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Abstract—Neural prostheses that extract signals directly from
cortical neurons have recently become feasible as assistive tech-
nologies for tetraplegic individuals. Significant effort toward im-
proving the performance of these systems is now warranted. A
simple technique that can improve prosthesis performance is to ac-
count for the direction of gaze in the operation of the prosthesis.
This proposal stems from recent discoveries that the direction of
gaze influences neural activity in several areas that are commonly
targeted for electrode implantation in neural prosthetics. Here, we
first demonstrate that neural prosthesis performance does improve
when eye position is taken into account. We then show that eye po-
sition can be estimated directly from neural activity, and thus per-
formance gains can be realized even without a device that tracks
eye position.

Index Terms—Brain–machine interface, monkey, multielec-
trode, neural prosthetics, premotor cortex.

I. INTRODUCTION

BRAIN–COMPUTER interfaces that use action potentials
recorded from single neurons in the cerebral cortex can

now provide limited motor function to paralyzed individuals
[1]. To justify the surgical risk of implanting a neural pros-
thesis, systems must be developed that perform well enough that
a human user can control them with reasonable accuracy and
speed. To this end, a high performance neural prosthesis was
recently demonstrated in nonhuman primates [2].
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We sought to further improve the performance and
ease-of-use of neural prostheses. New discoveries about
the normal function of the brain areas targeted by prostheses
can be used to engineer better systems. We and others recently
observed that the direction of gaze influences spatial tuning
in the dorsal aspect of the premotor cortex (PMd) [3]–[5], an
area known to be involved in reaching [6] and often targeted
in prosthetics applications [2], [7]. This paper demonstrates
that the accuracy in decoding the desired endpoint from a
population of PMd neurons is enhanced when eye position is
accounted for by the prosthesis.

Three operating modes for a neural prosthesis are compared.
In all three modes, a neural prosthetic decoder is initially trained
to associate particular patterns of activity in a population of neu-
rons with the endpoints of intended reaches. Then, the decoder
is tested by assessing whether it can accurately estimate the in-
tended reach goal from a novel pattern of neural activity. The
three operating modes are distinguished by the manner in which
they treat eye position. In operating mode I, eye position is ig-
nored. This reproduces the most common usage of neural pros-
theses to date. In operating mode II, eye position is instructed to
be consistent between training and testing of the decoder. In op-
erating mode III, eye position is instructed during training, but
need not be constrained during testing. Instead, eye position is
estimated from neural activity, along with target location.

The three operating modes correspond to approaches that
might be adopted in a clinical setting. (Training and testing a
neural prosthetics algorithm in the laboratory is analogous to
calibration and use of a prosthesis in a clinical context.) In the
clinical counterpart to operating mode I, eye position is ignored.
In the clinical counterpart to operating mode II, eye position
is measured via eye tracking glasses during both calibration
and use of the prosthesis. In operating mode III, eye position is
measured during calibration, but is not tracked during use of
the prosthesis. Instead, eye position is estimated from neural
activity, and its influence is accounted for algorithmically.

We report here that accuracy in estimating intended reach
endpoint is improved in both operating modes II and III, com-
pared to operating mode I. A brief report of this work has ap-
peared [8].

II. METHODS

A. Behavioral Task

Two adult male Rhesus monkeys (Macaca mulatta, desig-
nated G and H) were trained to perform a delayed reach task
(Fig. 1). The animals sat facing a large frontoparallel screen po-
sitioned just within arm’s reach (27 cm from the eyes), with the
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Fig. 1. Behavioral task. (A) Sketch of the monkey performing the task. (B) Delayed reach task timeline. (C) Spatial aspects of the task. Note the numbering
scheme for the four start configurations (i–iv) and the ten targets (1–10).

