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We show that the coarse-grained and fine-grained localization problems for ad hoc sensor networks
can be posed and solved as a pattern recognition problem using kernel methods from statistical
learning theory. This stems from an observation that the kernel function, which is a similarity
measure critical to the effectiveness of a kernel-based learning algorithm, can be naturally defined
in terms of the matrix of signal strengths received by the sensors. Thus we work in the natural
coordinate system provided by the physical devices. This not only allows us to sidestep the difficult
ranging procedure required by many existing localization algorithms in the literature, but also
enables us to derive a simple and effective localization algorithm. The algorithm is particularly
suitable for networks with densely distributed sensors, most of whose locations are unknown. The
computations are initially performed at the base sensors, and the computation cost depends only
on the number of base sensors. The localization step for each sensor of unknown location is then
performed locally in linear time. We present an analysis of the localization error bounds, and provide
an evaluation of our algorithm on both simulated and real sensor networks.

Categories and Subject Descriptors: C.2.1 [Computer Communications Networks]: Network
Architecture and Design—Network communications, Distributed networks; 1.5.4 [Pattern
Recognition]: Applications

General Terms: Algorithms

Additional Key Words and Phrases: Ad hoc wireless sensor networks, localization, kernel methods,
statistical machine learning, position estimation

1. INTRODUCTION

A sensor network can be viewed as a distributed pattern recognition device. In
the pattern recognition approach, rather than transforming sensor locations
and sensor readings into Euclidean, world-centric coordinates, we work di-
rectly with the (non-Euclidean) coordinate system given by the physical sensor
readings themselves. Using the methodology of “kernel functions,” the topology
implicit in sets of sensor readings can be exploited in the construction of signal-
based function spaces that are useful for the prediction of various extrinsic
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quantities of interest, using any of a variety of statistical algorithms for regres-
sion and classification. In the current article, we illustrate this approach in the
setting of a localization problem [Hightower and Borriello 2000; Bulusu et al.
2000; Savarese et al. 2002].

The localization problem that we study is that of determining the location of
a (large) number of sensors of unknown location, based on the known location

of a (small) number of base sensors. Let X1, ..., X,, denote a set of m sensors,
and let x; denote the position in R? of sensor X ;. Suppose that the locations of
the first n sensors are known, that is, X1 = x1,... ,X, = x,, where n <« m.
We want to recover the positions of X,.1,...,X,, solely on the basis of the

receive/transmit signals s(x;, x;) between pairs of sensors.

An important characteristic of radio or light signal strength is the relation-
ship of the signal attenuation as a function of distance [Seidel and Rappaport
1992]. For instance, for radio signals in an idealized environment, given that
the sending and receiving antennas are focused on the same radio frequency,
we have

sx Pd™", @8]

where n > 2 is a constant, and P is the sending signal voltage. Such relation-
ships provide the basis for a variety of localization algorithms in the literature
which consist of two main steps: (1) a ranging procedure which involves estimat-
ing the distance from a sensor to another sensor based on the signal strength
of the signals transmitted/received between the two, and (2) a procedure that
recovers the locations of the sensors based on their pairwise distance estimates
either by triangulation or by least-squares methods [Priyantha et al. 2000;
Girod and Estrin 2001; Savvides et al. 2001; Whitehouse 2002]. Unfortunately,
however, the idealized model in Eq. (1) can be highly inaccurate due to vari-
ability caused by multipath effects and ambient noise interference as well as
device-specific factors such as the frequencies of node radios, physical antenna
orientation, and fluctuations in the power source [Bulusu et al. 2000; Priyantha
et al. 2000]. Methods based on ranging inherit these inaccuracies, and improve-
ments are possible only if difficult problems in signal modeling are addressed.

