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Tracking momentary fluctuations in human
attention with a cognitive brain-machine interface
Abhijit M. Chinchani 1,4,8, Siddharth Paliwal 1,5,8, Suhas Ganesh1,6, Vishnu Chandrasekhar1,7, Byron M. Yu2 &

Devarajan Sridharan 1,3✉

Selective attention produces systematic effects on neural states. It is unclear whether,

conversely, momentary fluctuations in neural states have behavioral significance for atten-

tion. We investigated this question in the human brain with a cognitive brain-machine

interface (cBMI) for tracking electrophysiological steady-state visually evoked potentials

(SSVEPs) in real-time. Discrimination accuracy (d’) was significantly higher when target

stimuli were triggered at high, versus low, SSVEP power states. Target and distractor SSVEP

power was uncorrelated across the hemifields, and target d’ was unaffected by distractor

SSVEP power states. Next, we trained participants on an auditory neurofeedback paradigm to

generate biased, cross-hemispheric competitive interactions between target and distractor

SSVEPs. The strongest behavioral effects emerged when competitive SSVEP dynamics

unfolded at a timescale corresponding to the deployment of endogenous attention. In sum,

SSVEP power dynamics provide a reliable readout of attentional state, a result with critical

implications for tracking and training human attention.
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Selective attention is an essential cognitive capacity that
allows us to select and prioritize task-relevant information
in the world around us. The effects of attention manifest in

behavior as both an increase in perceptual accuracies and faster
reaction times for task-relevant stimuli1. In the brain, attention
alters various measures of neural information processing for
attended targets, both at the single neuron level and at the
population level2–4. For example, visuospatial attention induces
modulations of various neuronal metrics, including an increase in
firing rate, a decrease in firing rate Fano factor, or a decrease in
noise correlation across the population, in the visual cortex5–7.

While signature changes in the neural state are known to occur
during attention, here, we asked the converse question: Do
momentary fluctuations in neural signatures have behavioral
relevance for attention? Specifically, are such changes of neural
state sufficient indicators of changes of attention state? A few
studies investigating the non-human primate cortex have
addressed this question, and have shown that momentary fluc-
tuations in attention correlate with neural activity states in pri-
mate visual areas8–10. For example, instantaneous metrics of
attentional state were estimated from neuronal population
activity in the visual cortex (e.g., projection along attention axis8),
and fluctuations in these metrics correlated with animals’ per-
ceptual accuracy on a trial-by-trial basis.

Here, we investigated the link between momentary fluctua-
tions in neural state and attention, in human participants. To
investigate this link at millisecond timescales in the human
brain, we employed electroencephalography (EEG). Investiga-
tions of human EEG signatures of visual attention fall into three
broad categories, depending on the type of neural process being
studied. First, the amplitude of alpha-band (8–14 Hz) oscilla-
tions is known to consistently modulate with attention: Atten-
tion to one visual hemifield produces a robust decrease in alpha
oscillation power over the contralateral, relative to the ipsi-
lateral, brain hemisphere11,12. Second, consistent effects of
attention are observed on the amplitude of event-related
potentials (ERPs), such as the N200 or the P30013,14. Third,
attention also consistently affects steady-state visually evoked
potentials (SSVEPs): oscillatory EEG potentials evoked by
rhythmically flickering visual stimuli. Since the 1990s, an
extensive literature has documented enhanced SSVEP power for
stimuli in the attended hemifield15–17. In contrast to first two
EEG signals (alpha oscillations and ERPs), SSVEPs have the
unique advantage of being reliably evoked with high signal-to-
noise ratio (SNR) from the occipital lobe and are persistent for
the duration of the flickering visual stimulus18. SSVEPs,
therefore, provided a potential neural marker for tracking
momentary fluctuations in attention state.

While previous studies have extensively examined the rela-
tionship between SSVEP power and behavior offline, with post
hoc analyses15,17, such a correlational approach merely measures
associations, and does not permit inferring direct relationships
between neural states and behavior. In contrast, here, we adopt a
more rigorous, interventional approach that enables inferring
direct (mechanistic) relationships between neural signatures and
behavior19 (see “Discussion”). Specifically, we investigated the
link between SSVEP states and behavior with an interventional
cognitive brain–machine interface. Unlike typical brain–machine
interfaces (BMIs), widely known for their potential to help dis-
abled individuals20–22, a cognitive brain–machine interface
(cBMI) provides closed-loop neurofeedback based on neural
signatures of cognitive processes, like attention23–28 (see “Dis-
cussion”). Specifically, our cBMI tracked momentary fluctuations
in SSVEP power in real-time, with millisecond precision (Sup-
plementary Fig. 1a, b) and enabled performing temporally precise
interventions, based on specific SSVEP power states.

With this cBMI platform, we addressed two key questions.
First, we asked if fluctuations in SSVEP power would provide a
reliable (sufficient) marker for subjects’ attention. To answer this
question, we tracked SSVEP power in real-time, and triggered
visual stimuli (target and distractor) when SSVEPs reached high,
versus low, power states (Fig. 1a). We then compared differences
in behavioral performance (accuracies and reaction times) across
these high and low SSVEP power states. Second, we trained
participants to generate biased, cross-hemispheric competitive
interactions in SSVEP representations across the visual field,
using auditory neurofeedback. We asked if such a manipulation
would produce changes in attention state, in real-time.

Our experiments on SSVEP power states, demonstrate that a
change in neural state (SSVEP power) is sufficient to achieve a
change in a specific behavioral state (accuracy, but not reaction
time). We propose our cBMI platform as a useful tool for real-
time tracking, and training, of human visuospatial attention.

Results
Tracking momentary fluctuations of SSVEP power with an
interventional cBMI. Two cohorts (A and B), comprising
n= 24 subjects, performed these experiments. Results from
cohort A are described in this and the next section, and those
from cohort B in a later section. Details regarding the cognitive
brain–machine interface (cBMI) are described in Methods.

Subjects (n= 15; cohort A) performed a cued orientation
discrimination task, while we tracked their EEG-SSVEP power in
real-time. Each trial began with a positive contrast fixation cross
that was presented in the center of a gray screen (Fig. 1b; see
“Methods” for detailed experimental procedures). Next, two
pedestals appeared on each side of the fixation cross. Each
pedestal was a plaid produced by superimposing square wave
gratings oriented at +45° and −45° from the vertical. Either one
(6/15 subjects) or both (9/15 subjects) pedestals flickered at a
distinct frequency (Supplementary Table 1) to evoke SSVEPs at
the corresponding frequency. After 1000 ms, a directed cue
(central arrow) appeared, indicating the side to be attended. The
cue indicated the side corresponding to the target stimulus with
100% validity (pseudorandom, and counterbalanced across
hemifields). After a variable interval (determined by SSVEP
power dynamics, see next), the pedestals disappeared and two
stimuli—sinusoidal gratings oriented at either +45° or −45°—
appeared briefly (75 ms) on either side of the fixation cross,
concentric with the pedestals. Following this, the fixation cross
and the cue changed in color. Subjects reported the orientation of
the grating on the cued side (target) as being clockwise or
counterclockwise of vertical, ignoring the grating on the uncued
side (distractor). Subjects’ scalp EEG was concurrently recorded
from 41 electrodes over occipital cortex (Supplementary Fig. 1c;
Methods). For triggering target and distractor gratings based on
EEG SSVEP power, we employed the following two-step
procedure.

First, we isolated and quantified SSVEP power from the
underlying, noisy EEG data with the denoising source separation
(DSS) technique29 (“Methods”). Briefly, DSS identifies low-
dimensional latent dimensions from high-dimensional, noisy
sensor data. Each DSS latent dimension (Y) represents a linear
combination of the raw EEG signals (X) from the occipital
electrodes (Y= XWf), where Wf are the electrode weights for
flicker frequency f. Wf for each flicker frequency for an individual
subject, and the associated spectra, are shown in Fig. 1c
(population average, Supplementary Fig. 1c, d, “Methods”). Next,
to estimate these dimensions without over-fitting and circularity,
we conducted a baseline block before the actual experiment. We
estimated SSVEP power in moving windows of 0.5 s, generated a
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baseline distribution of SSVEP for each flicker frequency (Fig. 1d,
upper-left), and computed its cumulative distribution function
(CDF) (“Methods”). The CDF value—which we call a normalized
SSVEP power index or Φ—varies between 0.0 and 1.0 (Fig. 1d,
upper-left) and provides a normalized measure of SSVEP power
at each instant. Φ represents a normalized measure of the
strength of SSVEP power modulation that accounts for variations
in baseline SSVEP power across individual participants.

In the cBMI attention experiment, the SSVEP power index
evoked by the pedestal on the cued (target) or uncued (distractor)
side was computed and tracked, for each trial, in real-time
(closed-loop delays: mean+/− std: 21.1+/− 5.9 ms, Supplemen-
tary Fig. 1e; SSVEP power computed in a 500 ms window). When
Φ for the respective pedestal reached a predetermined high or low
threshold value (interleaved trials), the presentation of the target
and distractor gratings was triggered simultaneously (Fig. 1d,
right); we call these high-Φ and low-Φ trials, respectively. If Φ did
not reach either the high or low thresholds within a maximum
duration (4 s after cue onset), the grating stimuli were presented,

regardless of the value of Φ; these non-triggered trials
(31.5 ± 3.7% of trials, mean ± s.e.m., across n= 15 subjects) were
rejected from subsequent behavioral analyses.

Such an interventional cBMI provides two distinct advantages
over correlational post hoc analysis approaches. First, the
interventional cBMI enables decoupling and isolating SSVEP
effects on behavioral metrics—accuracy (d′) and reaction times
(RT)—from those of other neural processes. We examine 4
directed, graphical models, each of which depicts a distinct
mechanism for the influence of SSVEP power (or Φ) on the
behavioral metrics of d′ and RT (Supplementary Fig. 2). If a
change in Φ were sufficient to induce a change in a behavioral
metric (d′ or RT), we would expect to necessarily observe a
change in the respective behavioral metric across high-Φ and
low-Φ trials. The specific behavioral metric affected, then, enables
us to distinguish between the 4 models; further details are
provided in Methods (section on “Modeling interventional versus
correlational approaches”; Supplementary Fig. 2). Second, the
interventional cBMI enables targeted data collection for

Fig. 1 Tracking momentary fluctuations in SSVEP power with a real-time cBMI. a Schematic depicting the cognitive brain–machine interface (cBMI) for
investigating the effect of momentary fluctuations in EEG steady-state visually evoked potential (SSVEP) power on behavior (see text for details). Blue and
red boxes: Momentary, high and low SSVEP power states, respectively. b Behavioral attention task (Paradigm A). Following an initial fixation epoch, two
pedestals (plaids) flickering at distinct frequencies (e.g., f1 Hz and f2 Hz) appeared, one in each visual hemifield. After 1000 ms, a spatial cue (central
arrow, 100% validity) indicated the side to be attended. After a variable interval (determined by SSVEP power states, see next), the pedestals disappeared
and two stimuli—sinusoidal gratings oriented at either +45° or −45°—appeared briefly (75 ms) in their place. Subjects reported the tilt of the grating on
the cued side (target) while ignoring the grating on the uncued side (distractor). c SSVEP dimensions extracted using denoising source separation (DSS)
for an exemplar subject. (Left, i and iii) SSVEP dimension for the flickering pedestal in the left hemifield (14 Hz). (i) Mean (blue solid line) DSS time-series
(Y) across epochs, in the SSVEP dimension. Gray lines: Preprocessed EEG signal (X) for a random epoch. (iii) Spectrum (|SY|) of the DSS time-series. (iii,
Inset) Topographic plot of the SSVEP spatial dimension (W). (Right, ii and iv) Same as in the left column, but for the flickering pedestal in the right
hemifield (18 Hz). d Schematic of real-time stimulus triggering protocol. (Top left) Blue histogram (left y-axis): Baseline distribution of SSVEP power (|SY|)
for a representative subject for a flicker frequency of 18 Hz. Black line (right y-axis): CDF of SSVEP power or SSVEP power index (Φ). (Bottom) The
recorded EEG data (X) were preprocessed and projected, in real-time, onto the SSVEP DSS dimension (W), estimated in a baseline session. The projected
data (Y) was used to estimate Φ in real-time. Target and distractor gratings were presented when Φ crossed either a pre-set high threshold (high-Φ trials,
top, solid blue line) or a low threshold (low-Φ trials, bottom, solid red line). Dashed, horizontal lines: high and low thresholds. Arrows: time of stimulus
presentation.
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addressing our question of interest viz., the relationship between
SSVEP power states and behavioral metrics. We tested if the wide
differences in SSVEP power states we obtained in our experi-
ments could have been achieved with offline (post hoc) analyses,
without such a real-time cBMI. We estimate that in the latter case
(post hoc analyses) we would have required several orders of
magnitude more trials than we conducted (~11x trials for
paradigm A and ~69x trials for paradigm B) (see Methods,
section on “Online stimulus triggering versus post hoc analyses”;
also see Peixoto et al.30).