head restrained. Hand position and eye position were tracked
using infrared sensors (hand position tracked using the Polaris
system, NDI, Waterloo, ON, Canada; eye position tracked using
the Iscan system, Iscan, Inc., Burlington, MA.) Each trial began
with the appearance of a touch point (which instructed the initial
position of the contralateral hand) and a fixation point (which in-
structed the direction of gaze). The locations of the touch and
fixation points constitute our main experimental manipulation;
they are described in more detail in the next paragraph. Four
hundred milliseconds later, a target appeared at one of ten pe-
ripheral locations (target locations were arranged in two rows
of five targets, subtending on average of visual angle.)
After a delay period of variable duration (750–950 ms), the fix-
ation and touch points were extinguished as a “go” cue, which
instructed the monkey to reach to the target. The animal was
also free to move his eyes after the go cue. Successful reaches
were rewarded during the intertrial interval. All 40 trial con-
ditions (ten targets x four start configurations) were randomly
interleaved, and 26 (monkey G) or 16 (monkey H) successful
repetitions were attained per condition.

Four different combinations of initial eye and hand position
(termed the start configuration) were instructed, so that we could
independently observe the influences of eye and hand position
on neural responses in PMd. Fig. 1(C) depicts the start config-
urations. For two of them (configurations i and ii), the initial
position of the hand is the same, but the eye position differs
(gaze is directed to the right in configuration i, and to the left
in configuration ii.) For the other two (configurations iii and iv)

the direction of gaze is the same, but the initial hand position
is either to the right (configuration iii) or to the left (configu-
ration iv). Reaches are performed to the same ten targets in all
four cases. Any differences in neural activity between configu-
rations i and ii must be due to the difference in the retinal lo-
cations of the targets, and/or the position of the eyes. Similarly,
differences in neural response between conditions iii and iv must
be due to the difference in the position of the targets relative to
the arm, and/or the posture of the arm. If eye and hand position
do affect neural activity, then a decoder will perform better if it
accounts for these influences. If a decoder ignores these influ-
ences, eye and hand position would constitute an unidentified
source of variability in the neural activity, which would hinder
decode accuracy.

B. Neural Recordings

An array of 96 electrodes (Cyberkinetics Neurotechnology
Systems, Inc., Foxborough, MA) was implanted in PMd.
Recordings were performed four (monkey G) and seven
(monkey H) months after implantation. For monkey G, indi-
vidual units were isolated using window discriminators during
experiments. For monkey H, neurons were identified with an
automated procedure [9], [10] summarized here. During the ex-
periment, the background noise on each channel was estimated.
Waveforms that exceeded 3 the root mean square of the noise
were saved to disk for sorting. Offline, the saved waveforms
were noise-whitened using a modified principal components
analysis. Clustering was performed using the expectation-
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maximization algorithm. As a final step, the outcome of the
algorithm was verified by eye, and only well-isolated single
unit isolations were included in the analysis. Sixty-four units
collected simultaneously were identified from monkey G, and
91 from monkey H.

C. Analysis

An offline neural prosthetic decode algorithm [2], [11]–[13]
was used to estimate target endpoint (and, for operating mode
III, start configuration) from the activity of the PMd popula-
tion. The algorithm consisted of two stages: In the first stage, a
model of the relationship between neural activity and behavior
is learned through training. In the second stage, the model is
tested by estimating behavior from neural activity, and com-
paring that estimate with the actual behavior. The training and
testing procedures are first described in general, then the spe-
cific procedures employed in each of the three operating modes
are detailed.

The data record used for each trial consisted of the task condi-
tion (target location and start configuration) and the population
neural response: the average number of action potentials during
a 500 ms interval from 250 ms after appearance of the target
till the time of the earliest go cue, for each neuron. We focused
our analysis on this delay period preceding the movement be-
cause the eyes and arm are not moving, so the reach target is at
a constant location relative to them, and because neural activity
during the delay period is correlated with reach endpoint [6].

The model of the relationship between neural activity in the
PMd population and task condition (target location and/or start
configuration; see below) was trained by assuming the spike
count during the delay period obeys a Poisson distribution. That
is

(1)

where is the spike count for the th neuron and is the task
condition. The maximum-likelihood estimate for each Poisson
parameter is the mean spike count for the th neuron in task
condition . Thus, training the model consisted of computing
the mean for each combination of neuron and task condition.

