Figure 9. This experiment used three discrete delay
durations (30, 130, and 230 ms). The responses for these have been plotted separately for comparison (black, gray, and dashed
traces). To aid viewing, only the first 300 reaches from the dataset are shown in B.
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compared with the changes during the subsequent reach).
Thus, with this minor exception, the changes in delay-period
neural activity reported below are most naturally interpreted
as being related to preparatory processing that does not pro-
duce immediate movement or muscle contraction.

Previous work has found that RT declines with increasing
delay duration (Rosenbaum, 1980; Riehle and Requin, 1989) and
has taken this as evidence that motor preparation takes time. We
also observed this pattern, as can be seen in Figure 4. For monkeys
A and B, data are from the short-duration catch trials. Occasional
catch trials were included to provide incentive for immediate
motor preparation (the minimum delay was otherwise �0.5 s,
depending on the experiment). Their brief duration and contin-
uous distribution also makes them ideal for examining the pro-
gression of RT with delay duration. RTs were brisk and declined
with delay duration. Although this effect was entirely expected
given previous work, we note that previous studies using mon-
keys have at most compared RT for one long delay and one 0
delay (Riehle et al., 1994). To our knowledge, the data plotted in
Figure 4 are the first, using monkeys, to track the effect on a fine
timescale. Of particular note, it appears to take �100 –200 ms for
delay-period duration to have a maximal effect on RT. For mon-
key G, we did not use catch trials: experiments used either discrete
short durations (30, 130, and 230 ms) or a continuous range of
longer delay durations (�200 ms). Looking at data across these
two designs (performed on subsequent days) reveals a pattern
similar to that in the other two monkeys: an initial decline in RT,
in this case spanning the first �200 ms of delay durations.

As an aside, we often observed (for all monkeys) an additional
decline in RT near the end of the range of delay durations (data

not shown). That effect is presumably attributable to anticipation
resulting from monkeys learning the distribution of delay peri-
ods, and we do not consider it further.

The data in Figure 4 suggest that motor preparation is usually
complete by 100 –200 ms after target onset (for this task). Of
course, movement preparation may take differing amounts of
time on different trials, and the mean time of movement prepa-
ration could be considerably faster. This would explain why it
takes �100 –200 ms to gain an RT savings of �30 – 60 ms. Of
course, there are other possible explanations for this mismatch
(e.g., other rate-limiting processes may occur in parallel with
motor preparation). We also note that the RT savings would
presumably have been slightly larger had we included a 0 ms
delay (the minimum tested was 30 ms). In any case, the data
suggest that it takes �100 –200 ms for movement preparation
to complete on the majority of trials. We will compare this
behavioral estimate with estimates from neural data of the
time when motor preparation appears to become complete on
the majority of trials.

Typical neural responses
Figure 5A shows example delay-period responses of four neu-
rons, locked to the onset of the target. Consistent with previous
work (Weinrich and Wise, 1982; Weinrich et al., 1984; Godschalk
et al., 1985; Crammond and Kalaska, 2000), we found that many
PMd neurons showed a sudden change in mean firing rate after
target onset. Such changes were then approximately sustained,
although usually with some “drift” in mean firing rate over the
course of the delay. Given that such activity is thought to be
related to motor preparation and given that motor preparation is
believed to consume time (probably 100 –200 ms for the present
experiment, given the RT results above), one would hope to ob-
serve the temporal evolution of motor preparation in such data.
However, should we assume that motor preparation is complete
after the initial rapid change in mean firing rate? If so, what are we
to make of the subsequent changes? Similar questions are raised
when comparing neural activity recorded using a very short delay
period with neural activity recorded using a longer delay. Figure
5B shows the responses of one example neuron for seven target
directions and for both a 30 ms (gray) and 230 ms (black) delay
duration. In agreement with previous work (Crammond and
Kalaska, 2000), this example illustrates that PMd neurons with
delay activity are typically also active in the absence of a delay,
now showing a burst of activity during the RT interval (between
the go cue and movement onset). The natural interpretation is
that such responses subserve motor preparation that completes
during the delay for the 230 ms delay but must complete during
the RT interval for the 30 ms delay (Crammond and Kalaska,
2000). This interpretation is appealing, but again, how can the
progress of motor preparation be observed in the mean firing
rate? When does motor preparation for the short (30 ms) delay
achieve the same state of readiness that had presumably been
achieved before the go cue for the longer (230 ms) delay? Is it
when the gray trace first crosses the black trace, or perhaps when
it reaches its peak? What exactly is it that firing rates need to do
for motor preparation to be complete?

The optimal-subspace hypothesis predicts a decline in
neural variability
In Introduction, we put forward an optimal-subspace hypothesis
of motor preparation. Almost trivially, this hypothesis predicts a
rapid change in mean firing rate after target onset (if firing rates
come to occupy a new subspace, then clearly mean firing rate

Figure 4. Mean RT (in milliseconds) is plotted versus delay period duration. For monkeys A
and B, this was for the catch trials with short delays. Although the delay period was selected
from a continuum, in practice, delay periods were integer multiples of 16 ms because of video
presentation, and this binning is used in the plots. Lines show exponential fits. For monkey G,
we did not use catch trials (the minimum delay for most experiments was already quite short, at
200 ms). The plotted data are therefore from one experiment using three discrete delay dura-
tions (30, 130, and 230 ms; black symbols) and another (performed the previous day) using a
continuous range (200 –700 ms; white symbols). For the latter, data have been binned (ranges
shown in parentheses). These data are from the datasets analyzed in Figures 6 A and 9.
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must change). This hypothesis also allows for the possibility that
firing rates may drift somewhat even after motor preparation is
complete, as long as they remain within the subspace. However, it
would seem that almost any theory of motor preparation would
predict changes in mean firing rate, and the nature of biology
would seem to ensure that such changes rarely take the form of a
perfect plateau. Does the optimal-subspace hypothesis make any
more specific predictions? It does, if we consider not mean firing
rate but the firing rate on individual trials.

A typical assumption made during the analysis of extracellular
recordings is that the spikes observed on a given trial provide a

noisy measurement of an underlying process (an underlying fir-
ing rate) that is similar on every trial of that type. This assumption
might seem to apply nicely to the delayed reach task used here.
During the time before target onset, we required that the hand be
held steady at the central touch point. For many experiments,
ocular fixation was also enforced. From an outwards perspective,
behavior is essentially identical on every trial. Yet before target
onset, no specific demands have yet been placed on the circuits
devoted to motor preparation. Activity related to motor prepa-
ration might therefore be quite variable across trials. If, after
target onset, firing rates are brought to a relatively compact opti-
mal subspace, as suggested in Figure 1, then firing rate variability
should be reduced. Thus, the first key prediction of the optimal-
subspace hypothesis is that firing rate variability, measured across
trials, will decline after target onset. The rate of this decline
should be approximately related to the rate at which firing rates
reach the optimal subspace, i.e., the rate of motor preparation.