In sum, we developed an EEG-based cognitive brain–machine
interface (cBMI) that tracked SSVEP power levels in real-time
with a closed-loop delay of tens of milliseconds. Target (and
distractor) presentation was triggered simultaneously based on
SSVEP power levels of either one of the two stimuli, in real-time.
The cBMI enabled us to measure participants’ behavioral
performance when SSVEP oscillations were in divergent states
of high or low power, at the target or distractor location. With
this cBMI, we tested for putative links between momentary
changes in neural states and behavior.

Momentary fluctuations of SSVEP power predict target dis-
crimination performance. As a first step, we sought to recapi-
tulate a ubiquitous finding: cueing of attention is widely known to
induce a gain in SSVEP power (e.g., Morgan et al.16). Indeed,
post-cue SSVEP power was higher at the cued location, compared
to that at the uncued location (Fig. 2a, cued Φ= 0.48 ± 0.09,
uncued Φ= 0.42 ± 0.07, median ± sd, p= 0.006, Wilcoxon
signed-rank test, non-triggered trials) (see Methods section on
“Analysis of cueing-induced gain of SSVEP power”); the differ-
ence was not significant in the pre-cue epoch (cued
Φ= 0.44 ± 0.08, uncued Φ= 0.44 ± 0.07, p= 0.967). These results

provided electrophysiological evidence indicating that subjects
were paying attention to the cued side during this task. We
quantified, next, behavioral performance metrics for dis-
criminating orientations at the target location (Fig. 1a, inset), for
trials triggered based on the (cued) target’s SSVEP power index.

Discrimination accuracy (d′) was significantly higher for the
high-Φ compared to the low-Φ trials (Fig. 2bi; d′: ANOVA, main
effect, high-Φ versus low-Φ, F(1, 48)= 4.47, p= 0.040; Bayes
Factor (BF)= 3.36; n= 15 subjects; see Methods section on
“Statistics and reproducibility”). On the other hand, there was no
significant difference in criteria across high-Φ and low-Φ trial
types (Fig. 2bii; criterion: ANOVA, main effect, high-Φ versus
low-Φ, F(1, 48)= 0.27, p= 0.608; BF= 0.20). Moreover, we
observed no evidence for or against significant differences in
reaction times across high-Φ and low-Φ trials (Fig. 2biii; RT:
ANOVA, main effect, high-Φ versus low-Φ, F(1, 48)= 0.08,
p= 0.772; BF= 0.96). Median cue-target intervals were not
significantly different between high-Φ and low-Φ trials (Supple-
mentary Fig. 3a, left; CTI: high-Φ= 1840 [1007 2132] ms, median
[95% CI], low-Φ= 1573 [949 2208] ms, p= 0.252; Wilcoxon
signed-rank test), suggesting that these behavioral differences
were not due to systematic differences in cue-target intervals
across the two trial types.

Next, we asked if the higher discrimination accuracy for high-
Φ trials was due to a spatially selective modulation of SSVEP
power at the target location. An alternative possibility is that
global modulations of SSVEP power at both the target and
distractor locations, possibly due to alertness (or arousal), were
responsible for these effects.

We tested these hypotheses directly with additional experi-
ments. In a subset of participants (n= 10), we also triggered
stimulus presentation when the distractor SSVEP power index
reached the same high or low thresholds; these distractor SSVEP
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triggered trials were interleaved, in equal proportion, with target
triggered trials (“Methods”). In this case, we observed no
apparent difference in d′, criterion or reaction time across the
high-Φ and low-Φ trials (Fig. 2ci, distractor SSVEP triggered: d′:
ANOVA, main effect, high-Φ versus low-Φ, F(1, 36)= 0.23,
p= 0.635; BF= 0.17; Fig. 2cii, criterion: ANOVA, main effect,
high-Φ versus low-Φ, F(1,36)= 0.96, p= 0.333; BF= 0.12;
Fig. 2ciii, RT: ANOVA, main effect, high-Φ versus low-Φ, F(1,
36)= 0.11, p= 0.740; BF= 0.14; n= 10 subjects). These results
confirmed that the observed behavioral enhancement of target d′
was selective to SSVEP power modulation at the target location.

To summarize, perceptual accuracy (d′) for discriminating
target orientations increased during epochs of high target SSVEP
power. The effect was selectively associated with modulation of
SSVEP power at the target location, but not at the distractor
location. Interestingly, we observed no reliable effects of SSVEP
power states on reaction times. These results suggest that neural
mechanisms of attention that enhance perceptual accuracy may
be distinct from those that facilitate reaction times (see
“Discussion”).

Local SSVEP fluctuations rather than global SSVEP power
differences correlate with accuracy effects. There is some debate
in the literature about whether attention resources across the two
visual hemifields are independent31,32. While some studies sug-
gest that sensory processing resources for the attended hemifield
(e.g., as indexed by target SSVEP power) are allocated indepen-
dently of the unattended hemifield (e.g., as indexed by distractor
SSVEP power)31,33, other studies suggest that attention produces

a biased competition for sensory resources across hemifields32,34.
While these hypotheses are not mutually exclusive, the results of
Paradigm A support the former hypothesis: distractor side Φ
states did not systematically predict target d′ variations. In other
words, the behavioral effects on d′ were mediated, at least in part,
by local, not global, SSVEP power fluctuations. To further con-
firm this hypothesis, we performed two additional analyses.

First, we plotted the Φ traces, separately for the target and the
distractor sides, for the high-Φ and low-Φ target SSVEP triggered
trials (Fig. 3a; n= 5 subjects with flickering stimuli and high SNR
on both sides, “Methods”). Based on this analysis, we observed no
evidence for or against systematic modulation of mean Φ on the
distractor side across the target high-Φ and low-Φ trials (distractor
Φ value: high-Φ trials= 0.46 ± 0.15, low-Φ trials= 0.51 ± 0.14,
median ± sd, p= 0.125, Wilcoxon signed-rank test; BF= 1.36)
(Supplementary Fig. 3b). In additon, trial-wise analysis revealed no
evidence for correlation between target-Φ and distractor-Φ either
in the low-Φ trials (r=−0.05, p= 0.24) or in the high-Φ trials
(r=−0.04, p= 0.40) (Methods, section on “Trial-wise analysis of
correlation between target-Φ and distractor-Φ”; see also trial-
averaged correlations in Supplementary Fig. 3c; low-Φ trials,
r= 0.03, p= 0.91; high-Φ trials, r= 0.09, p= 0.75).

Second, we tested if target discrimination accuracy would vary
with the strength of biased, global competition between target and
distractor representations, at a fixed level of target (or distractor)
SSVEP power. For this, we computed the difference between the
SSVEP power indices across hemifields (ΔΦ=Φtarget –Φdistractor),
just before stimulus presentation (at the time of threshold
crossing), separately for the target triggered and distractor-
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distribution for Extreme +ΔΦ (light, solid line) and Moderate ΔΦ (light, dashed line) subsets for high Φ trials. Dark lines: Curve fits based on a kernel
density estimate. (ii–iv) Same as in the top left panel, but showing median split results for low-Φ target side triggered trials, high-Φ distractor side triggered
trials and low-Φ distractor side triggered trials, respectively.
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triggered trials, and separately for the high-Φ and low-Φ trials
(Fig. 3b). For each trial type, we divided the trials into two
subsets, based on a median split (Methods section on “Analysis of
difference of SSVEP power across hemifields”). For the target
triggered high-Φ trials and the distractor triggered low-Φ trials,
the first subset of trials (values above the median) comprised
trials typically with large positive values of ΔΦ (extreme+ ΔΦ)
whereas the second subset (values below the median) comprised
of ΔΦ values around zero (moderate ΔΦ) (Fig. 3b, i and iv).
Conversely, for the target triggered low-Φ trials and the distractor
triggered high-Φ trials, the first subset of trials (values above the
median) comprised of ΔΦ values around zero (moderate ΔΦ)
whereas the second subset (values below the median) comprised
typically with large negative values of ΔΦ (extreme −ΔΦ)
(Fig. 3b, ii and iii). We confirmed that the ΔΦ distributions for
every pair of subsets was significantly different from each other
(Fig. 3b, insets; p < 0.001, for 4 pairwise comparisons,
Kolmogorov-Smirnov test). We then tested if d′ modulations
would co-vary systematically with ΔΦ for each trial type.

Accuracies did not vary systematically with ΔΦ across each
pair of subsets, both when the data were analyzed together
(F(1,56) = 0.85, p= 0.360, ANOVA, n= 5 subjects for target
triggered trials, and n= 4 for distractor triggered trials), and in
post hoc comparisons, when each of the four trial types were
compared separately (p > 0.05, estimation statistics).

In other words, modulations of target SSVEP power were not
accompanied by congruent modulations of distractor SSVEP
power in the opposite hemifield, a result consistent with earlier
studies. Moreover, once local SSVEP power was fixed at specific
(threshold) values, there was no evidence for a significant change
in d′ with global differences in SSVEP power across the visual
hemifields. In other words, sensory processing for the stimulus in
the attended hemifield appears to be, at least, in part, independent
of processes occurring in the opposite hemifield, a result
consistent with earlier studies34,35.

Biased, global competitive interactions also provide a robust
marker for discrimination accuracy effects. Our findings, so far,
suggest that attentional resources in the two hemifield are, at least
partly, independent. Yet, previous behavioral studies suggest that
the behavioral effect of spatial attention—in particular, those on
d′ enhancement—are mediated by biasing competitive selection
for sensory resources, globally, across the visual field1,36–39. We
asked, therefore, if inducing biased competition among target and
distractor sensory representations across visual hemifields would
also produce robust behavioral effects on d′. We, therefore,
designed a neurofeedback experiment to directly test the beha-
vioral effects of biasing global competitive interactions between
target and distractor representations (Fig. 4a).

Subjects (n= 9; cohort B) performed an orientation discrimi-
nation task (paradigm B), with a structure largely similar to the
previous task design (see Methods, section on “cBMI paradigm
B”), except for the following key difference: we triggered stimulus
presentation not based on the local SSVEP power on each side
but based on the global difference of SSVEP power (ΔΦ) across
the two hemifields (ΔΦ; Fig. 4a), incorporating auditory
neurofeedback.

