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Abstract— We have developed a virtual integration environ-
ment (VIE) for the development of neural prosthetic systems.
This paper, the second of two companion articles, describes the
use of the VIE as a common platform for the implementation
of neural decode algorithms. In this paper, a linear filter
decode and a recursive Bayesian algorithm are implemented as
separate signal analysis modules of the VIE for the real-time
decode of end effector trajectory. The process of implementing
each algorithm is described and the real-time behavior as well
as computational cost for each algorithm is examined. This is
the first report of the real-time implementation of the Mixture
of Trajectory Models decode [10]. These real-time algorithms
can be easily interfaced with pre-existing modules of the VIE
to control simulated and real devices.

I. INTRODUCTION
Brain computer interfaces (BCI) promise to provide sig-

nificant rehabilitative value to the severely disabled by using
brain derived electrophysiological signals to control artificial
devices or re-animate a part of the body. A range of devices,
such as robotic manipulators, computer cursors, spelling
devices and wheelchairs have been controlled using differ-
ent invasive and non-invasive recording techniques [1]–[7].
Along with this assortment of recording methods, a variety
of algorithms to decode user intent have been implemented
and tested.

Despite the basic experimental paradigm being the same
in many investigations, it is not always possible to judge
the relative value of the signal types and decode strategies
employed. Recordings across subjects can be highly variable.
Although it is possible to share pre-recorded data to compare
algorithms in an off-line manner, there is evidence that the
off-line and on-line behavior of neurons differs significantly
[5], [8]. Re-implementing previously published neural de-
code algorithms for real-time comparison against each other
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Fig. 1. A diagram of the configuration of the VIE used in the testing of
all three algorithms.

is time consuming and can involve a substantial duplication
of effort.

We have developed a Virtual Integration Environment
(VIE), described in a companion paper, as a common
framework for the development of neural prosthetic systems
[9]. The VIE modularizes the key components of a neural
prosthetic system — inputs, signal analysis, controls, plant
and presentation. Complete neural prosthetic systems can
be constructed in the VIE and automatically compiled to
real-time code. As the VIE implements common interfaces
between components, decode algorithms implemented in the
signal analysis module of the VIE can be used interchange-
ably. This makes the sharing of real-time decode algorithms
in a “plug-and-play” manner between institutions much more
feasible.

In this paper we demonstrate the implementation of a
linear filter as well as a recursive Bayesian decode of end
effector trajectory in signal analysis modules of the VIE.
We examine their real-time behavior and computational cost
using pre-recorded data, and we show how they could be
used without modification for on-line experiments.

II. METHODS

A linear filter and a recursive Bayesian decode were
evaluated in this study. Each was implemented in a separate
signal analysis module in the VIE. The VIE implements
standard interfaces, and these modules can be interchanged.
Fig. 1 displays the configuration of the VIE used for the
testing of the real-time decodes. The controls block recorded
the output of the decodes for later analysis, and the plant and
presentation blocks were unused.

All algorithms estimated arm position in 10 ms intervals
using binned spike counts as a feature vector. Bin size was
selected individually for each algorithm. As the purpose of
the present paper is to describe the real-time implementation
of these algorithms in a common framework and not the
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direct comparison of these algorithms, no formal attempt
was made to optimize bin size or binning interval for each
algorithm.

Along with the implementation of each algorithm for real-
time use, an off-line version of each model was implemented
in MATLAB to allow for the direct comparison of off-line
and on-line results. The code used to generate the results pre-
sented in the original Mixture of Trajectory Models (MTM)
paper [10] was used again in the present study, allowing for
the direct comparison of the present implementation with
previously published work.

These algorithms have all been described elsewhere, and
only a brief description, necessary to understand their real-
time implementation in the VIE, will be given here.

A. Implementation of Linear Filter Decode in the VIE
The linear filter decode we implemented assumes a linear

relationship between the firing rates of a population of units
relative to their means and end effector position [11]. This
can be represented in the following equation:

~̂x = A(~fr − ~̄fr) + ~xc (1)

In equation 1, ~fr is a vector of observed firing rates, ~̄fr

is a vector of mean firing rates and ~xc is a constant offset.
Matrix A gives the least squares estimate of end effector
position, ~̂x, taking into account ~xc, given ~fr − ~̄fr.

The VIE implementation of the linear filter can be seen
in Fig. 2. In our implementation, the binning of spikes is
synchronized to an external signal pulse, which allows the
decode to be exactly synchronized to external hardware such
as a graphics card or motion capture technology, which may
run close to but not exactly at a fixed rate. The parameters
needed in the real-time decode are currently provided at
compile time and remain fixed. However, the model could be
easily configured so that most of these were tunable during
run time. With the exception of the spike counting block,
which made use of an embedded Matlab function block, the
entire module was created by simply linking together native
Simulink blocks.