An impediment to directly observing such an effect is the
inconveniently variable nature of cortical spiking. Such “intrin-
sic” spiking variability is not of present interest; we want to mea-
sure any additional variability in the underlying firing rate. To do
so, we computed the variance of firing rate across trials and nor-
malized by the mean firing rate, all as a function of time (see
Materials and Methods). Assuming that intrinsic spiking vari-
ability is near Poisson, the resulting NV should be unity regard-
less of whether mean firing rate is high or low, as long as the true
underlying firing rate is the same on every trial. Any across-trial
variability in the underlying firing rate will raise the NV above
unity, and changes in the magnitude of across-trial variability will
be accompanied by changes in the NV (as demonstrated by the
simulations in Fig. 2). Thus, we can use the NV to assess whether
firing rates become less variable after target onset.

A caveat to this approach is that the NV is an inherently
“noisy” measurement and is statistically very unreliable when
computed across the few dozen trials collected for a single neuron
and a single target location. Fortunately, the optimal-subspace
hypothesis predicts that variability should decline for most (per-
haps all) neurons and for most (perhaps all) target locations.
Thus, we computed the NV separately for each neuron and con-
dition and then averaged across all combinations. This is possible
because computing the NV “factors out” the change in mean
firing rate and asks only whether firing rates are becoming more
or less consistent around that mean. It can therefore be meaning-
fully averaged across neurons/conditions with differing mean
rates.

Neural variability declines during motor preparation
Figure 6A shows the mean change in firing rate from baseline
(top) and the NV (middle) applied to neural data recorded from
monkey G. These measurements were computed across all isola-
tions (47) and target conditions. Thus, the mean firing rate in-
cludes responses to both “preferred” and “nonpreferred” target
locations and also includes the contribution of neurons whose
primary response was suppression. As a result, the mean change
in firing rate is remarkably modest. The more pronounced effect
is the change in variability. The NV (�SE, computed across iso-
lations/target locations) declined after target onset, remained at a
rough plateau during the delay, and fell again after the go cue. The
initial decline spanned �119 ms. Data shown are for one dataset
(e.g., the recording from 1 d using the implanted array). Other
datasets from this monkey show a nearly identical effect (see Fig. 9A).

Figure 6B–D shows the same analysis for recordings from
PMd of monkey A and B. Monkey A (B) shows a pattern of

Figure 5. Examples of typical delay-period responses in PMd. A, Mean � SE firing rates for
four example neurons. Three of these showed increases in firing rate after target onset, whereas
one showed a decrease. Data are from experiments using a continuous range of delay periods
(500 –900 for monkey B and 400 – 800 for monkey A). For each time point, mean firing rate was
computed from only those trials with a delay period at least that long. Labels give the monkey
initial and cell number. Details (direction, distance, instructed speed, and trials/condition) were
as follows: cell B29, 45°, 85 mm, fast, 23 trials; cell B16, 135°, 60 mm, fast, 20 trials; cell B46,
335°, 85 mm, fast, 41 trials; cell A2, 185°, 120 mm, slow, 42 trials. B, Mean � SE firing rates of
one example neuron from monkey G (cell G20, �23 trials per condition per delay duration),
from the dataset using discrete delay-period durations. Data are shown for the 30 ms (gray) and
230 ms (black) delays for all directions and for one distance (100 mm). Dots show mean times of
movement onset. Note that downwards targets were not used. This was because the monkey’s
arm obscured his vision at that location.
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changes very similar to that for monkey G.
Monkey B (C) shows a similar, but some-
what less clear, pattern. The initial decline
in the NV was less prominent than for the
other two monkeys, and the plateau dur-
ing the delay was less well maintained. We
speculate that this may be because monkey
B had been heavily trained using a delay
period that was always �500 ms, perhaps
putting less emphasis on consistent motor
preparation early in the delay period.
Monkey B was tested first, and we did not
initially use catch trials (catch trials were
used for monkey A, and the minimum de-
lay for monkey G was 200 ms). We there-
fore collected a second, smaller dataset, in-
cluding occasional catch trials (30 –330 ms
delays) that were not analyzed but were
intended to emphasize accurate motor
preparation early in the delay. The NV for
this dataset (D) does show a sharper initial
decline and a somewhat more stable pla-
teau during the delay. Of course, whether
this can be attributed to the more stringent
task requirements is difficult to say with
any certainty. Somewhat surprisingly, the
overall magnitude of the NV was rather
different (being always �1) for this dataset
than for the other three, or for other data-
sets shown later. We presume that this
anomaly is simply attributable to sampling
variability: individual neurons show a
range of overall NV values, and this dataset
used the smallest sample (31) of neurons.

Despite the quantitative differences
across the four datasets in Figure 6, the
following commonalities were observed.
First, target onset caused an immediate de-
cline in the NV, spanning 100 –200 ms
(119, 198, 145, and 98 ms for the four data-
sets). Second, this reduction was main-
tained at a rough plateau during the delay
period, such that the NV was always lower
at the time of the go cue than it had been
before target onset (24, 20, 19, and 14% for
the four datasets; all p values �0.001, t
test). Last, the NV declined further after
the go cue, reaching a minimum near
movement onset (falling 38, 37, 36, and
26% relative to before target onset; all p
values �10	6).

The above-described effects can also be observed by directly
plotting, for each isolation and target location, the variance of the
firing rate (across trials) versus the mean. Figure 7 shows this
analysis for the same data as in Figure 6A. Three time points were
analyzed: 200 ms before target onset, 200 ms after target onset,
and 200 ms after the go cue. The variance is plotted after scaling
by the constant c (see Materials and Methods) so that a pure
Poisson process would produce data along the gray line of unity
slope. Before target onset, most data falls above the unity line.
After target onset, data are more or less equally distributed
around the unity line. After the go cue, there is a modest trend
toward data falling below the unity line. Using linear regression

(and insisting on a 0 y-intercept), we obtained slopes of 1.55 �
0.03, 1.03 � 0.03, and 0.88 � 0.02 for the three epochs.

Controls: might behavior produce the decline in
neural variability?
The above results demonstrate that target onset drives a decline in
the variability of PMd neurons. Such an effect has not to our
knowledge been reported previously. Might there be a trivial ex-
planation for this effect? Previous studies have shown that PMd
activity can be influenced by eye position (Boussaoud, 1995;
Cisek and Kalaska, 2002; Batista et al., 2004, 2005). Might the
decline in variability be somehow related to saccadic behavior?