For each trial in this experiment, one hemifield was selected
pseudorandomly as a target side and the other, as the distractor
side; target and distractor sides were counterbalanced, with
equal probability, across the left and right hemifields. We
triggered the presentation of the grating stimuli when the
difference in SSVEP power index between the target and
distractor sides (ΔΦ=Φtarget –Φdistractor) reached a prespeci-
fied, participant-specific, threshold measured in an earlier

practice session (“Methods”). Participants reported the tilt of
the grating indicated by a post hoc response probe (Fig. 4b); the
target and distractor sides were probed with equal probability.
As in the previous paradigm, if ΔΦ did not reach threshold
within a maximum interval (7.5 s after cue onset) stimulus was
presented, regardless; these non-triggered trials (23.9 ± 4.3%,
n= 9 subjects) were not considered for further behavioral
analyses. This task enabled quantifying subjects’ orientation
discrimination accuracy (d′) on each side when the global
SSVEP power difference between the target and distractor sides
reached extreme values (Fig. 4c).

In order to trigger stimulus presentation, participants needed
to reliably identify the target and distractor sides on each trial.
Because the target and distractor sides were switched pseudor-
andomly, unbeknownst to the participants, we discovered, in
initial pilot experiments, that participants found it difficult to
identify these sides, by trial and error alone. To enable
participants to quickly identify the target and distractor sides,
we provided continuous auditory feedback: the auditory feedback
frequency was scaled linearly for positive values of ΔΦ and
reached a frequency floor (500 Hz) for zero or negative ΔΦ
(“Methods”). The auditory feedback enabled participants to
reliably perform the task as evidenced by the >6x more trials with
positive (87.0 ± 2.4%) as compared to negative ΔΦ (13.0 ± 2.4%)
(p= 0.004, Wilcoxon signed-rank test). Moreover, ΔΦ values
were systematically higher for this paradigm (Fig. 4d, upper), as
compared to paradigm A (Supplementary Fig. 4a), confirming the
effectiveness of the auditory neurofeedback at inducing global
differences in SSVEP power across the visual hemifields (ΔΦ:
paradigm A= 0.29 ± 0.29, paradigm B= 0.68 ± 0.17, p < 0.001).

First, we tested if this neurofeedback paradigm induced
competitive interactions across the visual hemifields. Indeed, in
this paradigm, target-Φ and distractor-Φ varied in opposite
directions—at trend clearly visible in trial-average traces over
time (Fig. 4d, lower). In addition, trial-wise analysis revealed clear
evidence for anti-correlation between the target-Φ and distractor-
Φ (r=−0.16, p < 0.001; Methods, section on “Trial-wise analysis
of correlation between target-Φ and distractor-Φ”; see also trial-
averaged correlations in Supplementary Fig. 4b; r=−0.84,
p < 0.001). In other words—when subjects sought to achieve
large differences between target-Φ and distractor-Φ, based on
auditory neurofeedback—robust competitive interactions were
generated between the neural representations in each hemifield.

This cBMI neurofeedback paradigm revealed robust effects of
ΔΦ on behavioral accuracies. Discrimination d′ was significantly
higher for the target compared to the distractor (Fig. 4ei,
Supplementary Fig. 4ci, p= 0.006, d′: target= 1.72 ± 0.24,
distractor= 1.41 ± 0.28, median ± sd; p= 0.006, BF= 18.28,
n= 9 subjects, paired test, estimation statistics). Interestingly,
we observed that criteria were closer to zero, on average, for target
as compared to distractor judgments (Fig. 4eii, criterion:
target= 0.03 ± 0.19, distractor= 0.23 ± 0.25, p= 0.004, BF=
12.47). As before, no significant differences were observed in
reaction times for target versus distractor responses (Fig. 4eiii,
RT: target= 1006 ± 252 ms, distractor= 991 ± 247 ms, p= 0.335,
BF= 0.17).

To summarize: With an auditory neurofeedback paradigm, we
trained subjects to generate biased competitive interactions in
SSVEP power between the visual hemifields. Orientation
discrimination accuracies (d′), but not reaction times, were
robustly modulated when stimuli were presented when global
differences in SSVEP power across hemifields reached extreme
values. Specifically, d′ was significantly higher for stimuli that
were presented on the side of comparatively higher SSVEP power.
In other words, biasing global competitive interactions among
stimulus representations across the visual hemifields provided a
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reliable marker for behavioral effects on discrimination accuracy,
but not on reaction times.

Slowly ramping dynamics of competitive interactions yield
stronger behavioral effects. The previous results demonstrate
that robust effects on discrimination accuracy occur when global
(cross-hemifield) difference in SSVEP power (ΔΦ) reach large
values. Yet, large ΔΦ values also entail a high Φ value at the target
location on target-side probed trials, and a low distractor Φ value
at the distractor location on distractor-side probed trials. It is
possible, then, that the effects observed in Paradigm B occurred
due to extreme (high or low) co-fluctuations in Φ for the stimulus
on the respective side (target or distractor, respectively), and were
independent of Φ for the stimulus on the other side, as in
Paradigm A.

To distinguish these possibilities further, we analyzed the
dynamics of Φ and ΔΦ in Paradigm B immediately prior to
stimulus triggering. Typically, endogenous attention is deployed
at a timescale of about 200–300 ms1 and sustaining attention for
many seconds is known to impair orientation discrimination
performance40. If either Φ or ΔΦ dynamics were to represent a
neural signature of attention, we hypothesized that attention’s
behavioral timescales would be faithfully reflected in the
respective metric’s timescales as well. For this, we tested whether
specific patterns in the dynamics of local SSVEP power (Φ), or its
global difference across hemifields (ΔΦ), at distinct timescales
would yield systematically different perceptual accuracies
(Fig. 5a).

First, we divided trials into two categories—fast-ramp versus
slow-ramp—based on the rate of change of Φ, just before
threshold crossing, across trials of Paradigm B (“Methods”). The
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average Φ traces for each of these sets of trials are shown in
Fig. 5b (solid lines: slow ramp; dashed lines: fast ramp); the left
panel shows target-Φ dynamics from target-side probed trials
whereas the right panel shows distractor-Φ dynamics from
distractor-side probed trials (for the converse dynamics, see
Supplementary Fig. 5a). We then computed the difference in d′—
Δd′—between these two sets of trials. Note that this quantity, Δd′,
measures the difference in d′ for the probed stimulus between
trials when the SSVEP power index was high, compared to when
it was low, at the probed location. We tested if this d′ modulation
was different between fast-ramp and slow-ramp trials.

Interestingly, when we divided trials based on ramping
dynamics of Φ, we observed no significant differences between
the two categories (Fig. 5c, Δd′: fast-ramp Φ= 0.43 ± 0.54, slow-
ramp Φ= 0.40 ± 0.69, median ± sd, p= 0.496, Wilcoxon paired
signrank test; BF= 0.19; n= 9; rate of change computed in a
time-window extending from ts− 250 ms to ts, where ts is the
stimulus onset time). In fact, regardless of the duration of the
time-windows tested for computing the rate of change of Φ, there
was no systematic difference in d′ modulation across fast-ramp
and slow-ramp trials (Fig. 5d, Supplementary Fig. 5c).

Next, we divided trials based on ramping dynamics of ΔΦ
(global difference of SSVEP power indices; average ΔΦ traces in
Fig. 5e); in this case, the left panel shows positive ΔΦ
(Φtarget−Φdistractor) dynamics when the target side was probed
whereas the right panel shows negative ΔΦ (Φdistractor−Φtarget)
dynamics when the distractor side was probed (for target and
distractor Φ dynamics based on ΔΦ split, see Supplementary
Fig. 5b). Remarkably, in this case, we observed a significantly
higher Δd′ for slow-ramp trials as compared to fast-ramp trials
(Fig. 5f; Δd′: fast-ramping=−0.11 ± 0.44, slow-ramping= 0.61

± 0.66, median ± sd, p= 0.039, Wilcoxon paired signrank test;
BF= 5.52, n= 9). These Δd′ differences showed graded changes
across time-windows used for computing rate of change: d′
modulations were strongest for time-windows of 200–250 ms
duration before stimulus onset (Fig. 5g) and weakened at much
shorter (e.g., 50 ms) or much larger (e.g., 600–800 ms) durations
(Fig. 5g, Supplementary Fig. 5d).

In sum, distinct dynamics of global, cross-hemifield differences
in SSVEP power (ΔΦ) were strongly predictive of accuracy (d′)
modulations. In particular, slow-ramping dynamics of ΔΦ were
predictive of d′ differences between the target and distractor
locations, with strongest effects occurring at a timescale matching
that of the deployment of endogenous attention40. Taken
together, these results indicate that a gradual change in SSVEP
power differences across hemifields represents a robust neural
signature of attention’s effects on discrimination accuracy.

Discussion
The precise neural mechanisms by which attention enables
adaptive behavior, remain heavily researched41–44. It is increas-
ingly clear that attention is not a unitary phenomenon36,38,45–47.
Identifying necessary and sufficient neural correlates is key to
arriving at a consensus definition for attention, and for under-
standing how it is implemented in the brain.

Our findings provide key evidence that addresses this chal-
lenge. With an EEG-based cognitive brain–machine interface
(cBMI) that tracks SSVEP power in real-time, we demonstrate
that orientation discrimination accuracies, but not reaction times,
were reliably enhanced when targets were presented during
epochs of high, compared to low SSVEP power. Generating
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biased competition for SSVEPs globally, across visual hemifields,
with a cBMI neurofeedback paradigm we observed similar, robust
effects on perceptual accuracies, but not reaction times. Our study
identifies, therefore, specific, sufficient neural correlates of at least
one behavioral component of attention: enhanced perceptual
accuracy.

Voluntary control of neural activity in the brain has a long
history, spanning several decades48,49; earliest EEG
neurofeedback50,51. The primary use of such neurofeedback
training is in motor brain–machine interfaces (BMI), where the
goal is for subjects to gain control over the neural activity in the
motor cortex that is the basis for neuroprosthetic
applications20–22. While such BMIs have found extensive appli-
cation in neurorehabilitation and for studying motor control,
more recent applications of BMIs have sought to address basic
questions about the neural underpinnings of cognitive processes
(cBMIs).

Attention-based cBMIs are typically developed for one of at
least two purposes: as a platform for tracking and training
attention in naive subjects, and/or as a tool for understanding
neural mechanisms of attention. The former purpose is, arguably,
more common, particularly, in human studies23,26–28, whereas
the latter is emerging as a powerful tool for understanding
attention mechanisms24,52–54.

Yet, in previous cBMI studies, subjects’ performance was
gauged by their ability to readily achieve target neural states (e.g.,
high firing rates27 or low alpha power54). In contrast, in our
study, achieving specific SSVEP power states was necessary for
triggering stimulus presentation, but was not directly related to
task performance; behavioral performance was measured with an
independent orientation judgment task. In this sense, our inter-
ventional cBMI paradigm dissociates subjects’ ability to control
their neural states with the effect of those neural states on
behavioral metrics, such as accuracy and reaction times.

Despite a rich literature on EEG correlates of attention, rela-
tively few studies have shown a direct correspondence between
trial-by-trial fluctuations of EEG signatures and behavior. For
example, Störmer et al. showed that subjects’ object tracking
performance was better, on average, on trials with larger atten-
tional modulation of SSVEP power17. Another study demon-
strated an increase in SSVEP power for targets relative to
distractors on correct trials alone55. Yet another study showed
that the time course of reaction time changes tracked the time
course of SSVEP power modulations in a feature-based attention
task15. Many studies have used the single-trial ERP analyses to
link ERP changes and behavior56–58. Other studies have exam-
ined how behavioral performance varies on individual trials when
stimuli are presented at specific phases of endogenous EEG
oscillations like theta-band (4–8 Hz) or beta-band (16–35 Hz)
oscillations59,60.