In this article, we propose a method that bypasses the ranging step alto-
gether. We show that it is possible to pose a coarse-grained localization problem
as a discriminative classification problem that can be solved using tools from
the statistical machine learning literature. Fine-grained localization is then
achieved by a second application of the coarse-grained localization technique.
Our localization algorithm thus involves two phases. First, there is a training
phase that chooses discriminant functions for classifying positions using arbi-
trarily constructed target regions. This phase is performed either online at the
base stations, or taken offline, and takes O(n?) computational time, where n
is the number of base sensors. Hence, our assumption is that the base sensors
have sufficient power and processing capability (indeed, these are also the nodes
that might have GPS-capability to determine their own exact locations). Second,
once the training phase is completed, other location-unknown low-power sen-
sors can determine their own position locally, and the computation takes only
O(n) time for each of these sensors.
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Our approach makes use of kernel methods for statistical classification and
regression [Scholkopf and Smola 2002], an example of which is the “support
vector machine (SVM).” Central to this approach is the notion of a kernel func-
tion which provides a generalized measure of similarity for any pair of entities
(e.g., sensor locations). The functions that are output by the SVM and other
kernel methods are sums of kernel functions, with the number of terms in
the sum equal to the number of data points. Kernel methods are examples of
nonparametric statistical procedures—procedures that aim to capture large,
open-ended classes of functions.

Kernel functions typically used in practice include Gaussian kernels and
polynomial kernels. A technical requirement of these functions is that they
are positive semidefinite which is equivalent to the requirement that the n x n
Gram matrix formed by evaluating the kernel on all pairs of n data points is
a positive semidefinite matrix. Intuitively, this requirement allows a kernel
function to be interpreted as a generalized measure of similarity. The kernel
function imposes a topology on the data points which is assumed to be useful
for the prediction of extrinsic quantities such as classification labels.

Given that the raw signal readings in a sensor network implicitly capture
topological relations among the sensors, kernel methods would seem to be par-
ticularly natural in the sensor network setting. In the simplest case, the signal
strength would itself be a kernel function and the signal matrix (s(x;, x;));;
would be a positive semidefinite matrix. Alternatively, the matrix may be well
approximated by a positive semidefinite matrix (e.g., a simple transformation
that symmetrizes the signal matrix and adds a scaled identity matrix may be
sufficient). More generally, and more realistically, derived kernels can be de-
fined based on the signal matrix. In particular, inner products between vectors
of received signal strengths necessarily define a positive semidefinite matrix
and can be used in kernel methods. Alternatively, generalized inner products
of these vectors can be computed—this simply involves the use of higher-level
kernels whose arguments are transformations induced by lower-level kernels.
In general, hierarchies of kernels can be defined to convert the initial topol-
ogy provided by the raw sensor readings into a topology more appropriate for
the classification or regression task at hand. This can be done with little or no
knowledge of the physical sensor model.

Our focus is on the discriminative classification problem of locating sensors
in an ad hoc sensor network. It is worth noting that similar methods have been
explored recently in the context of tracking one or more objects (e.g., mobile
robots) that move through a wireless sensor field.! Systems of this type in-
clude Active Badge [Want et al. 1992; Ward et al. 1997], RADAR [Bahl and
Padmanabhan 2000], Cricket [Priyantha et al. 2000], and UW-CSP [Li et al.
2002]. In Bahl and Padmanabhan [2000], the authors describe a simple near-
est neighbor classification algorithm to obtain coarse localization of objects.

1The alternative to discriminative classification is classification using generative probabilistic mod-
els. This is a well-explored area that dates back to contributors such as Wiener and Kalman [Poor
1994]. Recent work in this vein focuses on the distributed and power-constrained setting of wireless
sensor networks (e.g. Sheng and Hu [2003]; D’Costa and Sayeed [2003]).
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Most closely related to our approach is the work of Li et al. [2002] in which a
number of classification algorithms are used for tracking moving vehicles, in-
cluding k-nearest neighbor and support vector machines. We elaborate on the
connections between this work and ours in the description of our algorithm.

The article is organized as follows. We begin with a brief background of clas-
sification using kernel methods, and motivate our application of kernel methods
to the localization problem based on sensor signal strength. Next, the localiza-
tion algorithm and its error analysis are described. We then present details of
the implementation of the algorithm and its computational cost, followed by an
evaluation of our algorithm with simulated and real sensor networks. Finally,
we present our conclusions in the final section.

2. CLASSIFICATION USING KERNEL METHODS

In a classification algorithm, we are given as training data n samples (x;, y;)"_;
in X x {1}, where X denotes the input space. Each y; specifies whether the
data point x, € X liesin a class C € X (y; = 1) or not (y; = —1). A classifi-
cation algorithm involves finding a discriminant function y = sign(f(x)) that
minimizes the classification error P(Y # sign(f(X))).