Figure 6. The NV plotted as a function of time for four datasets. As indicated in A, the different traces plot (1) the change in
firing rate from baseline (black trace), (2) the NV�1 SE (black trace with flanking traces), and (3) mean absolute hand speed (gray
trace). Means and SEs were computed across all isolations and target conditions (both preferred and nonpreferred). Two temporal
epochs are shown, aligned to target and movement onset, the times of which are indicated by the black arrows. The small solid
histogram shows the distribution of go cue onset times, reflecting the fact that RTs are variable. A, Analysis of recording from 1 d
from monkey G (816 trials, 47 isolations: 14 single unit and 33 multiunit). B, Analysis of data from monkey A (60 single-unit
isolations). C, Analysis of the principal dataset for monkey B (51 single-unit isolations). D, Analysis of the secondary dataset for
monkey B (31 single-unit isolations) collected after inclusion of short-delay catch trials.

Figure 7. Scatter plots of firing rate variance versus the mean for three different times during the trial: 200 ms before target
onset, 200 ms after target onset, and 200 ms after the go cue. Each point plots, for one isolation and one target location, the
variance of the firing rate against the mean. The former is multiplied by a constant, c (see Materials and Methods). This constant
“corrects” for the influence of filtering, so that a Poisson process should (on average) produce data that lies along the gray line of
unity slope. For each of the three plots, the firing rate was measured at a single time point, with no averaging over time apart from
the initial filtering of the spike trains.
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This is unlikely. Similar results were obtained for three viewing
conditions: (1) free viewing (monkeys A and B, who showed
different natural patterns of fixation; see Materials and Methods),
(2) fixation enforced at the center and then at the target after its
appearance (monkey G), and (3) fixation enforced at the center
until after the go cue (monkey G; see Fig. 9A). Might the decline
instead be related to small arm movements? We required that the
hand stay stationary both before and after target onset, enforced
with a position window and velocity threshold. Hand speed (Fig.
6, gray traces) is very close to 0 both before and after target onset.
Nevertheless (and unsurprisingly), a 50-fold magnification (data
not shown) of hand-speed traces (both average and individual
trial) reveals that, even when the fingertips are stationary on the
screen, tiny amounts of drift and jitter in hand position are com-
mon. Such movement could be resolved by our tracking device,
the marker for which was attached near the middle of the digits.
These movements were more common near the very start of the
trial (see Materials and Methods). However, neither target onset
nor the go cue caused a decrease in these small hand movements,
making it unlikely that they are related to the observed changes in
the NV.

Controls: can rising spike rates account for the change
in variability?
Another potential concern is that the observed decline in the NV
might result from a change in intrinsic spiking variability as the
mean spike rate changes. Certainly the variance of the measured
spike rate is expected to change with the mean given the near-
Poisson statistics of most cortical neurons. The NV is designed
specifically to factor out such changes but, in doing so, depends
on the assumption that intrinsic spiking statistics are Poisson (or
at least that spike variance and mean rate are linearly related).
However, might spiking statistics transition from supra- to sub-
Poisson as the mean rate changes? For example, as firing rates
rise, spiking could become more regular because of the influence
of refractory periods (Berry and Meister, 1998) or other intrinsic
mechanisms (Carandini, 2004). There are at least four reasons
why this is unlikely to be the principal reason for the decline in
variability.

First, a drop in variability of the observed magnitude, attrib-
utable solely to more regular spiking at higher firing rates, is
unlikely on a priori grounds. The mean firing rate (averaged
across all neurons and conditions) changed only modestly after
target onset. The relationship between firing rate and intrinsic
spiking variability would thus need to be very nonlinear to ac-
count for the observed change in the NV. However, previous
work has shown the relationship to be reasonably linear (Tol-
hurst et al., 1983; Bair and O’Keefe, 1998; Carandini, 2004). We
also used simulations to explore the likely effect of refractory
periods. For a simulated neuron with a 2 ms refractory period
(but which otherwise obeys Poisson spiking statistics), the NV
declines by �10% when spike rate increases from 20 to 50
spikes/s. The change in the NV observed in the data is at least
three times this large under conditions in which spike rate is
changing (on average) much less.

Second, the pattern of changes in the NV does not simply
mirror that seen in the mean firing rate. For example, in Figure
6C, the initial decline in the NV occurs as firing rates are rising,
whereas the decline in the NV after the go cue occurs as firing
rates are falling. In other datasets (Fig. 6D), the decline in the NV
after the go cue does occur as firing rates are rising. Thus, there is
no straightforward relationship between higher firing rates and a
lower NV.

Third, the data in Figure 7 are incompatible with this expla-
nation. First, there is no clear tendency for the variance to mean
ratio to decline at higher mean firing rates. Second, even if one
considers only a restricted range of means (e.g., those �35 spikes/
s), the variance is still on average lower later in the trial.

Fourth, the NV undergoes a decline even when the analysis is
restricted to conditions in which firing rate changes little. For
most isolations, there were some target conditions that evoked
little or no change in mean firing rate during the delay. We can
therefore ask whether the NV still drops for these nonpreferred
conditions. Figure 8 illustrates how this analysis was performed.
As mentioned above, firing rate changes only modestly after tar-
get onset when averaged across all isolations/conditions (A).
However, looking at the SD of firing rate makes it clear that, for
individual isolations/conditions, firing rates often underwent
substantial changes during the delay (note that the SD across
isolations/conditions is a very different measurement of variabil-
ity than the NV across trials). After excluding conditions in which

Figure 8. Reanalysis of the data in Figure 6 A, restricting analysis to target locations that
evoked little response. A, Change in mean firing rate (from baseline) as a function of time for all
isolations and target locations (black trace; same as in Fig. 6 A). The envelope plots the SD of the
mean, across all isolations/target locations. Note that this reflects an entirely different kind of
variability (variability across isolations and targets) than that reflected by the NV (variability
across trials for a given isolation/target). B, Same as in A but after restricting the analysis to
isolation/target location combinations with small changes in firing rate after target onset. A
given isolation/target location was excluded if there was a �3 spike/s difference in mean firing
rate between the baseline and delay periods. Of 658 original combinations (47 isolations by 14
target locations), 366 were excluded. As intended, mean firing rate changed even less than in A,
and the SD was much smaller (the width of the envelope is still sometimes �3 spikes/s because
that criterion was applied to firing rate averaged across the delay). C, The NV � SE, computed
after restricting the analysis to isolations/conditions with little change in firing rate, as de-
scribed above. Compare with Figure 6 A.
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mean firing rate changed �3 spikes/s between baseline and delay
(B), the overall mean firing rate is now even closer to stationary,
and the SD is (of course) much smaller. For this restricted dataset,
the change in the NV after target onset is slightly smaller than
when computed from the full dataset but is still quite prominent
(�80% of the original value). Very similar results were obtained
for the other monkeys/datasets.