Yet, nearly all previous studies examined the relationship
between EEG signatures and behavior offline, with post hoc
analyses. Such post hoc analyses possess a key limitation, in terms
of interpretation: Neural fluctuations, on a trial-by-trial level, may
be correlated with behavioral fluctuations not because of a direct
relationship between the two variables, but simply because of
common underlying sources, driving each. Such a correlational
approach merely measures the strength of association between
two variables, without any basis for inferring direct, mechanistic
relationships. For example, while correlational analyses may
indicate that a change in behavioral state (e.g., accuracy or
reaction time) is typically accompanied by a change in neural
state (e.g., SSVEP power), such an analysis cannot establish the
necessity or sufficiency of this association.

In contrast to such a correlational approach, here, we adopted
an interventional approach that provides a stronger basis for

inferring direct relationships between neural signatures and
behavior19. Unlike a correlational approach, an interventional
approach seeks to achieve control over one of the variables being
tested to measure the necessity of association between the two
variables. With such an approach, stronger claims can be made
regarding a direct causal relationship. For example, an experi-
mental intervention on neural states (e.g., SSVEP power) can
indicate whether a change in neural state (e.g., SSVEP power) is
sufficient to achieve a change in behavioral state (e.g., accuracy or
reaction time). For this reason, interventional approaches occupy
a higher position on the ladder of causation (Judea Pearl’s causal
metamodel)19 as compared to post hoc correlational approaches,
and permit stronger inferences about direct (causal) relationships
(see also Methods, section on “Modeling interventional versus
correlational approaches”).

We tested the link between EEG signatures and attention with
such an interventional approach. We performed an experimental
intervention on neural states by tracking target SSVEP power in
real-time, and when it reached predetermined states, measured
the effects on behavioral performance metrics (d′, RT). Our
results indicate a direct link between attention’s effects on per-
ceptual accuracy and SSVEP power in the human brain. More-
over, these changes in perceptual accuracy were associated with
spatially localized SSVEP power fluctuations, as would be
expected to accompany visuospatial selective attention, rather
than from global changes in physiological state, such as
arousal61–63.

Second, it is well known that—at least in some settings—
attention can bias competition for resources across the visual
hemifields37,64,65. We, therefore, tested the hypothesis that gen-
erating biased competition for neural representations across the
visual hemifields would also produce attention-like effects on
perceptual accuracy. Our cBMI neurofeedback paradigm revealed
that a difference in the SSVEP power (ΔΦ) across hemifields
provided a reliable marker for accuracy (d′) modulations. To
decouple the effects of changes in ΔΦ from those on changes in
Φ, we examined the dynamics of each metric (speed of ramping
to threshold), and the corresponding effects on behavior. We
observed that slow, but not fast, ramping dynamics of ΔΦ at
timescales ~200–300ms reliably predicted d′ differences between
the target and distractor locations; these ramping dynamics
match the timescale of deployment of endogenous attention1.
Taken together, these results indicate that biased, globally com-
petitive, neural dynamics, unfolding at a timescale typically
associated with the deployment of voluntary attention, are a
sufficient neural marker for endogenous visuospatial attention.

Although, a priori, we sought to divide trials based on the
speed of ramping of ΔΦ (or Φ), trials with both slow and fast
dynamics exhibited temporal features beyond those characteriz-
ing the speed of ramping alone. For example, fast ramping ΔΦ
trials showed a marginally negative slope of ramping, favoring the
distractor side, followed by a large positive slope, and rapid rise
toward the target side (Fig. 5e, left), potentially indicating that
attention was initially deployed toward the distractor side and
rapidly reoriented toward the target location on these trials. By
contrast, slow-ramping ΔΦ trials showed a gradual increase
toward the target location followed by a steady levels of activity
prior to crossing the threshold, potentially indicative of sustained
attention, for a few hundred milliseconds, toward the target
location on these trials. Future studies could characterize in detail
these, and other distinct types of, SSVEP power dynamics, and
their consequences for behavior.

The results based on our SSVEP state-locked stimulus pre-
sentation paradigm deviate from two key observations in litera-
ture. First, previous studies have documented systematic effects of
SSVEP power on reaction times (RT). For instance, Störmer et al.
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showed that trials with larger modulations of SSVEP power
showed correspondingly lower RTs15,17. On the other hand, we
observed no systematic effects of SSVEP power modulations on
RTs, in either task paradigm (Figs. 2b, c, 4e). In both of these
tasks, the response window was fixed, motivating subjects to
respond quickly (1.5–2 s, Figs. 1b, 4b). Mean RTs were in a range
typically observed in psychophysics tasks (paradigm A:
578 ± 32 ms, paradigm B: 1017 ± 111 ms, mean ± s.e.m.). None-
theless, because we did not explicitly instruct subjects to respond
quickly, it is possible that, RT effects arising from SSVEP power
modulations were not as pronounced as those reported in pre-
vious studies.

Yet, an alternative and, arguably, more plausible explanation is
as follows: In previous studies, attention could have engaged
multiple and, potentially, dissociable mechanisms, which were
responsible for the distinct effects on accuracies, RTs, and SSVEP
power. Post hoc trial-wise analyses cannot decouple these effects,
in practice, because attention may have engaged these distinct
mechanisms in a highly correlated manner (see Methods, section
on “Modeling interventional versus correlational approaches”).
On the other hand, our interventional cBMI approach provided a
direct test of this hypothesis by revealing no systematic effects on
RT when stimuli were triggered at particular SSVEP power states.
Our results are in line with literature which suggests that atten-
tion mechanisms that modulate perceptual accuracy are distinct
from those that modulate reaction times12,66,67.

Second, previous literature suggests that attentional resources
across the left and right visual hemifields are separate and,
potentially, independent; this dissociation has been reported in
many studies including human psychophysics31,33, human
electrophysiology34,35, and non-human primate
electrophysiology8. In line with these findings, in Paradigm A,
target discrimination d′ was not systematically modulated either
by distractor SSVEP power states (Φdistractor), or by the global
difference of SSVEP power across hemifields (ΔΦ), suggesting
that SSVEP power modulations may occur independently across
brain hemispheres, by default, and independently affect perfor-
mance across the hemifields during cued attention tasks. Yet, in
Paradigm B, when subjects were trained using neurofeedback, to
increase the difference of SSVEP power across hemifields (ΔΦ)—
and stimuli were triggered based on this neural signature of
biased stimulus competition32,65—we observed robust differential
modulations of d′ across the hemifields, with Bayes Factor values
around 18.0.

We propose the following hypothesis that reconciles our
findings with those in previous literature. SSVEP power is
modulated by a combination of processes: These include both
local selection processes that operate independently across visual
hemifields—by engaging dissociable neural processing resources
in each brain hemisphere—as well as global selection mechanisms
that involve biased competition for neural resources between
hemispheres. Under normal conditions, the former set of pro-
cesses (local selection) dominate. But, when subjects were expli-
citly provided with neurofeedback based on the difference in
SSVEP power across hemifields, global selection processes
became strongly engaged. In other words, our neurofeedback
paradigm engendered global, spatial selection by inducing biased
competition for neural resources across brain hemispheres, and
thereby produced robust effects on behavioral accuracies. Whe-
ther such a neurofeedback cBMI can be employed to train sub-
jects to produce behavioral effects that are considerably stronger
than those reported in standard attention tasks, remains to be
explored.

Our study leaves open several interesting avenues for future
exploration. Can specific EEG signatures be identified as neces-
sary neural correlates of attention? What are the sufficient neural

correlates of attention’s signature effects on reaction times? Can
the activity of particular brain regions be voluntarily controlled
with cBMI neurofeedback to identify their specific, and poten-
tially distinct roles, in attention control? Could patients with
attention deficits be identified by their ability to control these
distinct signatures? Our attention-based cBMI provides a viable
platform for addressing these questions and may enable devising
remedial measures for treating and managing attention disorders.

Methods
Ethics declaration. Twenty-four subjects (9 females; age range: 20–28 years;
median age: 23 years) with no known history of neurological disorders and with
normal or corrected-to-normal vision participated in the experiment. All partici-
pants provided written, informed consent, and all experimental procedures were
approved by the Institute Human Ethics Committee at the Indian Institute of
Science, Bangalore.

Cognitive brain–machine interface (cBMI) based on EEGs. Conventional
brain–machine interfaces (BMI) measure brain activity, typically from populations
of neurons, to decode subjects’ intended actions and actuate prosthetic controllers
(e.g., robot arms). Cognitive BMIs (cBMIs) are an emerging technology that
acquires neural activity linked to cognitive processes, in real-time, for closed-loop
neurofeedback. Here, we designed and constructed an EEG-based interventional
cBMI for tracking visuospatial attention. We describe, next, the configuration of
the cBMI system.

The cBMI system broadly comprises of three modules: (a) EEG acquisition
hardware, (b) an EEG data processing system, and (c) a stimulus/feedback
presentation system (Supplementary Fig. 1). We acquired EEG data with a high-
density 128-channel acquisition system (ActiveTwo, Biosemi Inc.). The processing
system (Intel Core i7 CPU, 16 GB RAM, running Windows 10) imported these
EEG data using the Fieldtrip acquisition software (see next). EEG data were
processed to obtain SSVEP dimensions with high signal-to-noise (see section on
“EEG and behavioral data analysis”). The neurofeedback signal was computed and
routed to the presentation system by means of a shared drive located on the
presentation system. Finally, the presentation system (Intel Core i5 CPU, 8GB
RAM, running Windows 7) presented accurately timed visual stimuli and
neurofeedback signals on the monitor. Stimuli and neurofeedback were presented
using Psychtoolbox 368–70 on Matlab (version: 2015b). Concurrently with stimulus/
neurofeedback display, the presentation system also routed task-specific
neurofeedback event markers to the EEG acquisition system using a parallel port.
The closed-loop delay between the EEG data acquisition and neurofeedback was
measured using the following approach: We measured the time between specific
EEG events recorded by the acquisition hardware and the neurofeedback event
marker times received by the acquisition system. We tested different acquisition
software and acquisition parameters; the procedure for identifying combinations
that minimized closed-loop delay are described below (section on “Optimizing
closed-loop delay”). We used FieldTrip software71 with a sampling rate of 128 Hz,
which yielded a fixed overhead delay (Supplementary Fig. 1b) of ~10 ms. Overall,
in our real-time experiments, the closed-loop delay was <50 ms across all trials
(21.1 ± 5.9 ms, mean ± std, across trials; Supplementary Fig. 1e).

Optimizing closed-loop delay. As the cBMI system (Supplementary Fig. 1a)
works in real-time, the closed-loop delay of the acquisition block was a crucial
parameter that determined the latency of the neurofeedback. We measured the
closed-loop delay with four acquisition softwares: ActiView, Lab Streaming Layer,
OpenVibe, and Fieldtrip; using a procedure described above (section “Cognitive
brain–machine interface (cBMI) based on EEGs”). We measured this delay by
systematically varying the data packet size from 4 to 64 samples, across three
different sampling frequencies (128 Hz, 256 Hz, and 512 Hz, Supplementary
Fig. 1b). In each case, we fit a line to the closed-loop delay as a function of packet
size, of the form:

D ¼ mpþ c ð1Þ

Where D is the closed-loop delay, p is the packet size, m is the slope and c is an
offset (y-intercept) that determines the overhead for each software associated with
reading data from the acquisition hardware into the processing system. Among the
4 softwares compared, Fieldtrip provided the least overhead of 10.9 ± 0.5 ms.