Central to a kernel-based classification algorithm (e.g., the SVM) is the notion
of a kernel function K (x, x’) that provides a measure of similarity between two
data points x and x’ in X. Technically, K is required to be a symmetric positive
semidefinite function.? For such a function, Mercer’s theorem implies that there
must exist a feature space H in which K acts as an inner product, that is,
K(x,x') = (®(x), P(x')) for some mapping ®(x). The SVM and related kernel-
based algorithms choose a linear function f(x) = (w, ®(x)) in this feature space.
That is, they find a vector w which minimizes the loss

iéb(yif(xi))

i=1

subject to ||w|| < B for some constant B. Here ¢ denotes a convex function that
is an upper bound on the 0-1 loss I(y # sign(f(x))).? In particular, the SVM al-
gorithm is based on the hinge loss ¢(y f (x)) = (1— y f(x)),.* By the Representer
Theorem (cf. Scholkopf and Smola [2002]), it turns out that the minimizing f
can be expressed directly in terms of the kernel function K

f@) =Y aK(x;,x) (2)
i=1

for an optimizing choice of coefficients «;.
There are a large number of kernel functions that satisfy the positive
semidefinite property required by the SVM algorithm. Examples include

2For a translation-invariant kernel, that is, K (x, x') = h(x — x’) for some function 4, K is a positive
semidefinite kernel if the Fourier transform of % is nonnegative.

3The indicator function is defined as I(A) = 1 if A is true, and 0 otherwise.

4The subscript + notation means that x, = max(x, 0).
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the Gaussian kernel,
K (x,2) = exp —(lx — x'||/0),
as well as the polynomial kernel,
K(x,x") =y +lx —x'ID”7,

for parameters o and y. Both of these kernel functions decay with respect to the
distance ||x — x’||, a property that is shared by most idealized signal strength
models. In particular, the radio signal model (1) has a form similar to that
of a polynomial kernel. In Sheng and Hu [2003], the authors justify the use
of an acoustic energy model for localization that has the form of the Gaussian
kernel. These relationships suggest a basic connection between kernel methods
and sensor networks. In particular, a naive usage of kernel methods could be
envisaged in which signal strength is used directly to define a kernel function.
In general, however, signal strength in real sensor networks need not define a
positive semidefinite function. Nonetheless, it is the premise of this article that
signal strength matrices provide a useful starting point for defining kernel-
based discriminant functions. We show how to define derived kernels which
are stacked on top of signal strength measurements in the following section.

Finally, it is worth noting that multimodal signals are naturally accommo-
dated within the kernel framework. Indeed, suppose that we have D types of
sensory signals, each of which can be used to define a kernel function K;(x, x’)
for d = 1,...,D. Then any conic combination of K; yields a new positive
semidefinite function:

D
Kx,x) =) BaKalx,x.
d=1

There are methods for choosing the parameters 8; > 0 based on empirical
data [Lanckriet et al. 2004].

3. LOCALIZATION IN AD HOC SENSOR NETWORK

3.1 Problem Statement

We assume that a large number of sensors are deployed in a geographical area.
The input to our algorithm is a set of m sensors, denoted by X.,..., X,,. For
each i, we denote by x; the position in R? of sensor X ;. Suppose that the first n
sensor locations are known, that is, X1 = x1,..., X, = x,,, where n < m. For
every pair of sensors X; and X ;, we are given the signal s(x;, x;) that sensor
X j receives from X;. We want to recover the positions of X, ;1,..., X .

3.2 Algorithm Description

We first aim to obtain a coarse location estimate for X,,1,..., X,,. Given an
arbitrarily constructed region C € R?, we ask whether X; € C or not, for i =
n+1,...,m. This can be readily formulated as a classification problem. Indeed,
since the location of the base sensors X1, ..., X,, are known, we know whether
or not each of these base sensors are in C. Hence we have as our training data
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n pairs (x;, y; = sign(x; € C))7_,. For any sensor X ;, j =n+1,...,m, we can
predict whether X ; € C or not based on the sign of the discriminant function

fx)):

fla) =) oiKxi,x)). (3)

i=1

We emphasize that the value of f(x ;) is known because the values of the kernels,
K (x;,x;), are known despite the fact that we do not know the position x; per
se.