The above analysis indicates that the decline in variability is
present even when mean firing rates change little. However, this
analysis has the possible drawback that it preferentially excludes
the contributions of the most active neurons (which may explain
the modest decrease in effect size, if the most involved neurons
are being excluded from the analysis). We therefore repeated the
analysis using slightly different methodology. For each cell, we
computed the median absolute change in firing rate, after target
onset, for each condition. We then analyzed data separately for
those conditions with absolute changes greater than the median
(more responsive conditions) and less than the median (less re-
sponsive conditions). This ensured that each isolation contrib-
uted to both analyses. For two datasets (monkey G and the second
from monkey B), the decline in the NV was slightly more pro-
nounced for the more responsive conditions. For the other two
datasets (monkey A and the first from monkey B), the decline was
more pronounced for the less responsive conditions. Averaged
across the four datasets, the decline in the NV (measured from
200 ms before until 200 ms after target onset) was remarkably
similar for the more and less responsive conditions: 14 and 15%,
respectively. Thus, the change in the NV is not strongly linked to
the change in mean firing rate.

As a side note, it is reasonable to ask, for those conditions in
which there was little change in firing rate, whether the variance
still drops when expressed in raw un-normalized form. Supple-
mental Figure 2B (available at www.jneurosci.org as supplemen-
tal material) plots the mean un-normalized variance for the same
data as in Figure 8C and makes two points. First, the effect can be
seen even in the un-normalized variance. Second, even small
changes in mean rate act to “corrupt” the un-normalized
measurement. Supplemental Figure 2C (available at www.
jneurosci.org as supplemental material) shows how the impact of
mean rate on variability can be (approximately) factored out
without normalizing, using a subtractive correction instead. Re-
sults are much the same as when using the divisive correction.

In summary, one cannot conclude that the NV measurement
is entirely uncontaminated by changes in spike rate and the con-
sequential changes in intrinsic spiking statistics. The relationship
between mean spike rate and intrinsic spiking variability is pre-
sumably only approximately linear, so some “contamination” is
likely inevitable. Still, changes in mean firing rate cannot be the
primary cause of the decline in the NV after target onset, nor does
that decline result somehow from divisive normalization. A more
likely explanation for the drop in the NV is that the underlying
firing rate, considered across trials, is becoming more consistent
as the trial progresses. This suggests that, even for nonresponsive
conditions, most neurons are changing their firing rate on most
trials, something that is hidden in the mean firing rate.

Controls: changes in firing rate covariance
Another possibility is that the decline in the NV might result from
more regular intrinsic spiking caused by some unknown network
mechanism, perhaps the locking of spiking to a central rhythm.
Although it would be difficult to entirely reject such a general
hypothesis, the specific possibility that spikes lock to a central
rhythm can be tested. If so, the magnitude of the covariance

among neurons should increase during the delay, as they come to
share a rhythm. To test this, we analyzed the change in spiking
covariance (see Materials and Methods) for neural data recorded
simultaneously using the implanted electrode array in monkey G.
The covariance fell in parallel with the NV, dropping 66% by the
time of the go cue ( p � 10	5) (supplemental Fig. 3, available at
www.jneurosci.org as supplemental material). Looking at the co-
variance before the movement (and with the data locked to the
movement), the covariance was reduced by 92% ( p � 10	6,
relative to before target onset), reaching a minimum around the
time of movement onset.

These findings argue against the possibility that the decline in
the NV results from the locking (and subsequent regularization)
of firing rates to a central rhythm. They also further address the
broader issue (already considered above) of whether the decline
might be attributable to changes in intrinsic spiking variability
(e.g., more regular spike production) rather than an increasing
consistency in the underlying firing rate across trials. A mathe-
matical property of the covariance is that it is unaffected by the
addition of independent noise to the two variables of interest. The
covariance should therefore be uninfluenced by intrinsic spiking
statistics, as long as they are independent between neurons. Thus,
the finding that the covariance declines in parallel with the NV
makes it very unlikely that the observed drop in variability results
from a change in intrinsic spiking statistics. The change in the NV
is most likely attributable to a decline in the across-trial variabil-
ity of the underlying firing rate. As this variability declines, the
covariance naturally declines as well. In this context, it is natural
that the decline in the NV is more modest (�35%) because it
cannot fall below a certain “floor” value, limited by the intrinsic
spiking variability. In contrast, the covariance could in principle
fall to 0. Finally, we note that the covariance need not be (and was
not) normalized and is dropping at a time when the un-
normalized variance is rising along with mean firing rate (data
not shown).

Time course of neural variability and the time course of
motor preparation
The initial decline in the NV consumed 98 –198 ms depending on
the monkey and dataset. This is similar to the time course of the
decline in RT with delay-period duration (�100 –200 ms) (Fig.
4). This is consistent with the idea that the magnitude of the NV
indicates the approximate degree of motor preparation yet to be
accomplished. Admittedly, this interpretation rests on some as-
sumptions. First of all, it assumes that the increasing consistency
of firing rates with time reflects their increasing accuracy (i.e.,
their increasing tendency to occupy the optimal subspace, whose
boundaries cannot be easily inferred using current methods).
Second, it assumes that there is a limit on the rate at which firing
rates approach their putatively optimal values, such that progress
before the go cue shortens the subsequent RT. The first assump-
tion is difficult to test directly, although some indirect tests are
possible (see below). The second assumption can be tested di-
rectly by comparing the rate of decline in the NV for trials with
different delay durations. To do so, we used the dataset collected
from monkey G using three discrete delay-period durations (30,
130, and 230 ms, randomly interleaved). Figure 9A shows the NV
computed for the three delays, aligned to the onset of the go cue.
The rate of decline in the NV is similar for the three delay dura-
tions. As a consequence, at the time of the go cue, the NV for the
230 ms delay has dropped to a plateau, whereas the NV for the 30
ms delay does not reach the same point until �80 ms later, po-
tentially explaining why mean RT is longer. Figure 9C plots RT
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versus the NV at the time of the go cue for the three delays. The
relationship increases monotonically. Thus, the height of the NV
at the time of the go cue is predictive of RT, as would be expected
if it reflected the average degree of motor preparation yet to be
accomplished.

In contrast, Figure 9B shows that there was no simple relation-
ship between RT and mean firing rate at the time of the go cue.
This was true whether we considered all conditions (black) or just
preferred conditions (gray). Note that this would also have been
true had we considered firing rate at some fixed time (e.g., 100
ms) after the go cue. At that point, the 30 ms delay (which pro-
duced the longest RTs) produced the highest firing rates (Fig. 9A,
top). At no time after the go cue were firing rates highest for the
230 ms delay duration, although it produced the shortest RT.