EEG and behavioral data analysis. To study the link between EEG SSVEP power
states and attention, we tested two behavioral paradigms using the cBMI platform.
We describe next, EEG and behavioral analyses common to the two paradigms.

EEG data acquisition and minimal preprocessing. EEG data was recorded from
41 occipital scalp electrodes out of a total of 128 electrodes. The data was streamed
for real-time analyses with Fieldtrip software at 128 Hz. Data sampled at 4.096 kHz
was concurrently stored for offline analyses.
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Offline analysis was performed with custom scripts written in Matlab (version:
2017a and version: 2019a). Spectral analyses were performed with the Chronux
toolbox (version: 2.1272). SSVEP topoplots—topographical plots showing SSVEP
dimensions (e.g., Fig. 1c, inset)—were visualized with the EEGLab toolbox (version:
13.6.5b73). For these offline analyses, EEG data was preprocessed using the
Statistical Correction of Artifacts in Dense-array Studies (SCADS74) approach.
First, the data was filtered from 2 to 43 Hz using an FIR filter of order 19. The filter
was designed using Matlab’s signal processing toolbox. Noisy electrodes were
identified by visual inspection and also with an automated algorithm that identifies
outlier signal values based on their maximum amplitude, maximum gradient, and
standard deviation of EEG signal amplitude (±3 standard deviation of the
respective median); noisy electrodes, thus identified, were removed from further
analysis. Finally, the EEG data were re-referenced to the common average, and
z-scored. All of these steps (filtering, electrode rejection, re-referencing and z-
scoring) were also performed also for the real-time cBMI session except that noisy
electrodes were identified beforehand, in a baseline session preceding the actual
real-time experiment (see section on “Baseline EEG session”).

Denoising source separation (DSS). To quantify SSVEP power evoked by the
flickering pedestals, we sought to first isolate the electrodes that maximally
expressed power at the SSVEP frequencies, as compared to other frequencies. For
this, we employed an algorithm for latent source identification and dimensionality
reduction: Denoising source separation (DSS). DSS (also called Joint Decorrelation)
identifies linear latent dimensions embedded in high-dimensional noisy electrode
data, that maximize power in specific frequencies of interest29,75. Briefly, the
algorithm involves whitening the electrode signals followed by rotating the data
along a direction that maximizes the variance for the desired feature, here, power at
each SSVEP. In detail: Each DSS latent dimension (Y) comprises a linear combi-
nation of the raw EEG signals (X; Y= XW), where W represents the weight or
projection (or analysis) matrix that converts between electrodes and latent
dimensions. The algorithm consists of the following steps: X is first whitened with a
succession of linear transformations:

Z ¼ XPN ð2Þ
Where N= 1/√D, and P and D are the eigenvector and eigenvalue matrices,

respectively, obtained by eigendecomposition of the covariance matrix of X
(Co= XT X). In other words, X is rotated along the principal components using the
rotation matrix, P, and further scaled using the scaling matrix, N to have uniform
variance across dimensions. The whitening step enables estimating latent
dimensions that are unbiased by differences in signal strength among dimensions
in the electrode space. Next, the whitened data are filtered in the frequency domain
with a bias filter29 centered at the fundamental frequency of each SSVEP (each
flicker frequency), such that

Zf ¼ LZ ð3Þ
Where L is the bias filter matrix. Eigen decomposition of the covariance matrix

of Zf (C1= Re(ZfT Zf)) provides a second rotation matrix Q, whose columns
indicate dimensions expressing maximum variance for the SSVEP frequency of
interest; columns of Q are ordered by proportion of explained variance. The
projection matrix W is then constructed as:

W ¼ PNQ ð4Þ
This achieves the transformation from the raw data, X into the desired latent

dimensions, Y that maximally express SSVEP power (e.g., Fig. 1c). The projection
vector indicating the SSVEP dimension for each flicker frequency and subject was
identified with visual inspection, normalized by its L2 norm, averaged across
subjects, and visualized in Supplementary Fig. 1c.

SSVEP SNR calculation. The signal-to-noise ratio (SNR) for these DSS compo-
nents (Supplementary Fig. 1d) was estimated with the data from a baseline EEG
session (see section on “Baseline EEG session”). EEG data were minimally pre-
processed and epoched into non-overlapping epochs of 1 s duration; trailing
epochs of <1 s duration were NaN padded. The epoched data were projected onto
the DSS latent dimension (projection matrix W), and time-averaged across all trials
for each participant. Spectral power was estimated with multi-taper spectral esti-
mation (one Slepian taper)72,76,77. SSVEP SNR for each DSS dimension was then
calculated as the ratio of the power at the SSVEP frequency, f, and average power in
a frequency band from f− 10 to f+ 10 Hz in increments of 1 Hz, excluding the
SSVEP frequency itself. Due to low SSVEP SNR, data from 4 out of the 30 DSS
dimensions in paradigm A (data from one hemisphere each for 4 subjects) were
post hoc rejected (Supplementary Fig. 1d, upper); whereas no dimensions from
paradigm B were rejected due to low SNR (Supplementary Fig. 1d, lower).

Signal detection theory (SDT). We employed signal detection theory78 to mea-
sure orientation discrimination accuracy in both paradigms. In our experiment,
participants had to report whether the target grating, on each trial, was oriented
clockwise (rightward tilt) or counterclockwise (leftward tilt), relative to the vertical
meridian. Participants’ responses were organized into a 2 × 2 stimulus response
contingency table. Clockwise responses were arbitrarily designated as hits and
misidentifications: Hit rates corresponded to the proportion of trials in which

clockwise target orientations were correctly identified as clockwise, whereas mis-
identification rates corresponded to the proportion of trials in which counter-
clockwise target orientations were incorrectly reported as clockwise. We employed
a conventional, one-dimensional SDT model to estimate discrimination accuracy
(d′) and decision criterion (c), for the participant based on these hit rates (H) and
misidentification rates (M), as follows:

d0 ¼ φ�1ðHÞ � φ�1ðMÞ ð5Þ

c ¼ �1n2 φ�1ðHÞ þ φ�1ðMÞ� � ð6Þ
Where φ−1 is the probit function defined as the inverse of the cumulative dis-
tribution function of the standard normal distribution. Here, d′ measures the
subject’s ability to discriminate clockwise from counterclockwise orientations
(discriminability of the clockwise versus counterclockwise signal distributions,
Fig. 1a inset); larger values of d′ index higher discrimination accuracy. The cri-
terion measures the bias for reporting one orientation over the other (Fig. 1a inset);
positive values of the criterion represent a higher bias for reporting clockwise
orientation.

Baseline EEG session. The objectives of the baseline EEG session were two-fold:
first, to identify latent EEG dimensions that expressed the strongest SSVEP power,
and second, to develop an individual-specific baseline distribution of SSVEP power
values for later application in the cBMI session.

For the first objective, we used a dimensionality reduction algorithm called
Denoising Source Separation (DSS29,75). Briefly, DSS identifies latent dimensions in
the multidimensional space of EEG electrodes that express SSVEP oscillations of a
specified frequency with high signal-to-noise ratio (see section “EEG and
behavioral data analysis”, DSS). For this session, we recorded EEG data from 41
occipital electrodes (Supplementary Fig. 1c) overlapping early visual regions, which
have been consistently identified in literature as the neural source of SSVEP
oscillations15–18. EEG data from 500 ms after the onset of the flickering pedestals
until their offset was minimally preprocessed for outlier removal (see sections
“EEG and behavioral data analysis”, “EEG data acquisition and minimal
preprocessing”), and epoched into non-overlapping epochs of 1 s duration; trailing
epochs of <1 s duration were NaN padded. These data were used to construct the
DSS projection matrix Wf separately for each flickering frequency of SSVEP
employed in each experiment. We refer to the matrices Wf as spatial dimensions in
the main text, in the sense that these matrices indicate the projection weights across
electrodes for the DSS dimension that maximizes SSVEP power at each frequency f
(see for example, Fig. 1c main text and Supplementary Fig. 1c).

For the second objective, we estimated a normalized SSVEP power index,
separately for each flicker frequency. EEG data was preprocessed offline, as
described above, and projected onto the DSS dimension for the respective SSVEP
frequency. To simulate the SSVEP power distribution during the actual real-time
experiment, data were epoched into successive 500 ms bins (64 samples) offset by
1 sample (7.8 ms). We then applied multi-taper spectral estimation (one Slepian
taper72). SSVEP power estimates were then averaged (smoothed) across eight
successive bins; the distribution of these smoothed values of SSVEP power during
this baseline session for a representative subject (18 Hz flicker frequency) are
shown in Fig. 1d. To obtain a normalized SSVEP power measure for each
participant, we computed the cumulative distribution function (CDF) of this
SSVEP power distribution using a non-parametric kernel density estimator (Kernel
Probability Distribution Object - MATLAB). The CDF value—which we call a
normalized SSVEP power index or Φ—varies between 0.0 and 1.0 and provides a
normalized measure of SSVEP power with a temporal resolution of ~500 ms. By
accounting for inter-individual variations in SSVEP power, Φ provides a measure
of the strength of SSVEP power modulation that can be directly compared across
participants. This normalized SSVEP power index was used in the subsequent real-
time cBMI session to track modulations in SSVEP power.

In addition, the baseline session served to estimate individual-specific best
SSVEP frequencies. For 5/15 participants we used fixed frequencies of 14 Hz and
18 Hz for the SSVEPs (Supplementary Table 1). These frequencies were
counterbalanced between hemifields across participants. Perhaps because these
were not ideal frequencies for evoking SSVEPs for these participants, signal-to-
noise ratios (SNR) were poor for SSVEPs in 4/10 DSS dimensions estimated
(Supplementary Fig. 1d). Therefore, for the remaining 10 participants (who also
ran distractor-triggered trials, see next section), we ran around 40 pilot trials by
testing different SSVEP frequencies in the range of 13–18 Hz (step: 1 Hz), and
selected the frequency that provided the strongest SSVEP response for that
participant (Supplementary Table 1); these were found to be either at 13 Hz or at
15 Hz. With this procedure, in all cases, DSS dimensions exhibited good SNR
values for the SSVEPs (Supplementary Fig. 1d). For this subset of participants, the
stimulus on the other side was either non-flickering (0 Hz, 6/10 participants) or
flickered at 25 Hz (4/10 participants); these latter frequencies were chosen to be
sufficiently apart from the 13 Hz/15 Hz flicker frequency, so to ensure reliable
isolation of SSVEP power at these frequencies. The stimulus tagged with
individual-specific flicker frequencies (SSVEP stimulus) was presented with equal
probability across left and right visual hemifields, and cues were counterbalanced
across the SSVEP stimuli and the other (non-flickering or 25 Hz) stimulus such
that either could be a target or distractor with equal probability. By this careful task
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design, we avoided systematic spatial biasing of attention toward any one side or
any one type of stimulus in our experiments.

Sample size estimation. Power analysis for sample size was performed for Cohort
A with data from the first n= 5 subjects. Mean discrimination accuracy (d′) for the
high and low SSVEP power was computed for the 5 subjects (6 SSVEP dimensions)
and used as representative of the effect size. Sample sizes were determined based on
α= 0.01 and β= 0.2. This analysis estimated a sample size of n= 15. Power
analysis for sample size was performed for Paradigm B, separately, with data from
the first n= 5 subjects. This analysis estimated a sample size of n= 20. Experi-
ments were conducted until n= 11 subjects’ data was acquired. Data collection was
suspended following the onset of the coronavirus pandemic. Nonetheless, Para-
digm B revealed sufficiently robust effects even with the fewer subjects tested (e.g.,
Fig. 4).

cBMI paradigm A. The first paradigm (paradigm A) sought to identify changes in
behavioral metrics—reaction time, d′, and criterion—accompanying divergent
states of SSVEP power at the target location.