B. Implementation of Recursive Bayesian Decode
The MTM algorithm is a recursive Bayesian decode which

assumes a subject is reaching to one of M targets [10].
It is capable of incorporating delay neural activity with
peri-movement activity to estimate end effector trajectories.
The MTM algorithm is made up of two components. First,
for each target, a linear Gaussian state model is formed
that describes the probability of the arm being in state
~xt+1,m given ~xt,m, where t is a time index and m is an
index for each state model. The second component is a
single observation model, which describes the probability
of a neural observation, ~yt, given ~xt. These two models
are combined in a recursive manner for each time step to
calculate the state posteriors for each model (referred to as
the conditional state posteriors). Finally, the means of the
state posteriors are combined in a weighted average to form
a single state estimate.

In a real-time system, available calculation time is fixed.
The causal, off-line implementation of the MTM decode uses
Newton’s method to find the peak of each state posterior.
Newton’s method will not converge for all starting condi-
tions, and time constraints in a real-time system may not
permit for multiple attempts. The one-step prediction for
each model gives the optimal estimate for the conditional
state posterior when new neural observations cannot be
incorporated. In our implementation, when a single attempt
at Newton’s method fails to converge after 10 iterations, the
one-step prediction for each model is used as the conditional
state posterior.

As noted by Yu et al., the estimation of each conditional
state posterior can be carried out in parallel [10]. While
our real-time system did not support parallel processing, we
exploited this property to easily serialize the calculation of
each conditional state posterior into 8 sequential run-time
steps. While this introduced a fixed delay of 8 ms into the
output of the decode, the increased time for the computation
of each conditional state posterior was necessary to avoid
overloading the CPU of the real-time PC.

The development of the MTM signal analysis module was
greatly facilitated by the use of embedded Matlab functions,
which allowed for the reuse of much of the existing MTM
code base. These embedded Matlab functions accounted for
the bulk of the code in the signal analysis module. A C-
coded S-Function was used to apply lags to each channel in
the peri-movement spike counting. Native Simulink blocks
were used for signal routing and the final conditioning of the
decoded output for interface with controls. The details of the
real-time MTM implementation are shown in figure 3.

Fig. 4. Delayed center out reach task. A: The task began with a central hold
period during which the primate touched a central target and maintained eye
fixation on a cross hair. The target (one of eight) was then presented, but
the primate was not yet permitted to reach for the target. After a pseudo-
randomly chosen delay period, the central target and cross hair disappeared,
central fixation was no longer enforced, and the primate reached for the
target. Upon reaching and maintaining contact with the target for a fixed
period of time, the animal was rewarded.

C. Datasets, Training and Testing

Datasets used in this study were previously reported in Yu
et al. [10]. The dataset was from a Rhesus Macaque (Macaca
mulatta) performing a delayed center out task, as illustrated
in Fig. 4. Recordings from 98 single and multi-units were
obtained from the right hemisphere dorsal premotor (PMd)
and motor (M1) cortex. Further description of the dataset
(monkey G in the original paper) can be found in [10].

The dataset contains 1456 trials, but only 1440 trials were
used to keep the number of trials to each target balanced (180
trials to each target). For each target, 18 trials were randomly
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Fig. 2. The core of the linear filter module as it was implemented in a signal analysis module in the VIE. Both spike data and channels carrying
synchronization as well as start and stop commands enter the module on the channel data signal bus. Each unit is given its own channel, and spikes are
represented as impulses on this channel. All channels carrying spike data are selected from the bus and fed into the good unit selector, which passes only
the channels desired for use in the decode to a spike counting block. The spike counting block, Bin Spikes Synched to Signal, implements a circular
buffer to record the occurrence of spikes in the last tb seconds, where tb is the bin size. The number of spikes for each channel in this buffer is counted
every time an external synchronization pulse is received on the binPulses line. The output of the spike counting block is fed to the Linear Filter block
which estimates end effector position according to equation 1. The output of the decoded trajectory is passed through a linear transformation in the State
Vector To Coordinates block so that the decoded trajectory can be scaled and shifted as desired. Along with pulses to synchronize the decode, start and
stop pulses are among the incoming channels. These are fed to the Enable Latch block to produce an enable signal. The enable signal and the scaled and
shifted estimate of instantaneous end effector position are fed to the Enable Signal Integration block, which passes through the estimate of end effector
position if the enable signal is high. If the enable signal is low, the desired resting position of the end effector is passed. Finally, the output of the Enable
Signal Integration block is fed to the Action Outputs block which formats the decoded output appropriately to match the interface to the controls block.