Caveats in relating the time course of the NV to the time
course of motor preparation
Even if one were to fully accept the premise of the optimal-
subspace hypothesis (that firing rates approach their “appropri-
ate” values over time and that the resulting increase in consis-
tency is reflected in the NV), there are still important caveats in
attempting to relate the precise time course of the NV with the
time course of motor preparation. As mentioned above, increas-
ing consistency may imperfectly reflect increasing accuracy.
More pragmatically, the manner in which the NV is computed is
expected to introduce some distortions into the measurement of
variability. For example, the measurement of the NV requires
first filtering spike trains. To what degree does such filtering im-
pact the observed time course of variability? Supplemental Figure
4 (available at www.jneurosci.org as supplemental material) plots
the NV, computed using a variety of filters. The NV computed
using a 15 ms (SD) Gaussian filter showed a similar time course to
that computed using the 30 ms Gaussian (the standard length we
used in our analyses). In particular, the time course of the initial

decline is shortened only slightly when us-
ing the shorter filter: the NV still reaches a
plateau at �100 ms after target onset. The
decline after the go cue is also not obvi-
ously sharper for the 15 ms filter. On a
more general note, there is nothing in the
use of a Gaussian filter in particular that
could create the overall effect. Results were
similar when a box filter (�30 ms) was
used (supplemental Fig. 4C, available at
www.jneurosci.org as supplemental mate-
rial). This computation (the NV with a box
filter) is identical to computing the more
standard Fano factor. We chose to use a
Gaussian filter simply because it more ef-
fectively smoothes the spike trains. How-
ever, there is a possible drawback to the use
of a Gaussian filter. The Fano factor has
the advantage that it will always be unity
for a Poisson process, even a nonhomog-
enous (time-varying) Poisson process, as
long as the underlying firing rate is the
same on every trial. This is not strictly true
for the NV when computed with a Gauss-
ian filter, which can show some transient
departures from unity after sharp changes
in firing rate (simulations not shown).
However, transient departures from
“ideal” behavior are expected to be small

under most circumstances. Furthermore, the similarity of the
results for the NV (supplemental Fig. 4A,B, available at www.
jneurosci.org as supplemental material) and the Fano factor
(supplemental Fig. 4 C,D, available at www.jneurosci.org as sup-
plemental material) indicate that this is not a concern for the
present dataset. More generally, there are inevitable tradeoffs
when measuring across-trial variability. Longer filters (and
smoother filters such as a Gaussian) better isolate signal from
noise but at the expense of possibly distorting the time course. In
summary, the observed time course of the NV will, in general, be
influenced by the choice of filter. However, in the present case,
the observed time course is not simply a consequence of filtering
and is similar across a range of reasonable filters.

Relationship of neural variability to natural RT variability
The results above indicate that firing rates become more consis-
tent after target onset. We chose to look for this increase in con-
sistency because we suspected it might reflect an increase in ac-
curacy: an increase in the average occupancy of an optimal
subspace of firing rates. This hypothesis makes the following pre-
diction, illustrated in Figure 10A. For some trials, the configura-
tion of firing rates around the time of the go cue will lie within the
optimal subspace (green dots, motor preparation is complete)
and RTs will be short. For other trials, the configuration of firing
rates will lie outside the optimal subspace (red dots, motor prep-
aration is “sloppy” or incomplete) and RTs will be longer. Be-
cause of both a lack of adequate theory regarding the “represen-
tation” in PMd and the difficulty of making sufficiently detailed
and extensive measurement of the tuning properties of individual
neurons, it is not currently possible to estimate the location or
extent of the optimal subspace with any degree of confidence.
Nevertheless, we can exploit the fact that the variability of firing
rates, as indexed by the NV, is expected to be greater for the long
RT trials. This is perhaps the most striking prediction of the

Figure 9. Results of an experiment using three discrete delay-period durations: 30, 130, and 230 ms. Data are from 1 d using
monkey G (39 isolations, 957 trials, same dataset as in Fig. 5B). Fixation was enforced near the central spot until after the go cue.
A, Traces at top show the change in mean firing rate from baseline (�SE), across all isolations and target locations. Traces below
show the NV � SE. Analysis was performed with data aligned to the go cue. This means that, for each delay duration, analysis was
also aligned to target onset, although that occurred at different times before the go cue. B, Mean RT versus the change in firing rate
from baseline, measured at the time of the go cue for the three delay-period durations. Black symbols plot the mean change
averaged across all neurons and conditions. Gray symbols plot the same analysis but including only the preferred condition of each
neuron. Note that the x-axis has been rescaled in the latter case. C, Mean RT versus the NV, measured at the time of the go cue for
the three delay-period durations. Error bars show SEs.
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optimal-subspace hypothesis: that neural variability before the go
cue ought to predict behavior after the go cue. Importantly, such
a connection should be detectible (given sufficient data) without
needing to know the “representational scheme” used by PMd, as
long as we can assume that neural activity is on average nearly
optimal.

Figure 10B plots the NV, around the time of the go cue, for
trials with RTs longer than the median (red, long RT trials) and
shorter than the median (green, short RT trials). For statistical
power, we collapsed data across all seven datasets from monkey G
(36 – 60 isolations per day, yielding 174,725 total neuron trials;
data collapsed after segregating long vs short RTs within each

dataset). Consistent with the above prediction, short RT trials
had less variability in firing rate around the time of the go cue.
The black trace at the bottom plots the mean percentage differ-
ence in the NV. This was computed by taking the percentage
difference between the NV for the short and long RT trials for
each isolation/condition and then computing the mean and SE.

The results of this analysis are summarized in Figure 10C
(black symbols). Similar results were obtained for monkeys A and
B, although the results are noticeably noisier given the smaller
quantity of data (60 and 51 single-unit isolations, yielding 16,376
and 20,283 neuron trials, respectively). Before target onset (“pre-
targ”), no monkey showed a significant difference in the NV for
short and long RT trials (filled symbols indicate significance).
During the delay (“delay”), variability was, for all monkeys, sig-
nificantly lower for short RT trials. The same was true for the 200
ms interval after the go cue (“post-go”). For two of the three
monkeys, there was less difference when measurements were
made during the 200 ms period before, and locked to, movement
onset (“pre-move”).

We also compared the difference in mean firing rate, across all
neurons and conditions, for long and short RT trials. The blue
trace in Figure 10B plots this difference as a function of time for
monkey G. The difference is small and negative; RTs were shorter
when firing rates were lower ( p � 0.05 for the delay period, t
test). However, for monkeys A and B, delay-period firing rates
were on average slightly higher (1.4 and 0.8%) before short RTs
(not significant, p � 0.05). Thus, the observed effects were both
small and inconsistent across animals.