Each trial in the experimental dataset was set aside in turn to
serve as the test data. The decoder was trained using data from
all of the other trials. (To equalize the number of trials per task
condition in the training set, one trial was dropped at random
from each of the conditions to which the training trial did not
belong.) Then, the decoder was tested using the excluded trial.
This procedure, known as leave-one-out cross-validation, pro-
vides the largest possible training set without duplicates while
ensuring that test data are not included in the training data.

The model was tested by determining the task condition
that makes the observed spike counts most likely. That is

(2)

where the likelihood is given in (1) above.
The estimated task condition was compared to the actual task

condition, and scored as either correct or incorrect.

The decode algorithm was trained and tested in three different
operating modes. The modes differed only in how the 40 task
conditions were grouped. In operating mode I, the decoder was
trained to estimate target location, and initial eye and hand posi-
tion were ignored. All four start configurations were combined,
and 26 (monkey G) or 16 (monkey H) trials were selected at
random for each of the ten targets (about one quarter of trials
came from each start configuration). In operating mode II, the
decoder was also trained to estimate target location, but training
and testing were performed with a consistent eye and hand po-
sition. Four separate decodes were performed, one for each of
the four start configurations (all 26 or 16 repetitions were used
for each condition). In operating mode III, the decode algorithm
was trained to estimate start configuration as well as target lo-
cation. In this case, the decoder was trained using 40 separate
conditions (ten targets times four start configurations; all 26 or
16 trials were used for each condition). During testing in this
operating mode, the decode algorithm estimated both target lo-
cation and start configuration from the neural activity.

In a separate analysis, we trained the decode algorithm using
one start configuration, and then tested it using another start
configuration. This allowed us to separately quantify the con-
sequences of ignoring eye position and hand position. To mea-
sure the effect of ignoring eye position, the decoder was trained
using configuration and tested with configuration ii [and vice
versa; see Fig. 1(C)]. To measure the effect of ignoring hand po-
sition, the decoder was trained using configuration iii and tested
using configuration iv, and vice versa. This analysis was per-
formed alongside a neuron-dropping analysis. Subsets of the
neural population were selected (without replacement), and an-
alyzed in this manner. For each subset size, the neural selection
and analysis was repeated 25 times, to construct error bars. By
performing repeated draws, we ensure that spurious results due
to a random subset consisting of the most (or least) discrimi-
nating neurons did not bias the results.

III. RESULTS

A. Comparing Three Operating Modes for a Neural
Prosthetics System

We measured the performance of a neural prosthetic decode
algorithm in three distinct operating modes. Operating mode I
estimated the intended reach target while ignoring eye position
and initial hand position. Operating mode II estimated the in-
tended target using an eye and initial hand position that were
consistent between training and testing. In operating mode III,
the decoder was trained to estimate intended target location as
well as eye and initial hand position. Results for each of these
operating modes are described in turn.

In operating mode I, eye position and initial hand position are
ignored. This recreates the standard operating mode for most
current neural prosthetics systems: eye position is commonly
not monitored or accounted for in neural prosthetics (e.g., [1],
[7], [14]). Fig. 2(A) and (C) depicts the results of a neural pros-
thetic system used in this manner. The system exhibited reason-
able accuracy in estimating reach endpoint (45% correct for
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Fig. 2. Confusion matrices depict decode accuracy. (A), (C) Decode performance in operating mode I, when start configuration is ignored. (B), (D) Decode
performance in operating mode II, when start configuration is constrained between training and testing (results for the best of four start configurations tested are
shown). Panels A and B show data from monkey G; C and D are for monkey H. Within each panel, the same data are shown in two formats. Top: Ten subpanels
are arranged to correspond to the location of the ten targets on the screen. Each subpanel indicates decode performance when the actual target is at that relative
location. Within each subpanel, the ten targets are again represented at their relative locations. The grayscale indicates the number of trials for which that particular
combination of actual and decoded target occurred. Bottom: In this format, correctly decoded trials lie along the unity diagonal. Target-numbering scheme as
illustrated in Fig. 1(C).

monkey G [Fig. 2(A)], and 44% correct for monkey H
[Fig. 2(C)].