Fig. 3. The core of the mixture of trajectory models algorithm as it was implemented in a signal analysis module in the VIE. The channel data bus contains
both spike channels as well as channels for the synchronization of the decode. The synchronization channels (for delay onset, start of peri-movement decode
and finish of peri-movement decode) are fed to the State Latch module which produces a signal that is high during the delay period and a second signal
that is high during the time of arm movement. The neural data is fed to the plan portion of the decode and the peri-movement portion of the decode. The
plan portion of the decode is implemented in the Plan Decode block. This block bins spikes at a given offset from the onset of the delay enable signal and
estimates the prior probability of moving to each target as described in the original MTM paper [10]. The neural activity is also fed to the Peri-Movement
Spike Count block, which applies fixed time delays (determined as the optimal lags for each unit during training) to each channel and counts the spikes
in successive bins. These spike counts, along with the prior probability of reaching to each goal, are fed to the MTM Core Serial Tasking block. This
block performs a one step prediction for the state vector of each model and then uses the results of the one step prediction and the latest peri-movement
spike count to estimate the mean and covariance matrices of the conditional state posterior probability density functions for each model. The final step
in the MTM Core Serial Tasking block is a weighted average of the conditional state posterior mean vectors to form an estimate of the state vector. The
state vector contains terms for the components of position, speed and acceleration as well as position and speed magnitudes. The Get 2-D Trajectory block
selects only the position components and passes those to the Scale and Shift Trajectory block. After the desired scale and shift has been applied to the
decoded trajectory, it is formatted by the Trajectory to Action block to conform to the controls block interface.

selected to form a test set, and the remaining trials were used
for training.

Using a custom Matlab function, the datasets were con-
verted from Stanford’s unique format to the Common Neural
Raw Format (CNRF) [9]. This permitted the development
of off-line training functions which were not tied to a lab
specific data format but could be reused in the future for

any center out task data stored in CNRF. These training
functions were written as Matlab functions, and they saved
all relevant trained parameters to structures that were used
by the corresponding VIE signal analysis modules during
testing. For testing in the VIE, the CNRF data was converted
to Common Neural Simulink Format (CNSF), a format
designed for streaming in simulation. All testing was carried

630



out on a PC with a 3.6 Ghz Pentium 4 processor running
xPC Target real-time kernel.

III. RESULTS

The implemented modules were placed in complete VIE
models configured as described in section II and real-time
code was generated. The on-line trajectories produced by the
VIE decode were recorded and compared to those produced
off-line in Matlab. The off-line and on-line decoded trajec-
tories for both algorithms (Fig. 5) matched exactly1. While
no additional constraints were placed on the VIE implemen-
tation of the linear filter, the real-time implementation of the
MTM algorithm limited the number of iterations of New-
ton’s method used in the estimation of the conditional state
posteriors. The perfect correspondence of the two decodes
thus implies that the real-time implementation of Newton’s
method always reached convergence — despite the additional
constraints. Further analysis confirms this; convergence was
reached on average with 2.9 (+/- .4) iterations of Newton’s
method and at no point were more than 5 iterations necessary
to reach convergence. This demonstrates that despite the
significant complexity of the MTM algorithm, it is possible
to run this algorithm in a real-time system such as the VIE.

Along with the real-time behavior of the decodes, the
computational expense associated with each decode was
quantified. To estimate the processing power requirements
of each decode, the mean and max percent use of available
execution time (ET) were calculated2. In considering a real-
time system, both measures are important. The max percent
use of available ET indicates how much processing power
is available for other processes, irrespective of how they
are synchronized with the neural decode. The mean is an
indicator of the amount of ET available to other processes
that are synchronized with the neural decode in a manner that
prevents the parallel processing of computationally intense
calculations. By both measures, the MTM decode was an
order of magnitude more computationally intensive than the
linear filter (Fig. 6). For both algorithms, the max percent
use of available ET was significantly higher than the mean.
The spread between the mean and max for both algorithms
results from large periods of relatively low activity (simply
binning spikes or waiting between the delay decode and peri-
movement decode for the MTM algorithm) interspersed with
computationally intensive periods where estimates of end
effector position are actually performed.

To assess the relative impact of Newton’s method on the
real-time computational burden of the VIE MTM algorithm,

1A fixed delay was accounted for in the comparison of the results of the
real-time MTM decode with the off-line results

2The percent use of available execution time (ET) at the ith time step, pi,
was calculated as: pi = di−ri

ai−ri
. The time required to compute all necessary

calculations for the VIE as a whole at each time step is referred to as the
Time of Execution (TET). Here, di is the TET for the VIE when the signal
analysis module is running the implemented algorithm. The variable ri is
the TET for VIE configuration that uses an empty signal analysis module
but is otherwise identical to the configuration of the VIE which employed
the algorithm. Finally, ai is the fundamental step size at which the VIE
runs (1 ms), which can be considered the total time available to perform all
necessary VIE calculations.