The tendency for short RT trials to have less variability around
their mean also held for trials with a negligible (30 ms) delay
period. Figure 10D plots the NV for trials with RTs shorter and
longer than the median. Data are from 2 d of experiments using
monkey G. The NV drops more rapidly for short RT trials. The
difference (black trace) was significant, both at individual time
points (90 –170 ms after the go cue; maximum difference was
5.3%; p � 0.01) and when averaged over the 200 ms period after
go cue (2.5%; p � 0.05). When measured over the 200 ms pre-
movement period, locked to movement onset, the difference in
the NV disappeared or even reversed slightly, being 1.4% ( p �
0.05) in the direction of a higher NV before shorter RTs. Thus, in
three of the four cases, the difference in the NV between short and
long RT trials was reduced or eliminated during the premove-
ment period with data locked to movement onset. This is consis-
tent with the idea that the degree of firing-rate accuracy reached
by the time of movement onset is similar for long and short RT
trials.

For these 30 ms delay-period trials, we also examined the
difference in mean firing rate between long and short RT trials
(Fig. 10D, blue trace). For the 200 ms post-go-cue period, the
difference was not significantly different from 0 (0.4%; p � 0.8).
The difference in mean firing rate did become significant by the
end of this interval (maximum of 4.8%; p � 0.01, measured 190
ms after the go cue), although by this time movement-related
activity is present, especially for trials with shorter RTs. Thus, this
difference is more likely a result of, rather than a cause of, the
difference in RTs. Interpretational difficulties related to the over-
lap of preparatory and movement-related activity are difficult to
entirely overcome with this experimental design using a very
short delay. Nevertheless, we include these data to illustrate that
the principal effect of these analyses (a lower NV before shorter
RTs) is not somehow an artifact of longer instructed delays.

For both the long and short delays (Fig. 10B–D), the RT-
dependent difference in variability is rather small in absolute

Figure 10. Relationship of the NV to natural RT variability. A, A prediction of how RT might
relate to firing rate given the optimal-subspace hypothesis. The shaded area represents the
optimal subspace for the movement being prepared, as in Figure 1. Each dot corresponds to one
trial and represents the configuration of firing rates at the time of the go cue. For some trials,
that configuration may lie within the optimal subspace (green dots), leading to a short RT. For
other trials, the configuration may lie outside (red dots), leading to a longer RT. B, Red and
green traces show the NV, around the time of the go cue, for trials with RTs longer and shorter
than the median. Traces at bottom show the mean percentage difference (short 	 long, �SE)
in the NV (black) and mean firing rate (blue). Data were pooled across the recordings from 7 d
(monkey G), including all trials with delay periods�200 ms. C, Summary, across three monkeys
and four temporal epochs, of the difference in the NV for short and long RT trials. Error bars show
SEs. Filled symbols represent values significantly different from 0 (two-tailed t test, p � 0.05).
The four epochs are as follows: (1) 250 –50 ms before target onset, (2) the delay, (3) the 200 ms
after the go cue, and (4) the 200 ms preceding movement onset. The delay epoch extended
backwards from the go cue over a period equal to the minimum delay: 200, 400, and 500 ms for
monkeys G, A, and B. D, Same as in B but for trials with a 30 ms delay period. Data are for monkey
G and are pooled across both days that this experiment was performed.
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terms (�5%). However, it is worth noting that there is probably
a floor below which the NV cannot drop because of the intrinsic
variability of spike production (e.g., for Poisson spiking statistics,
the floor would be at unity). Thus, 5% in absolute terms could
easily be much higher in terms of true across-trial variability
present at that time.

RTs are shortest when firing rates are near their mean
The above results indicate that RTs are shortest not when overall
firing rates are highest but when variability is lowest: in other
words, when firing rates are closest to their mean. This effect can
be observed more directly, and on a trial-by-trial basis, by ex-
ploiting the large dataset collected across days from monkey G.
Figure 11 plots, for each trial and isolation, RT versus delay-
period firing rate relative to the mean for that isolation and target
location. It is essentially impossible to glean anything by direct
visual inspection of the cloud of 174,725 data points. This is not
surprising: most of the measured variability in firing rate is pre-
sumably attributable to intrinsic spiking variability, which is not
expected to predict RT. To look for an underlying relationship,
we used regression to obtain the coefficients of a quadratic equa-
tion: RT � c0 
 c1 � FR 
 c2 � FR 2 (curved trace), where FR is

firing rate. The explained variability is low (R 2 � 0.0008), as
expected given the above assumption that most variability is in-
trinsic. Yet the fit was nevertheless statistically significant ( p �
10	10) and revealing of a simple pattern: RTs became longer as
firing rates departed from their mean in either direction. This
analysis has some disadvantages relative to the NV analysis: it
cannot reveal the first principal finding (the decline in variability
over time), nor does it track the time course of the relationship
between variability and RT. Nevertheless, it provides an alternate
way of observing the second principal finding: RTs are shortest
not when firing rates are highest but when firing rates are some-
where near their mean.

Is it possible that RT outliers dominated the analyses in Fig-
ures 10 and 11? Perhaps there were a handful of trials in which the
monkey was distracted, resulting in very long RTs and firing rates
dramatically different from the mean. We repeated the analyses
in Figures 10B and 11 using only trials with RTs between 200 and
300 ms (the heart of the natural distribution). Results were essen-
tially identical to those initially obtained. A second possible con-
cern is that the analyses in Figures 10 and 11 collapse across trials
with different delay durations. Might the observed effects be at-
tributable simply to parallel changes, as the delay passes, in RT
and neural variability? A priori, this is probably a minor concern
because all data are from trials with delay durations �200 ms,
after which RTs and the NV are fairly stable. Empirically, we
found that effects were just as strong (for both analyses) when we
considered only trials with a 230 ms delay period (data coming
from the two datasets in which we used three discrete delay
durations).