Operating mode II employs a consistent eye and hand posi-
tion between training and testing of the decoder. This resem-
bles the systems used in [2], [13], [15], wherein eye position is
held constant between training and use of the device. Fig. 2(B)
and (D) illustrates performance gains when eye position and ini-
tial hand position are matched between training and testing the
decoder. Performance increases dramatically (66% correct es-
timates of target on average across all four start configurations,
range 63%–73% for each start configuration for monkey G; for
monkey H, 59% correct on average, range 51%–66% correct.)
This indicates that a substantial improvement in decode accu-
racy is attainable (with the same number of training trials) if eye
position and initial hand position are matched between training
and testing the neural prosthetic system.

An ideal neural prosthetic system would incorporate the flexi-
bility of the first operating mode with the accuracy of the second
mode. We designed operating mode III to balance these specifi-

cations. In this operating mode, the start configuration (eye posi-
tion and initial hand position) is incorporated into the decode al-
gorithm during training. The decoder is trained to distinguish the
40 task conditions (ten targets times four start configurations).
Then, during testing, the decoder estimated both target loca-
tion and start configuration. Fig. 3 illustrates decode accuracy
in this operating mode. Percent correct performance was 48%
for monkey G and 47% for monkey H % . Target
alone was estimated correctly for 61% of trials for monkey G,
and 56% of trials for monkey H % . Start config-
uration alone was estimated correctly for 67% and 74% of the
trials for monkeys G and H % .

B. Distinguishing Impacts of Eye and Hand Position on
Decode Accuracy

The four start configurations differed systematically in the
position of both the eyes and the hand. By accounting for both of
these factors in operating mode II, decode accuracy improved,
in comparison to operating mode I. We compared the relative
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Fig. 3. Confusion matrices depicting decode accuracy in operating mode III, when the decoder must estimate both target location and start configuration. Hori-
zontal axis: the 40 different task conditions: ten targets for each of four start configurations. Vertical axis: the decoded target and start configuration, for each trial.
Grayscale indicates the number of trials where that combination of actual and decoded task conditions occurred.

importance of controlling eye and initial hand position for de-
code accuracy. As illustrated in Fig. 1(C), start configurations
i and ii differ from one another by eye position, but not initial
hand position. Start configurations iii and iv differ by initial hand
position, but not eye position. We measured the consequences
of ignoring eye position by training the decode algorithm using
start configuration i, then testing with configuration ii, and vice
versa. As a baseline, we trained and tested the decode algorithm
using the same start configuration. When training and testing
were performed using the same start configuration, decode accu-
racy was 68% and 60% correct, for the two animals (average for
start configurations i and ii.) When training and testing were per-
formed using different start configurations, accuracy dropped to
48% and 26% correct, on average [Fig. 4(A) and (C), rightmost
data points].

Using start configurations iii and iv, the influence of initial
hand position on decode accuracy was quantified. When the de-
code algorithm was trained and tested using the same start con-
figuration, average accuracy was 63% and 59% for the two mon-
keys. When training and testing were performed using different
start configurations, average accuracy was 25% and 28%, re-
spectively [Fig. 4(B) and (D), rightmost data points].

C. Effects of Neural Population Size

Perhaps the deleterious consequences for decode accuracy
of ignoring eye position could be mitigated by recording from
more neurons. To explore this, we conducted a neuron-dropping
analysis (Fig. 4). We conducted the analyses described in Re-
sults section B above for a range of neural population sizes. It
is evident in Fig. 4 that the trends described in section B for the
full population are also manifest in smaller population sizes. The
consequences of ignoring eye and hand position are fairly con-
sistent at least across the neural population sizes we could test.