Next, we turn to the definition of the kernel matrix K = (K (x;, ;)1 <i,j <m.
In general, we envision a hierarchy of kernels based on the signal matrix. An
example of such a hierarchy follows.

(1) We might simply define K(x;,x;) = s(x;,x;). We call this naive choice a
first-tier kernel. If the signal matrix S = (s(x;, x;))1<i,j <m is a symmetric
positive semidefinite Gram matrix, then this approach is mathematically
correct although it may not yield optimal performance. If S is not symmetric
positive semidefinite, then a possible approximation is (S + S7)/2 + §1.
This matrix is symmetric and is positive semidefinite for sufficiently large
8 > 0 (in particular, for § larger in absolute value than the most negative
eigenvalue of (S + S7)/2).

(2) Alternatively, define K = ST S to be refered to as a second-tier linear kernel.
K is always symmetric positive semidefinite. This kernel can be interpreted
as an inner product for a feature space H which is spanned by vectors of
the form:

®(x) = (s(x, x1), s(x, x2), ..., s(x, x,)).

Specifically, we define
m
K(xi,) =Y sy, 2)s(x, ).
t=1
Intuitively, the idea is that sensors that are associated with similar vectors
of sensor readings are likely to be nearby in space.

(3) Finally, it is also possible to evaluate any kernel function (e.g., Gaussian)
on the feature space H induced by the second-tier kernel. This yields a
symmetric positive semidefinite matrix to be refered to as a third-tier ker-
nel. Specifically, a third-tier Gaussian kernel has the following form, for a
parameter o:

K (xi,xj)

{ ||q>(xi)—<b(xj)||2}
exp{ —

o

o

e { (s ) — sy, )P }

Given training data (x;, y;)!_; and a kernel function K, we apply the SVM
algorithm to learn a discriminant function f(x) as in Eq. (2). The algorithmic
details and computational costs are discussed in Section 4.
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Our classification formulation has several noteworthy characteristics. First,
the training points correspond to the base sensors and thus may be limited
in number, making the learning problem nominally a difficult one. However,
because we are free to choose the target region C, the problem can in fact
be made easy. This ability to design the geometry of the boundary to fit the
geometry of the classifier distinguishes this problem from a traditional pattern
recognition problem.

The second characteristic is that we require that the network be relatively
dense. As seen in Eq. (3), the prediction of position is based on a sum over
sensors, and an accurate prediction can be achieved in general only if there are
enough nonzero terms in the sum for it to be statistically stable.

A related point is that it is not necessary that the network be completely
connected. If the sensor reading s(x;, x;) is generally small or zero for a pair
of sensors, then that term does not perturb the kernel calculation or the dis-
criminant calculation. If readings fluctuate between small values and large
nonzero values, then the prediction will generally be degraded. Given that the
approach is a statistical approach, however, with predictions based on an ag-
gregation over neighboring sensors, it should be expected to exhibit a certain
degree of robustness to fluctuations. This robustness should be enhanced by
the protocol for fine-grained estimation as we now discuss.

We turn to the fine-grained estimate of sensor positions. We use the coarse-
grained solution presented previously as a subroutine for a localization algo-
rithm for sensors X ;(j = n+1,...,m). Theideais as follows. We fix a number of
overlapping regions Cyz(8 = 1,..., U) in the geographical region containing the
sensor network. For each 8, we formulate a corresponding classification prob-
lem with respect to class Cy and predict whether or not X ; € Cs. Hence, X ; has
to be in the intersection of regions that contain it. We might, for example, assign
its location x; to be the centroid of such an intersection. Given an appropriate
choice of granularity and shapes for the regions Cj, if most of the classification
labels are correct, we expect to be able to obtain a good estimate of x ;.