“Tuning” of the changes in variability
We showed above that the decline in the NV could be observed
even when the mean rate changed little (Fig. 8 and accompanying
analyses). Those analyses provided an important control but did
not systematically examine the NV as a function of target direc-
tion. In particular, are the changes in the NV larger or smaller for
targets in the preferred direction of a neuron? It is unclear what to
expect. In its simplest form, the optimal-subspace hypothesis
suggests that variability should decline approximately equally for
all targets. Conversely, some tuning would not be surprising be-
cause the dimensions in which variability is “acceptable” could
vary depending on the movement being planned. To examine
this issue, we computed both mean firing rate and the NV as a
function of target location relative to the preferred direction (see
Materials and Methods). This analysis was performed for mon-
keys G and A, as the task involved all target directions, but not for
monkey B, in which most neurons were tested using only two
target directions. The gray symbols in Figure 12 show the mean
firing rate, averaged across all neurons. Data for each neuron
were rotated so that the preferred direction is to the right, with
more clockwise points corresponding to more clockwise target
directions. For both monkeys, firing rates are (by definition)
higher in the preferred direction. Monkey G (Fig. 12A) exhibited
(on average) inhibition below baseline (gray circle) for the anti-
preferred directions, whereas monkey A (Fig. 12B) exhibited (on
average) some excitation even for the anti-preferred directions (6
spikes/s relative to baseline vs 12 spikes/s in the preferred direc-
tion). This pattern does not reflect a lack of direction tuning in
this dataset: the majority of neurons showed a significant effect of
direction, which could be quite large when measured using the
preferred distance and instructed speed, but rather the fact that
many neurons showed positive responses for all conditions (per-

Figure 11. Trial-by-trial relationship of RT and firing rate. Analysis is of the same data used
to generate Figure 10 B. For each trial and each isolation, mean firing rate was computed over
the 200 ms period before the go cue. We then subtracted the mean firing rate, computed across
all trials for that target location and that neuron. Each point plots RT versus this firing rate for a
given trial/isolation. Thus, points to the left/right of 0 represent firing rates lower/higher than
usual. Data are from recordings from 7 d: 36 – 60 tuned isolations per day and 313–905 trials
per day for 174,725 total points. Data for different isolations recorded on a given trial plot along
horizontal lines, as they share the same RT. Histograms plot the distribution of RTs (mean of 274
ms) and firing rates. The black trace plots the results of a regression using a quadratic fit. The
resulting coefficients were c0 � 273, c1�	0.07 � 0.02, and c2 � 0.007 � 0.001. These 95%
confidence intervals were obtained directly from the statistics of the regression. The negative
linear coefficient (c1 ) was smaller (	0.03 � 0.02), rather than larger, when using a linear fit.
The 95% confidence intervals that flank the estimate of the mean at each point in the plot were
computed via bootstrap by drawing with replacement from the original set of points and ap-
plying the regression to each of 1000 repeated draws.
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haps a consequence of bias when isolating single units with a
moveable electrode).

The black traces in Figure 12 plot the NV at the time of the go
cue. For all target directions and for both monkeys, the mean NV
at the time of the go cue was reduced relative to baseline (outer
circle, measured 200 ms before target onset). Only modest tuning
of the NV was observed. For monkey G (A), the NV was most
reduced (to 1.03 � 0.04 from a baseline of 1.44 � 0.02) for targets
in the preferred direction and less reduced (to 1.18 � 0.05 and
1.12 � 0.04) for the directions most opposite the preferred. For
monkey A (B) the opposite pattern was observed. The NV was
slightly less reduced (to 1.14 � 0.06 from a baseline of 1.31 �
0.04) for the preferred direction relative to the most opposite
directions (0.97 � 0.06 and 1.08 � 0.06).

Caution should be used in interpreting the modest tuning of
the NV and not only because results were different for the two
monkeys. By design, this analysis compares the NV across condi-
tions with very different mean firing rates. It is unlikely that nor-
malization perfectly factors out the contribution of intrinsic vari-
ability and its relationship with mean rate. A related issue is that
the normalization used in computing the NV also acts to normal-
ize any true across-variability. Thus, one must be concerned that
weak tuning might depend on exactly how one attempts to factor
out the contribution of intrinsic variability. This was indeed the
case. For example, we recomputed the analysis in Figure 12A
using the variance minus 0.7 times the mean (after first scaling
the mean by k) (supplemental Fig. 2C, available at www.jneuro-
sci.org as supplemental material). This method makes the (not
implausible) approximation that intrinsic variability has a vari-
ance that scales linearly with the mean but with a slope slightly
less than expected from a Poisson process. In that analysis, the
overall decline in variability was still quite evident, but the ob-
served tuning was essentially gone (i.e., the preferred and anti-
preferred directions showed similar declines). Thus, the basic
effect is robust across reasonable assumptions regarding the rela-
tionship of intrinsic variability to mean rate, but the modest tun-
ing is not. Of course, it is possible that individual neurons did
show strong tuning of the NV but that there was not, across the
population, a consistent relationship between that tuning and the
tuning of the mean firing rate. A lack of statistical power pre-
cludes any straightforward investigation of this possibility.

Discussion
Time course of neural variability
The NV reveals a previously unknown degree of temporal struc-
ture in the variability of neural activity during a delayed reach
task. Variability declines rather dramatically after target onset
and more modestly after the go cue. Because the NV is a measure-
ment of across-trial firing-rate variability, the most natural inter-
pretation is that there is a decline in the across-trial variability of
the underlying firing rates. Alternately, the decline in the NV
might reflect a change in the within-trial cell-intrinsic process of
spike production (e.g., from cortex-like statistics to vestibular-
afferent-like statistics). A number of controls exclude the most
obvious ways this might happen (most trivially, with increasing
firing rate), but it is difficult to completely exclude this possibility
given extracellular recordings alone. Still, the proposal that cell-
intrinsic spiking statistics change would be quite radical. In con-
trast, it is quite natural to suppose that the underlying firing rate
of a neuron may vary across trials and that the degree of variabil-
ity might change with time. Under this interpretation, it is unsur-
prising that firing rates can become more consistent (across tri-
als) even when the mean rate (across trials) changes little. A
neuron that changes its rate little on average may nevertheless be
changing its firing rate rather a lot on most individual trials.

A decrease in response variability during driven activity has
been reported previously in a variety of contexts (Werner and
Mountcastle, 1963; Sestokas and Lehmkuhle, 1988; Bair and
Koch, 1996; de Ruyter van Steveninck et al., 1997; Buracas et al.,
1998). However, the interpretation of such effects (and even what
is meant by variability) has differed. To our knowledge, the cur-
rent study is the first to demonstrate, in cortex, a stimulus-driven
decline in across-trial variability that is unambiguously not at-
tributable to changes in mean rate. Still, this type of effect is not
necessarily surprising: previous work has argued that much of the
observed variability in cortex is a network property (Arieli et al.,
1996; Buracas et al., 1998), which might naturally be expected to
change with task demands.