IV. DISCUSSION

Recent neurophysiology studies show that the direction of
gaze influences neural activity in cortical areas commonly
targeted for neural prosthetics applications, including the dorsal
aspect of the premotor cortex (PMd) [3]–[5], and the parietal
cortex [4], [16], [17]. Most current neural prosthetic systems
do not account for the position of the user’s eyes. Here, we
demonstrate that prosthesis system performance can be im-
proved by incorporating the position of the eyes into the decode
algorithms. Furthermore, eye position need not be exogenously
measured: it can be estimated from neural activity along with
target location.

We conducted offline implementations of neural prostheses
operating in three modes. In operating mode I, eye position
and initial hand position were ignored. This recreates the usage
mode of many current neural prosthetics systems. This system
was about 45% accurate in estimating reach endpoint. While
this exceeds chance levels of 10%, overall decode accuracy is
lower than other systems described in the literature (e.g., [2],
[13]) presumably because in our study targets were not spaced
to maximize discriminability.

Operating mode II maintained a consistent set of eye posi-
tions and initial hand positions between training and testing the
device. Decode accuracy improved substantially in this usage
mode. This indicates that constraining or tracking eye position
can improve neural prosthesis performance. We propose two
clinical applications of this concept. First, in direct analogy to
operating mode II, patients can be instructed to direct gaze at
a consistent location when using their neural prosthesis, espe-
cially when precise control is desired. This location should be
the one where gaze was directed while the prosthesis was cal-
ibrated. Ideally, however, gaze and reaching would be disso-
ciable, as is the case for healthy human beings. A second clinical
approach to matching eye position during calibration and use
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Fig. 4. Consequences of ignoring either eye or hand position, and neuron-dropping analyses. Decode performance is measured for various neuron pool sizes.
Grey regions indicate the standard deviation of decode accuracy for 25 repeated draws of a subset of neurons (without replacement) from the full population. Note
that these error bars indicate the variability in decode accuracy due to repeated draws of random subsets of neurons; they should not be interpreted as confidence
ranges to the estimated decode accuracy. (A), (C) Consequences of ignoring eye position. Start configurations i and ii (which differ in eye position, see Fig. 1)
are compared. Four traces are shown. For two of them (solid and dotted curves), training and testing is performed using the same start configuration. For the other
two (dashed and dot-dashed), training is performed with start configuration i or ii, and testing is performed with the other start configuration. The drop in the
percentage of trials correctly decoded exhibits the effect of ignoring eye position. (B), (D) Consequences of ignoring hand position. Start configurations iii and
iv are compared. Four traces are shown. For two of them (solid and dotted), training and testing is performed using the same start configuration. For the other
two (dashed and dot-dashed), training is performed with start configuration iii or iv, and testing is performed using data from the other start configuration. This
exhibits the decrement in decode accuracy due to ignoring hand position. (A), (B) monkey G. (C), (D) monkey H.

of a prosthesis is to measure eye position with an eye tracking
system. The eye position can be supplied to the decode algo-
rithm along with neural data to determine the intended move-
ment more accurately. While the system is being calibrated,
a range of fixation positions should be instructed, to span the
range of gaze directions the user is likely to perform. Then,
during use of the prosthesis, eye position can be unconstrained,
as long as it is tracked.

Operating mode III was designed to combine the accuracy of
operating mode II with the flexibility of operating mode I. In
this operating mode, some performance gains can be achieved
even if eye position is not tracked during use of the system. PMd
neural populations convey information about the direction of
gaze; thus, if patients are instructed to look at a range of fixation
positions while forming reach plans during training, then during
use of the system, information can be extracted from PMd about
both the intended direction of movement, and also the direction
of gaze. Although accuracy will not be as high as when eye
position is exogenously tracked, it should improve over existing

systems where eye position is not considered at all. The key
intuition is, if while using the prosthesis the patient directs gaze
at a location where he or she never gazed during calibration,
a pattern of neural activity will occur in PMd that was never
presented to the decode algorithm during training, even if the
intended target location did appear during training. It will be
less likely for the desired target to be correctly decoded from
this unfamiliar pattern of activity.