Fifteen healthy adult human participants (six females) with an age range of
20–26 years (mean= 22.6 yrs, std= 1.8 yrs) with normal or corrected-to-normal
vision and no known history of neurological disorders were included in this
experiment. Participants gave written, informed consent prior to their participation
in the experiment, and were monetarily compensated for their time.

Participants performed the task in an isolated dark room. The participant’s
head was positioned 60 cm away from the monitor on a chin rest. The task was
presented on a 24-inch, contrast-calibrated LCD monitor with a resolution of
1920 × 1080 at 144 Hz screen refresh rate. Stimulus presentation was performed
with Psychtoolbox version 3.068–70 with Matlab version 2015b (Mathworks Inc.,
Natick, MA). Two keys of a five key response box (RB-540, Cedrus) were used to
record participants’ responses. A neutral 50% gray background was maintained
throughout these experiments. Each trial began with a central positive contrast
(white) fixation cross (0.5 dva [degrees in visual angle] diameter), presented in the
center of the screen. Participants were instructed to fixate on the cross throughout
each trial. Subjects’ fixation was monitored with an infrared eye-tracker and gaze
position was sampled at 500 Hz and stored for offline analysis. Gaze was tracked
binocularly with an infrared eye tracker (SMI iViewX), and stored at 500 Hz
sampling rate for offline analysis (see section on “Eye-tracking”). The flickering
pedestals consisted of a pair of circular plaids (5.3 dva diameter) that were
generated by superimposing two diagonal gratings (spatial frequency: 1.0 cpd
[cycles per degree]), oriented at 45° and −45° relative to the vertical meridian. The
centers of each pedestal were positioned also at an azimuthal eccentricity of 5.3 dva
away from the central fixation cross along the horizontal meridian. Each pedestal
flickered at a distinct frequency to evoke oscillations at a fundamental frequency
identical with that of the stimulus; such evoked oscillations are known as Steady-
State Visually Evoked Potential or SSVEPs18. SSVEPs used for individual
participants are tabulated in Supplementary Table 1. Details regarding these
specific choices of SSVEPs are provided in the subsection on “Baseline EEG
session” below. The discriminanda (target and distractor; Fig. 1b) consisted of sine-
wave gratings (spatial frequency: 0.6 cpd) with a diameter of 2.1 dva and oriented
at either +45° or −45° relative to the vertical meridian, presented concentrically
with the pedestal stimuli.

Participants performed a two-alternative forced choice (2-AFC), grating
orientation discrimination task. Each trial began with the fixation cross appearing
at the center of the screen for 200 ms, followed by the two flickering pedestals, one
on each hemifield. Each pedestal flickered at a distinct frequency to generate two
distinct SSVEPs over opposite hemispheres of the brain (see Methods, section on
“EEG and behavioral data analysis”, DSS). After an interval of 1000 ms, a directed
cue (central arrow, 0.5 dva length) appeared above the fixation cross, indicating the
side to be attended. The cue had a validity of 100% and the cue indicated either the
left or the right hemifield pseudorandomly with equal probability of 0.5
(counterbalanced across the left and right) across trials. A variable interval later
(duration described in the next section), the pedestals disappeared, and target and
distractor stimuli (oriented diagonal gratings) flashed briefly for ~75 ms on each
side, concentric with the pedestals. Following this, the fixation cross changed color
indicating the beginning of the response epoch, which lasted for 1.5 s. Participants
reported the orientation of the grating on the cued side (target) as being clockwise
(45°) or counterclockwise (−45°) of vertical, ignoring the grating on the uncued
side (distractor). Participants reported their responses with distinct response keys
for clockwise versus counterclockwise orientations.

Each experiment comprised of four sessions—a behavioral training session, a
behavioral staircasing session, a baseline EEG session, and a real-time cBMI session
—all conducted within the span of a single day. Typically, the entire experiment
lasted for about 2.5 h for each participant. Each of the 4 sessions is described, next.

The first session was the training session. In this session, participants were
familiarized with the task, including the stimuli and response protocol. Participants
performed the cued orientation discrimination task (described above) without
concurrent EEG recordings, and received behavioral feedback (on screen) after
each trial indicating whether their response was correct or incorrect. For these
trials, following flickering pedestal presentation (1 s), the cue-target interval (CTI,
or the interval between cue presentation and the appearance of target stimuli) was

set to a minimum of 1.5 s and a maximum of 4.0 s. The variable interval between
the minimum and maximum CTI was sampled from an exponential distribution,
with a mean of 1.0 s. Participants typically performed around 80–100 trials in the
training session to familiarize themselves with the task.

The next session was the staircasing. In the staircasing session, participants
performed the same task as in the training session (without concurrent EEG
recordings), but were not provided behavioral feedback regarding their accuracy
after each trial. In this session, the contrast of the target and distractor stimuli were
staircased to achieve an overall accuracy of 70%. All other task parameters were
identical to the training session. Participants typically performed 60–120 trials in
the staircasing session.

Staircasing was followed by the baseline EEG session. In this session subjects
performed a behavioral task that was identical to the one in the staircasing session
except that, in this case, the contrast of the target and distractor gratings were fixed
to their values determined during the staircasing session. In addition, EEG data
were sampled at 4.096 kHz and downsampled to 128 Hz and stored for offline
analyses. The objectives of the baseline EEG session were two-fold: first, to identify
latent EEG dimensions that expressed the strongest SSVEP power, and second, to
develop an individual-specific baseline distribution of SSVEP power values for later
application in the cBMI session; these are described in the Methods, section on
“Baseline EEG session”.

Real-time cBMI was the final session. In this real-time cBMI session, EEG data
was streamed in real-time sampled at 128 Hz (Fieldtrip toolbox), and stored in in a
real-time buffer of duration 500 ms (64 samples); the buffer was updated with each
new sample so that it always contained the last 500 ms of streaming data. EEG data
were minimally preprocessed (see Methods, section on “EEG data acquisition and
minimal preprocessing”). These data were then projected in real-time onto a latent
dimension with DSS (projection matrix Wf), which was estimated separately for
each SSVEP flicker frequency during the baseline block. Power at the
corresponding SSVEP frequency was estimated using multi-taper spectral
estimation (one Slepian taper). SSVEP power estimates were averaged across eight
successive time points and, as described in the previous subsection, were used to
compute the SSVEP power index (Φ) based on the CDF of the baseline SSVEP
power distribution. Separate Φ values were computed for the two SSVEP
frequencies, such that we were able to track Φ for both the cued (target) and
uncued (distractor) pedestals in real-time on each trial.

On each trial, when the Φ for the target pedestal reached predetermined high or
low threshold values, the presentation of the target and distractor gratings was
triggered; we call these trials, respectively, high-Φ and low-Φ trials. Each trial was
pseudorandomly designated as either a high-Φ or low-Φ trial, a priori, and these
designations were counterbalanced across the cued hemifields. For the first 4/15
participants (sub-group I), high-Φ and low-Φ thresholds were set to 0.8 and 0.2,
respectively, but resulted in a high proportion of non-triggered trials in pilot
experiments. Consequently, thresholds were relaxed to 0.7 and 0.3 for the
remaining 11/15 participants (sub-group II). No significant interaction effects
between behavioral parameters and sub-groups were observed (d′: main effect of
high-Φ vs low-Φ: F(1,48)= 7.58, p= 0.008, main effect of group: p= 0.752,
interaction effect: p= 0.088; criterion: main effect of high-Φ vs low-Φ:
F(1,48)= 0.09, p= 0.761, main effect of group: p= 0.529, interaction effect:
p= 0.890; RT: main effect of high-Φ vs low-Φ: F(1,48)= 0.01, p= 0.916, main
effect of group: p= 0.005, interaction effect: p= 0.806), indicating that
modulations (across high-Φ and low-Φ trials) were not different across the two
sub-groups for any behavioral parameter. Therefore, parameters across all 15
participants were combined for subsequent analyses. To avoid very short cue-target
intervals, target presentation never occurred at time-windows of <500 ms from cue
onset. In addition, target presentation always occurred if the respective threshold
had not been reached within 4 s of cue onset, regardless of the value of Φ. We term
these latter trials as non-triggered trials (31.5 ± 3.7% of all trials), and these were
not considered for further analyses. For a subset of n= 10 (out of 15) participants,
we also triggered stimulus presentation based on the Φ value on the distractor side
on 50% of the trials, again pseudorandomly selected a priori, and counterbalanced
across the high-Φ and low-Φ threshold conditions. Subjects typically ran 6 blocks
of 60–64 trials each. For one subject (A6, Supplementary Table 1) the session was
terminated after 5 blocks, owing to the subject’s inability to continue the
experiment.

Following target and distractor presentation, participants reported the
orientation of the grating on the cued side (target), ignoring the grating on the
uncued side (distractor) within a fixed response window (1.5 s). Participants’
behavioral accuracy—d′ (see section on “Momentary SSVEP power fluctuations
predict discrimination performance” in Results)—as well as reaction times and
decision criteria, were measured, and compared across the high-Φ and low-Φ
threshold conditions (e.g., Fig. 2b, c; see section on “Statistical tests”).

Eye-tracking. Gaze was tracked binocularly with an infrared eye tracker (SMI
iView X Hi-Speed) throughout the experiment, sampled at 500 Hz, and stored for
offline analysis. To ensure that subjects’ gaze remained stable on the fixation cross
at the time of stimulus presentation, we employed a 600 ms window (−500 ms to
+100 ms with respect to task stimuli onset) for trial rejection based on eye-
tracking. Trials in which gaze deviated from the central fixation cross by more than
±1 dva along the azimuth during this window of stability were rejected from
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further analysis. Trials in which blinks occurred or the gaze position was lost for
more than 100 ms in this stability window were also rejected. Overall, 8.3 ± 2.4% of
trials across all participants were excluded due to poor gaze fixation in this
paradigm.

Analysis of cueing-induced gain of SSVEP power (Fig. 2a). We tested whether
cueing of spatial attention induced a gain in SSVEP power. For this, we analyzed
non-triggered trials alone in paradigm A (n= 15 subjects), because in this subset of
trials SSVEPs did not systematically diverge to extreme values (high or low) on the
cued side. For each subject, the change in the SSVEP power index (Φ) over baseline
was calculated by dividing the instantaneous Φ with the mean Φ in a baseline
interval −1500 ms to −1000 ms before the onset of the cue. Figure 2a shows the
mean trace of this fractional change in Φ over baseline (Φnorm) for cued and
uncued trials across all subjects in paradigm A (n= 15). The post-cue difference in
Φ between cued and uncued conditions was calculated in a window from −500 ms
to 0 ms prior to stimulus triggering, and compared across the cued and uncued
hemifields using Wilcoxon signed-rank test (Fig. 2a, inset). In addition, we also
compared Φ between cued and uncued conditions during the pre-cue epoch, in a
window from −500 ms to 0 ms prior to cue onset.

Trial-wise analysis of correlation between target-Φ and distractor-Φ. We
computed trial-wise correlations between target-Φ and distractor-Φ. For this
analysis, we considered target and distractor-Φ values computed in 4 windows of
250 ms duration centered at uniformly spaced time points ranging from 0 to
1000 ms prior to stimulus triggering (duration: +/−125 ms or +/−16 samples at
fs= 128 Hz). For statistical analyses, the Pearson correlation coefficient was
computed between the z-scored (trial-wise) target-Φ and distractor-Φ values,
pooled over all trials and participants. Since the trial-wise correlation analysis has a
large number of data points (i.e., >400 data points, 4 points per trial and >25 trials
per participant), only the trial-averaged target and distractor-Φ values were plotted
for these time windows across participants in Supplementary Fig. 3c and Supple-
mentary Fig. 4b, for clarity of visualization.