Relationship between firing rates and RT
We found that RTs are shortest when variability is lowest: when
firing rates are closest to their mean. This was true when compar-
ing RTs produced by different delay durations (Fig. 9) and for
natural RT variability (Figs. 10, 11). We did not find a consistent
relationship between higher firing rates and shorter RTs, across
either delay durations or the natural variability. This contrasts
with Riehle and Requin (1993) and Bastian et al. (2003), who
found negative correlations between firing rate and RT. How-
ever, it should be stressed that neither our results nor the optimal-
subspace hypothesis conflict with the finding that, under some
circumstances, higher firing rates are associated with shorter RTs.
Exactly this result is expected if firing rates tend to “undershoot”
the optimal subspace. Previous studies often used long (1–2 s)
delay periods and generous RT limits, providing little incentive
for consistent preparation during the delay. Motor preparation
may have been present on some trials (leading to higher firing
rates and shorter RTs) and absent on others (leading to lower
firing rates and longer RTs).

Although our results do not necessarily conflict with previous
experimental findings, they certainly do conflict with the rise-to-
threshold hypothesis that was motivated by those findings. That
hypothesis predicts a consistent relationship between higher fir-
ing rates and shorter RTs, something we did not observe. Previ-
ous work has also sometimes failed to find such a relationship. In
addition to the study by Crammond and Kalaska (2000) dis-

Figure 12. Analysis, for monkeys G and A (A, B) of the firing rate (gray symbols) and the NV
(black symbols) as a function of target direction relative to the preferred. Each point is averaged
across all neurons and all targets (distances, and for monkey A, instructed speeds) in that
direction. Data from each neuron are aligned so that the preferred target direction (PD) is to the
right, with more clockwise points corresponding to the more clockwise target directions. Circles
give the baseline NV (outer black rings, �1 SE on either side of the mean) and the average
baseline firing rate (inner gray ring) measured before target onset. For scale, the baseline firing
rate was 10 and 14 spikes/s for the two monkeys. The baseline NV was 1.44 and 1.31. The SE of
the NV is shown for individual data points when larger than the symbol size.
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cussed in Introduction, we note that Lecas et al. (1986) found
both negative and positive correlations: of 82 neurons excited
during the delay period, 10 showed a negative correlation with
RT (consistent with a threshold mechanism), whereas five
showed a positive correlation (inconsistent with a threshold
mechanism).

Interpretation in the context of the
optimal-subspace hypothesis
If a movement is in whole or in part a consequence of the prepa-
ratory activity present at the time it is triggered, then it would
seem critical that such activity be optimized before triggering. We
hypothesize that such optimization is the behaviorally inferred
process of motor preparation. Our experiments and analyses
were designed to test two central predictions of this hypothesis.
First, if the brain is actively “trying” to bring firing rates to a
particular state, then this should produce a decline in variability.
The time course of that decline should approximately mirror the
changes in RT that occur as motor preparation progresses. Sec-
ond, if the brain can sense when preparatory activity is accurate
and if activity is on average approximately accurate, then RTs
should be shortest when variability is low, i.e., when firing rates
are closest to their mean (we are not suggesting that the brain
cares about variability per se but rather that reduced variability is
a correlate of increased accuracy). That these two predictions
were born out lends support to the optimal-subspace hypothesis.
Clearly, however, additional experiments are both needed and
possible. Along these lines, we reported recently that disruption
of PMd activity, around the time of the go cue, increases RT
(Shenoy and Churchland, 2004) and that variability in the state of
preparatory activity predicts variability in reach speed (Church-
land and Shenoy, 2004).

The optimal-subspace hypothesis contrasts with the rise-to-
threshold hypothesis, which has been either explicit (Erlhagen
and Schoner, 2002) or implicit in many studies of reach prepara-
tion. The rise-to-threshold hypothesis is almost a special case of
the optimal-subspace hypothesis (with the entire region above
threshold being optimal). However, for the optimal-subspace hy-
pothesis, bringing the firing-rate vector within the optimal-
subspace is merely permissive: the movement is ready to be trig-
gered when appropriate. In contrast, the rise-to-threshold
hypothesis holds that it is the crossing of threshold that actually
triggers the movement. Finally, the rise-to-threshold hypothesis
makes assumptions about the nature of the representation, in
particular that an overall increase in firing rates will code for the
same movement but with greater commitment, that are not made
by the optimal-subspace hypothesis.

The lack of a consistent relationship between higher firing
rates and shorter RTs conflicts with the basic rise-to-threshold
hypothesis but does not necessarily rule out more elaborate ver-
sions. Perhaps the trigger is applied not to total or peak firing rate
but to some more complicated function of firing rate across the
population. Still, the observed changes in neural variability (and
the relationship with RT) are not straightforward predictions of
the rise-to-threshold hypothesis. That hypothesis does predict a
decline in variability before movement onset, if analysis is locked
to movement onset (so that the threshold crossing occurs at a
similar time in every trial). However, if one assumes a variable
rate of rise (typical for such models), the rise-to-threshold hy-
pothesis predicts a rise (rather than a decline) in across-trial vari-
ability after target onset.

Tracking the time course of cortical processing
Measurements of variability have been extensively used in the
analysis of neural data (Tolhurst et al., 1983; Gur et al., 1997; Bair
and O’Keefe, 1998; Averbeck and Lee, 2003). Yet the present
study is, to our knowledge, the first to use a measurement of
variability in an attempt to track the time course of internal pro-
cessing (although this approach was anticipated by Horwitz and
Newsome, 2001). Given present results, it seems plausible that
the measured increase in consistency reflects an increase in accu-
racy, an increasing likelihood that firing rates have reached their
appropriate values. This highlights an advantage of measuring
firing rate variability. Even when little is known regarding the
representation used by an area of interest (so that the experi-
menter cannot know which firing-rate vectors count as accurate
or appropriate), an index of variability can potentially allow one
to infer the time course with which firing rates become accurate.
Clearly, there are caveats to this approach. Still, given the number
of brain areas in which the representation or “coordinate frame”
is unclear, such a method would seem useful.

On-line and off-line motor control
For all but the briefest movements, on-line motor control (i.e.,
control during the movement) involves feedback based on sen-
sory signals. It has been proposed that a “forward model” could
also provide signals for feedback control (Kawato et al., 1987;
Wolpert et al., 1995; Kawato, 1999), predicting the consequences
of motor commands and allowing for rapid optimization of the
control signals being sent to the periphery. In principle, a forward
model could be used even before movement begins (Hirayama et
al., 1993; Wada and Kawato, 1993). By predicting the conse-
quences of the current motor plan, a forward model could allow
that plan to be optimized before executing the movement. Cru-
cially, the forward model would be able to predict when a given
motor plan is likely to be inaccurate and allow the brain to delay
movement until inaccuracies are corrected. Thus, the optimal-
subspace hypothesis presented above can be readily reconceived
using concepts already used in the computational study of motor
control. One need only suppose that already familiar mecha-
nisms (e.g., feedback control using a forward model) are opera-
tive not only during movement but during movement prepara-
tion as well.
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