Fig. 5. A representative trial to each target for the linear filter (A) and
MTM (B) decodes. The actual trajectory (black) is plotted to each target.
The results of the off-line decode performed using Matlab code are shown
(orange boxes for all targets). The results of the on-line decode are plotted
as dots, connected with thin lines and color coded to the target presented
during the trial. Panel C shows the results of the MTM decode when the
use of Newton’s method is constrained to a max of 2 iterations.
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a linear fit between the number of iterations of Newton’s
method and the percent use of available ET was performed.
The calculated R-squared value for the fit was .98. No other
processes in the real-time implementation of the VIE are
believed to be correlated with the number of iterations in
Newton’s method, and this is a strong indicator that the
number of iterations in Newton’s method is the primary
driver of max percent use of available ET.

To simulate the behavior of the current VIE implemen-
tation of the MTM decode in more resource constrained
systems, the maximum number of iterations for Newton’s
method was set arbitrarily low to 2. This prevented Newton’s
method from converging at many time steps, and hence,
the results of the one-step prediction were used in place of
the conditional state posteriors for these time steps. These
trajectories were directed toward the correct target but were
shortened in comparison to the trajectories decoded off-line
(Fig. 5).

Fig. 6. The mean and max percent use of available execution (ET) time
for the MTM and linear filter algorithms. The mean available ET for each
measure was nearly identical (999.2 ±.9 µs and 999 ±1 µs the for MTM
and the linear filter algorithms, respectively).

IV. DISCUSSION
In this paper, the implementation of a linear filter and

recursive Bayesian decode in a signal analysis module of a
Virtual Integration Environment (VIE) have been presented.
The real-time estimated trajectories produced by these two
algorithms matched exactly those produced with off-line
Matlab code. While linear filters similar to that presented
here have been implemented for real-time use before [12],
[13], this is the first real-time implementation of the MTM
decode— a sophisticated decode algorithm with computa-
tional requirements an order of magnitude greater than those
of the linear filter.

A key step in the MTM algorithm is the estimation of
the conditional state posteriors, which involves the com-
putationally intense application of Newton’s method. The
convergence of Newton’s method for the particular dataset
used in this study by no means guarantees that the real-time
decode will converge in 10 iterations or less for all data
sets. Additionally, if the MTM decode is to be implemented
in a more resource constrained system, the probability of
reaching convergence for each conditional state posterior
at all time steps will be significantly less. While more
study of alternative methods of finding the peak of the state

posteriors is needed, this paper presents evidence that using
the results of the one-step prediction may be an acceptable
method of progressing through time steps when the peak of
a conditional state posterior can not be found.

The neural decode algorithms presented here can be easily
incorporated into a complete closed-loop experimental sys-
tem. The input and output of each block conforms to standard
interfaces. The input module used in the current work to read
from file in real-time could be switched out for one which
receives data from a data acquisition system such as Cerebus
or Plexon. Similarly, the output of each algorithm could be
fed to an appropriate controls block to actuate a desired end
effector— whether it be a computer cursor or robotic arm.
These decode algorithms could thus be used in a “plug-and-
play” fashion in a variety of experimental configurations.

Decode algorithms with computational demands greater
than that of the MTM algorithm, which at max only loaded
the real-time PC to 30%, can be implemented for real-
time use in the VIE. Pertaining to this work directly, in
the future, a state decode to autonomously estimate when
a subject is planning and making a movement could be
implemented in parallel with the MTM algorithm and the
real-time performance of this complete system profiled [14],
[15].

The use of the VIE among research institutions would
increase the feasibility of sharing previously published work
with little duplication of effort. An institution using the VIE
which desires to use a signal analysis module developed at
another institution has only to acquire it in order to begin
using it in real-time decodes. Code for off-line training, in
preparation for on-line decoding, can also be shared among
institutions if the off-line training functions are written to use
CNRF data. The direct, real-time, closed-loop comparison
of algorithms against each other can be accomplished more
readily as the overhead of implementing algorithms for an
institution’s specific system is removed by the availability
of previously verified and validated signal analysis modules
that can be used directly in the VIE.

As the field of neural prosthetics continues to grow, the
need to directly compare decode algorithms against one
another in a real-time, closed-loop manner will only increase.
The implementation of algorithms in the VIE provides an
efficient path for their real-time implementation and a means
of sharing that work with others. Additionally, the modular
nature of the VIE, providing standard interfaces to methods
of acquiring signals and realizing intent, allows it to serve
it a general framework that can be used in a variety of
settings. We expect that these properties will render the
VIE an enabling piece of technology in the field of systems
neuroscience.
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