Analysis of difference of SSVEP power across hemifields (ΔΦ). We tested
whether the difference in SSVEP power indices between the target (cued) and the
distractor (uncued) hemifield (ΔΦ = ΦTarget−ΦDistractor), rather than the power
index (Φ) would provide a more reliable marker for modulations of behavioral
accuracy in paradigm A. This analysis was performed offline, as a precursor to the
next online experiment (paradigm B). EEG data were analyzed offline using a
procedure identical to that applied for the real-time data, except that in this case,
the difference of SSVEP power index values between the target and the distractor
hemifields (ΔΦ) was computed for each trial at the time of threshold crossing,
separately for each condition: (i) target triggered vs distractor triggered, (ii) high-Φ
vs low-Φ, and (iii) left vs right hemifield SSVEP (Fig. 3b). For each subject, we
divided trials in each condition into two subsets, based on a median split of ΔΦ.
For the target triggered high-Φ trials and the distractor triggered low-Φ trials, trials
with ΔΦ values above the median, typically with large positive values of ΔΦ, were
labeled as extreme +ΔΦ trials, whereas the trials with ΔΦ values below the median,
typically ΔΦ values around zero, were labeled as moderate ΔΦ trials (Fig. 3b, i and
iv, respectively). Conversely, for the target triggered low-Φ trials and the distractor
triggered high-Φ trials, the subset of trials with ΔΦ values above the median were
labeled as moderate ΔΦ; whereas the subset with ΔΦ values below the median was
labeled as extreme −ΔΦ (Fig. 3b, ii and iii, respectively). We tested whether the ΔΦ
distributions for every pair of subsets were significantly different from each other
with pairwise Kolmogorov-Smirnov (KS) tests. We then tested if d′ modulations
co-varied systematically with ΔΦ for each trial type using two kinds of statistical
tests. Firstly, we performed an n-way ANOVA with d′ as the dependent variable
and ΔΦ, Φ (high-Φ vs low Φ trials), hemisphere (left and right), and type of
triggering (target vs distractor) as independent factors. Secondly, in post hoc
comparisons, each of the four trial types were analyzed separately using estimation
statistics79. d′ values for left and right hemifields were pooled for each of the 4 trial
types, before performing KS tests and computing estimation statistics.

For these analyses, and those in Supplementary Fig. 3b, we used data from n= 5
participants (subject indices A1, A12, A13, A14, and A15, Supplementary Table 1)
for whom the SSVEP on both sides exhibited high SNR on both sides and could,
therefore, be reliably analyzed. Although 9 participants were tested with flickering
stimuli on both sides, for 4 participants, the SSVEP on either the target or the
distractor SSVEP DSS dimension exhibited low SNR (Supplementary Fig. 1d)
precluding the reliable estimation of ΔΦ; therefore, data from the remaining 5
participants were included in these analyses. Data from 4 out of these 5 participants
were used for target-triggered trials, as one participant (subject A1, Supplementary
Table 1) was not tested with distractor side triggering.

cBMI paradigm B. The second paradigm (paradigm B) sought to identify changes
in behavioral metrics accompanying large differences in SSVEP power across
hemifields (ΔΦ). Task and training details were closely similar to paradigm A; key
differences are indicated below.

Eleven healthy adult human participants (4 females; age range: 20–28 yrs; mean:
24.2 yrs, std dev: 2.9 yrs) with normal or corrected-to-normal vision and no known

history of neurological disorders were included in this experiment. Participants
gave written, informed consent prior to their participation in the experiment, and
were monetarily compensated for their time. Two subjects who participated in
paradigm A’s experimental session, also participated in paradigm B’s experiment
(Supplementary Table 1; B10 and B11 were the same participants as A4 and A5). In
the main text, we report results including only the n= 9 participants who were
unique to paradigm B (Figs. 4, 5, main text). In the Supplementary Information, we
report analyses including all participants in this cohort (n= 11, Supplementary
Fig. 4c).

Task and stimulus configuration for Paradigm B was closely similar to
paradigm A except for the following key differences. In the previous paradigm,
participants had provided feedback that it was challenging to perform the task for
prolonged durations due to the bright plaid pedestals and the overall bright (50%
contrast) background. For this paradigm, therefore, we incorporated the following
two changes. First, instead of flickering plaids as pedestals, we used flickering noise
masks (uniform spatial noise, uncorrelated across pixels). The size and locations of
these pedestals were identical to that of the previous paradigm. Second, the
background contrast of the screen was reduced to 10%, with the screen refresh rate
set at 100 Hz. Based on their feedback, participants considered this display much
easier to view for prolonged durations. For this paradigm flicker frequencies were
selected to be 14 Hz and 18 Hz for all participants, and, for each participant, were
fixed for each hemifield (e.g., 14 Hz for the left hemifield pedestal and 18 Hz for the
right hemifield pedestal). Flicker frequencies were counterbalanced between
hemifields across participants.

In addition, because of the comparatively high d′-s observed in the previous
paradigm, we made minor changes to the target and distractor stimuli to make
their orientation discrimination itself more challenging. Target and distractor
stimuli were 20% contrast Gabor gratings (std: 0.8 dva; spatial frequency: 1.5 cpd)
embedded within the noise patch, and were displaced toward the outer edge of the
pedestals along the horizontal meridian such that their centers were at ±6.6 dva
azimuth from the fixation cross. Both the neutral cue and response probe
comprised of two isosceles triangles (0.6 dva base, 0.9 dva height) rotated and
joined at the base (Fig. 4b), positioned 1.1 dva above the fixation cross. On each
trial, the neutral cue comprised of two filled triangles, whereas the response probe
comprised of a single filled triangle; the filled triangle indicated the side probed for
response (Fig. 4b).

The task protocol was identical with that in paradigm A except for the following
minor differences (Fig. 4b): (i) pedestals were presented for 500 ms before the cue
onset; (ii) a neutral cue was presented on each trial above the fixation cross; (iii) the
maximum cue-target interval was increased to 7.5 s; (iv) target and distractor
stimuli were presented for 70 ms. These differences were driven by practical or task
design considerations. For example, CTI increased because in pilot experiments, we
observed that triggering stimuli based on extreme values of ΔΦ was more
challenging than that based on Φ alone. For example, mean trigger times for
Paradigm A were significantly lesser than that for Paradigm B (Paradigm A:
2754+/− 263 ms; Paradigm B: 3410+/− 383 ms, p < 0.001, Mann Whitney U test)
despite a comparable percentage of trials being triggered across both paradigms
(Paradigm A: 68.49+/− 14.38%; Paradigm B: 76.07+/− 12.98%, p= 0.1, Mann
Whitney U test). The pedestal duration was decreased, to keep the overall length of
the trial shorter. Stimulus duration was marginally decreased, so as to have it
similar to the previous paradigm while accommodating a 100 Hz screen refresh
rate. Neutral cues were part of the task design for the present paradigm (see next).
On each trial, the stimulus on one of the two hemifields was designated the target
and the other designated the distractor. Neurofeedback was provided based on the
difference of SSVEP power index across target and distractor hemifields
(ΔΦ=ΦTarget−ΦDistractor; see next). Response probes were equally likely to be the
target side or distractor side; we term these the target-side probed and distractor-
side probed trials, respectively. Participants were instructed to report the
orientation of the grating on the response probed side. Distinct response keys were
used for clockwise versus counterclockwise grating reports; this response mapping
was counterbalanced across participants. In this paradigm, 5.5 ± 1.4% of trials were
excluded due to poor gaze fixation.

Paradigm B comprised of 5 sessions spanning two days. On the first day,
participants performed training and staircasing behavioral sessions. On the second
day, participants performed a baseline EEG session, a ΔΦ threshold session, and a
neurofeedback session. The details for each session are described next:

The first session was the training session. Participants were trained on the
behavioral task in Fig. 4b. The training protocol, without concurrent EEG
recordings, was as described in paradigm A. Participants typically performed over
100–150 trials in the training session to familiarize themselves with the task.

The next session was staircasing. Participants performed the same task as in the
training session. Staircasing was performed, as in paradigm A, except that in this
case the orientation of stimuli was staircased to achieve an overall accuracy of 75%.
Participants typically performed about 200 trials in the staircasing session.

Next session was the baseline EEG session. The goal of this session, as in
paradigm A, was to obtain latent dimensions that maximized SSVEP power with
DSS, and to estimate a distribution of SSVEP power for each flicker frequency,
based on which the SSVEP power index (Φ) was computed. The task in this session
was the same as that in the staircasing session except that the orientation of target
and distractor gratings was fixed to a specific value obtained from the staircasing
session. Moreover, all trials were cued with 100% valid cues, counterbalanced
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across the left and right hemifields. The goal of cueing was to obtain estimates of Φ
when participants were attending to one side versus another (as in the actual
neurofeedback paradigm, see next).

The baseline session was followed by ΔΦ threshold session. In pilot neurofeedback
experiments, we had observed considerable variability among subjects in their ability to
trigger target and distractor stimuli based on uniformly high ΔΦ thresholds. The goal of
this session was, therefore, to obtain an approximate estimate of ΔΦ thresholds for
individual subjects to be used in the next neurofeedback session. The task for this
session was identical with that for the baseline EEG session (cued orientation
discrimination), except that this session comprised 32 trials with cues counterbalanced
across left and right hemifields. With this paradigm, we constructed a distribution of
ΔΦ (=ΦTarget−ΦDistractor) for SSVEPs and the threshold was set as the 98th percentile
of the ΔΦ distribution, subject to a minimum value of 0.75. The goal was to come up
with an approximate value for ΔΦ value that would require cognitive effort on the part
of each participant, but not a value so high as to be impossible to achieve. In 4/11
participants, these thresholds had to be reduced slightly to make stimulus triggering less
challenging. The distribution of the final thresholds used for all experiments across
subjects, as well as the proportion of trials triggered across subjects, is plotted in
Supplementary Fig. 4d, left and right.

The final session was the Neurofeedback cBMI session. The task in this session
was the same as in the baseline EEG session above, except that no directed cues
were presented. Rather, 500 ms after the onset of the pedestals, neutral cues (see
section “cBMI paradigm B”) were presented on each trial, which were
uninformative about which side was the target for attention. In each trial, one of
the two hemifields was pseudorandomly designated the target side, and the other
side, as the distractor side. We tracked the difference of SSVEP power indices—
across visual hemifields—between the target (ΦTarget) and distractor (ΦDistractor)
sides in real-time; we term this difference ΔΦ. When this difference exceeded a
predetermined threshold, determined in the ΔΦ threshold session, the presentation
of both target and distractor stimuli were triggered.