Note that the third operating mode utilized more training
trials overall than did the first operating mode (Twenty six or
16 repetitions for 40 conditions were used in operating mode
III, versus 26 or 16 repetitions for ten conditions in operating
mode I.) In most clinical situations, it is probably feasible to
devote additional time to calibrate a neural prosthesis using a
range of eye positions.

We directly compared the consequences of ignoring eye posi-
tion and initial hand position on decode accuracy. The effects of
ignoring hand position were strong [39% and 31% decrements
in performance for the two animals compared to when hand po-
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sition is not ignored; Fig. 4(B) and (D)]. This is to be expected:
since PMd is involved in reaching, it is reasonable that it con-
veys information about the position of the hand. However, the
effects of ignoring eye position were comparably strong (for the
two animals, 20% and 34% decrements in performance resulted
from ignoring eye position.) This is perhaps surprising in an area
as close to the motor periphery as is PMd [18], but is consistent
with recent neurophysiological findings in PMd [3]–[5].

In intact animal subjects, neural activity in PMd is correlated
with arm position [19], [20]. Patients in need of a neural pros-
thesis will lack a sensory representation of the arm’s position.
The absent or inaccurate signal about arm position will have un-
known effects on neural responses in PMd, and may impair pros-
thesis performance [cf. Fig. 4(B) and (D)]. This concern is mag-
nified by a recent report demonstrating that neurons in a portion
of PMd rostral to our recording sites employ a reference frame
defined by the combined position of the eyes and hand [4]. If
eye and hand position are not independent, the best achievable
accuracy of a neural prosthesis based on PMd signals in am-
putees or paralyzed individuals might be limited. Fortunately,
we observed a subpopulation of neurons within PMd that en-
code reach goals relative to the eyes only, and are unaffected by
the position of the hand [3], [5]. These cells could sustain an ac-
curate encoding of target location, even in the face of absent or
variable signals about arm position.

Perhaps by recording from more neurons, the consequences
of ignoring eye position can be overcome. To explore this idea,
we conducted a neuron-dropping analysis (Fig. 4). We found
that across a range of neuron pool sizes, the consequences of ig-
noring eye position are comparable. These curves suggest that
even with larger neural populations beyond the size we were
able to record here, the influence of eye position may persist.
Thus, ignoring eye position, even for any population size of pre-
motor or parietal neurons, is likely to be detrimental to pros-
thesis performance.

A limitation to the system proposed here is that eye position
must remain stable while the reach is being planned. Natural
saccades are spaced by a dwell time of several hundred mil-
liseconds, so the 500 ms integration window we employed in
this study is not dramatically longer than what occurs naturally.
However, this window could be shortened without sacrificing
much accuracy, especially if more neurons were available [2].
The period of fixation between saccades could define the neural
integration window over which target location is computed.

In our experiments, we held head position constant. Head
position may also influence neurons involved in controlling
reaches. If so, it could potentially also be estimated from
neural activity. This would allow both eye and head position
to be unconstrained, providing a prosthetic system that is both
accurate and easy to use.

Although this study focuses on the premotor cortex, we an-
ticipate that neural prostheses that extract signals from many
cortical regions will benefit from monitoring eye position. It is
known that neurons in the Parietal Reach Region and area 5 of
the parietal lobe—other cortical fields that have been success-
fully targeted for neural prostheses—are modulated by the di-
rection of gaze [4], [16], [17]. Possibly, primary motor cortex
may also exhibit an influence of the direction of gaze (albeit

we anticipate weaker than that observed in premotor cortex.)
Thus, estimating eye position from neural responses affords a
simple adjustment to neural prosthesis decode algorithms that
will probably enhance the performance of any neural prosthesis
that extracts signals from cortical neurons.
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