Participants were not directly instructed (cued) regarding the target side.
Instead, the participants received continuous auditory feedback whose frequency
scaled linearly with ΔΦ when this value was positive, and was fixed to a default
value (500 Hz) when ΔΦ was zero or negative. Specifically, we used the following
piecewise linear transformation:

Af ¼ Lf þ bΔΦcþðHf�Lf Þ ð7Þ
Where ΔΦ=ΦTarget−ΦDistractor, where Lf and Hf represent the lowest (500 Hz)

and highest (1500 Hz) possible frequencies provided as feedback, respectively and

⎣x⎦+ represents positive rectification. Auditory feedback was provided binaurally at

a sampling rate of 44,100 Hz, in real-time using custom scripts based on

MATLAB’s audio toolbox. Participants were informed prior to the session that

covert spatial attention would enable them to modulate the neurofeedback, but had

to work out, by trial and error, which hemifield the feedback was based on. This

resulted in this task being more challenging, and each trial being more prolonged

than the previous paradigm. The maximum cue-target interval until trials were

forcefully terminated (by stimulus presentation) was, therefore, increased to 7.5 s

for this task. On each trial, feedback was terminated when ΔΦ crossed the

threshold.
For 3/9 participants presented in the main text, grating presentation occurred

immediately upon ΔΦ crossing threshold; for the remaining 6/9 participants,
grating presentation occurred following a 60 ms delay of this threshold crossing.
We introduced this delay for empirical reasons in the latter set of participants: to
avoid stimulus onset from being coincident with the cessation of the auditory
neurofeedback, because the latter terminated precisely at the time of threshold
crossing. For both sets of participants, behavioral effects on normalized d′ were
closely similar: there was a significant main effect of task condition (target-side
probed versus distractor-side probed, F(1,14= 21.06, p= 0.0004, ANOVA), but
not of the timing (p > 0.99), nor an interaction effect (p= 0.107). A permutation
test, by shuffling the timing label 1000 times across participants while retaining
other labels intact, also revealed no significant evidence for an effect of timing on d′
differences between target-side and distractor-side probed trials (p= 0.169).
Consequently, we pooled together these two groups of subjects for subsequent
analyses. Subjects typically ran 7 blocks of 64 trials each. For two subjects (B2, B5,
Supplementary Table 1) the session was terminated after 5 blocks, owing to the
subjects’ inability to complete the experiment.

As in the baseline session, following target and distractor presentation,
participants reported the orientation of the grating on side probed for response
(Fig. 4b), within a fixed response window (2.0 s). For this paradigm, we compared
behavioral metrics (reaction time, d′, and criterion) across target-side probed and
distractor-side probed trials (see section on “Statistics and reproducibility”). In
other words, we tested if inducing extreme differences in Φ across the visual
hemifields would induce corresponding differences in behavioral metrics across
these hemifields.

Analysis of SSVEP power dynamics. We investigated how the dynamics of Φ (or
ΔΦ) affected behavioral modulations of d′. Specifically, we asked whether the rate
of change of Φ (or ΔΦ) immediately before threshold crossing would influence

sensitivity modulation—computed as the difference in discrimination accuracy (Δd
′) at a location between trials for which the SSVEP power index was high at that
location, versus trials for which the power index was high at the opposite location
(Fig. 5c, f; Supplementary Fig. 5). The analysis below describes the procedure for
measuring Φ dynamics; an identical procedure was used for measuring ΔΦ
dynamics also.

SSVEP power indices (Φ) on the target and distractor side were estimated
offline, using procedures described in an earlier section (see section on “Analysis of
difference of SSVEP power across hemifields”). We considered 15 time-windows—
ranging from 50 ms to 750 ms (in steps of 50 ms)—prior to threshold crossing. In
each time-window, the difference between the Φ value at the time of threshold
crossing and the minimum value of Φ within that (respective) window was
computed. This provided an estimate of the rate of change of Φ (slope) prior to the
threshold crossing at different timescales, ranging from 1.3 Hz (750 ms window) to
about 20 Hz (50 ms window). For each participant, trials were divided into two
categories: fast-ramping and slow-ramping trials, corresponding to the top-most
and bottom-most quartiles (top 25% and bottom 25%), respectively, of the rates of
change of Φ. d′ was estimated separately for these fast- and slow-ramping trials, for
all participants. For this analysis, we used data from n= 9 subjects who
participated in Paradigm B alone.

Modeling interventional versus correlational approaches. We present 4 direc-
ted graphical models—each of which reflects a distinct, possible mechanism for
attention’s effect on d′ and RT modulation (Supplementary Fig. 2a). In these
models, A represents the cognitive process of attention, Φ represents SSVEP power
modulation, M and N represent alternative neural processes (e.g., alpha or beta
oscillations), distinct from SSVEP generating mechanisms, and d′ and RT reflect
behavioral effects on sensitivity and reaction times, respectively. Note that, in
general, each neural process can be engaged by multiple cognitive processes other
than attention (e.g., arousal) and can also be susceptible to internal, neural noise.
Similarly, neural processes, other than those shown here, could influence each
behavioral metric.

Each of these 4 models differs in the way it links SSVEP power (Φ), as well as
the other neural processes, to the behavioral metrics of d′ and RT. In the first
model, SSVEP power changes do not directly influence either d′ or RT. In the
second and third models, SSVEP power changes drive RT and d′ effects,
respectively. In the fourth model, SSVEP power changes directly affect both d′ and
RT. For ease of reference, we call these the “no effect”model, the “RT effect”model,
the “d′ effect” model, and the “both effects” model.

These 4 models cannot be distinguished with correlational approaches alone. In
conventional tasks that employ correlational approaches, the common source
process (A) represents the strongest source of common variation among all of the
neural processes (M, N, Φ) and, thereby, the behavioral metrics (d′, RT). As a
result, correlations occur between neural processes and behavioral metric that are
causally influenced by attention. These are the correlations, for example, between Φ
and d′ as well as between Φ and RT, that previous studies have reported15,17. We
demonstrate this result with simulations based on a simple mathematical
formulation in Supplementary Fig. 2b–e, subpanel ii.

In an interventional approach, SSVEP power (Φ) is forced to be at fixed,
predetermined high or low values on each trial. If a change in Φ were sufficient to
induce a change in a behavioral metric (d′ or RT), we would expect to observe an
obligatory change in the respective behavioral metric value across high-Φ and low-
Φ trials. The specific behavioral metric affected, then, enables us to distinguish
between the 4 models. Again, we demonstrate this result with simulations in
Supplementary Fig. 2b–e, subpanel iii.

Although in our experiments, we did not have the ability to directly intervene
on SSVEP power and set it to arbitrary values, we followed an indirect approach to
achieve interventional control. We triggered stimulus presentation when Φ
(Paradigm A) or ΔΦ (Paradigm B) reached specific, predetermined high or low
values. Because of the causal relationship between the source process A (e.g.,
attention), and neural processes (M, N, Φ) (Supplementary Fig. 2b–e, subpanel i),
fixing Φ to a particular value does not guarantee that A is also fixed to a specific
value. Consequently, other neural processes, like M and N, are free to vary even if
Φ is at a fixed value at the time of grating presentation. By this intervention on
stimulus timing our experiment examines the effect of decoupling fluctuations in Φ
from fluctuations in the other neural processes on behavioral metrics. Our results
support the d′ effect model—changes in Φ produce obligatory changes in d′, but
not in neural process N and, consequently, not in RT.

Comparison of online triggering of stimuli versus post hoc analyses. We could
have tested for the effect of SSVEP power on behavior using an offline approach:
using a conventional task design and post hoc analyses, as has been done in
previous studies15–17. We have discussed key differences between these offline
approaches and our online (real-time) cBMI approach in the “Discussion”.
Nevertheless, we seek to compare here the number of trials that would need to be
collected, had we used the offline approach, to achieve the same level of difference
in SSVEP power index across high-Φ or low-Φ trials in paradigm A or the same
level of SSVEP power index difference across hemifields (ΔΦ). In the real-time
triggering task, 68.5 ± 3.7% and 76.1 ± 4.3% of trials were triggered in paradigm A
and B, respectively, and used for the subsequent behavioral analysis. To estimate
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the number of trials that would have crossed the threshold in the last 50 ms of the
trial (same in real-time triggering experiment) in a conventional task, we con-
sidered the baseline block for both paradigms. For each paradigm. We simulated
10,000 trials with trial intervals randomly sampled from an exponential distribu-
tion (mean = 1 s, with trial times of 1.5–4 s for paradigm A and 1–8 s for paradigm
B) and computed the Φ (or ΔΦ) traces by sampling trials, with replacement, in the
baseline block of the respective paradigm. For each condition in paradigm A
(target- or distractor-side triggering x high-Φ versus low-Φ) and for each condition
in paradigm B (target- or distractor-side probe), we calculated how many trials
crossed the threshold in the last 50 ms of each simulated trial. For paradigm A, Φ
crossed the high threshold on the target- and distractor-sides in 5.2 ± 1.2% and
3.3 ± 0.6% of the simulated trials, respectively, whereas Φ crossed the low threshold
on the target- and distractor-sides in 7.5 ± 1.2% and 7.4 ± 1.0% of the simulated
trials, respectively. For paradigm B, ΔΦ crossed the threshold for the target-side
and distractor-side probed trials on 1.2 ± 0.3% and 1.0 ± 0.2% trials, respectively.
Thus, to achieve 68.5% and 76.1% triggering in paradigm A and B, respectively, we
estimate that, on average, ~11-fold more trials for paradigm A (~4000 trials) and
~69-fold more trials for paradigm B (~30,000 trials) are necessary.

Statistics and reproducibility. Two-way ANOVAs were used to compare beha-
vioral (psychometric and psychophysical) parameters for target and distractor-
triggered trials in Fig. 2b, c. AVOVAs were performed with behavioral measures (d
′, criterion, and RT) as dependent variables and Φ levels (high-Φ and low-Φ) and
hemisphere (left and right) as the two independent factors. A non-parametric
Wilcoxon paired signed-rank test was employed for the following analyses:
(i) SSVEP power index (Φ) between cued and uncued conditions (Fig. 2a, inset),
(ii) median cue-target intervals between high-Φ and low-Φ trials (Supplementary
Fig. 3a), (iii) mean Φ on the distractor side between high-Φ and low-Φ target
triggered trials (Supplementary Fig. 3b), (iv) Δd′ between fast-ramping versus slow-
ramping trials (Fig. 5c, d, f, g and Supplementary Fig. 5c, d). Pearson correlations
were used to compute correlation coefficients for the following analyses: (i) cor-
relations between simulated Φ and behavioral metrics (d′ and RT) for correlational
and interventional approaches (Supplementary Fig. 2a–d), (ii) correlations between
target and distractor Φ values (Supplementary Figs. 3c and 4b). Kolmogorov-
Smirnov tests were used to test for differences between ΔΦ distributions (Fig. 3b,
insets). A 4-way ANOVA was performed (Fig. 3b) with d′ as the dependent
variable and Φ levels (high-Φ and low-Φ), ΔΦ levels, trigger type (target vs dis-
tractor), and hemisphere (left and right) as independent factors. Estimation statistic
analog of paired t-test, statistical method which computes effect size and tests for
its significant difference from zero79, were used to test differences in behavioral
metrics (d′, criterion, and RT) between target and distractor probed trials (Fig. 4e
and Supplementary Fig. 4c). Significance levels of the p-values (asterisks) follow the
convention: *p < 0.05, **p < 0.01, ***p < 0.001. Sample size estimation is described
in the Methods section titled “Sample size estimation”. In addition, behavioral
differences were analyzed using the Bayes Factor (BF). BF for the one-tailed t-test
was computed using JZW priors80. A BF of 3 (10) or higher represents substantial
(strong) evidence in favor of the effect of interest. All the statistical tests in the main
text and their results are summarized in Supplementary Table 2. We conducted two
sets of experiments; key results from paradigm A were replicated in paradigm B.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data necessary for reproducing all figures in the paper have been deposited into an
opensource online repository81 for ready inspection and replication of the results.
Moreover, source data for the graphs in the main text are also provided in an excel file as
Supplementary Data 1. The source data (raw EEG) will be made available upon request to
the corresponding author.

Code availability
All code necessary for reproducing all figures in the paper have been deposited into an
opensource online repository81 for ready inspection and replication of the results.
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