As we have seen in our experiments on both simulated data (using a Gaussian
or polynomial kernel) and real sensor data (using kernels that are constructed
directly from the signal matrix), given a sufficient number of base sensors (i.e.,
training data points), the SVM algorithm can fit regions of arbitrary shape and
size with reasonable accuracy. When the number of base sensors is limited,
the SVM algorithm can still fit elliptic shapes very well. This can be turned
to our advantage for fine-grained localization. By picking appropriate regions
Cj such as ellipses that are easy to classify, we do not need many base sensors
to achieve reasonable localization performance for the entire network. In the
sequel, we will show that this intuition can be quantified to give an upper bound
on the expected (fine-grained) localization error with respect to the number of
base sensors.

3.3 Localization Error Analysis

Suppose that the sensor network of size L x L is covered uniformly by k2
discs with radius R. Then any given point in the sensor network is covered
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by approximately 7(Rk/L)? discs. Each of these discs are used to define the
region for a region classification problem. To obtain a fine-grained location es-
timate for all remaining sensors, X; for j = n+1,...,m, we need to solve
k? region classification problems. Let es be the training error for each of these
problems, for 8 =1, ..., k2. That is,

ep = Zqﬁ(sign(x,- € Cp) f(x;)).

i=1

Since the size and shape of the regions are ours to decide, it is reasonable to
assume that the training error for these classification problems are small. For
instance, the circle/elliptic shape is particularly suited for Gaussian or polyno-
mial kernels. Define ¢(R) to be the upper bound for all training errors
e(R)= max eg.
1<p<k?

From statistical learning theory [Vapnik 1998], for each g = 1,...,k2,
the probability of misclassification for each new sensor X ; and region Cy is
eg + O(1/y/n), where n is the number of training points (i.e., number of base
sensors). Since each location is covered by w R2k2/L? discs, the probability of
misclassification for at least one of these covering discs is, by the union bound,
less than ”1222""2 (e(R) + O(1/4/n)). If a given sensor is correctly classified with
respect to all of its covering discs then we assign the sensor’s location to be the
center of the intersection of all these discs in which case the localization error
is bounded by O(L/k).

Hence, the expectation of the localization error is bounded by

L R?k?
0 (%) + 5" (e(R) + 01/ y/n)).
k L
This asymptotic bound is minimized by letting 2 o« L2%3R2/3(e(R) +
0O(1//n))~Y/3. The bound then becomes O(L3R?/3(e(R) + O(1//n)'/3).

In summary, we have proved the following:

ProrosiTioN 3.1. Assume that all sensor locations are independently and
identically distributed according to an (unknown) distribution. For any sensor
location x, let & be the location estimate given by our algorithm, then.

Ellx — || < OLY3R?3(e(R) + O(1//n)'3).

This result has the following consequences for the expected variation of the
fine-grained localization error as a function of the parameters n (the number of
base sensors), R (the size of the discs), and %2 (the number of discs).

(1) The fine-grained localization error decreases as the sensor network becomes
more densely distributed (i.e., n increases). In addition, the localization
error increases with the size of the network, but this increase is at most
linear.

(2) The fine-grained localization error increases as R increases; on the other
hand, as R increases, the optimal value of £ decreases, resulting in a smaller
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computational cost because there are k2 discs to classify. Hence, variation
in R induces a trade-off between localization accuracy and computational
complexity.

(3) We would expect the localization error to increase at a rate O(R?/3) if e(R)
were to remain constant. However, as R increases, the length of the bound-
ary of the regions Cy also increases, and the training error ¢(R) is expected
to increase as well. As a result, we expect the localization error to actually
increase faster than O(R?/3).

Note that our analysis makes some simplifying assumptions—it assumes a
uniform distribution for the locations of regions Cg, and it assumes circular
shapes. While the analysis can be readily generalized to other specific choices,
it would be of substantial interest to develop a general optimization-theoretic
approach to the problem of choosing the regions.

4. ALGORITHM DETAILS AND COMPUTATIONAL COST

During the training phase associated with each coarse localization subroutine,
that is, classification with respect to a fixed region Cy, we construct the training
data set based on the locations of the base sensors as described in the previous
section. This is achieved by having all base stations send the signal matrix
entries s(x;,x;) and their known locations to a central station, a procedure
which involves receiving and storing n? + n numbers at the central station. The
central station then solves the following optimization problem:

~ 2 C N gy Fla
min ||wl|* + — ;qs(yl f Gxi),

where f(x) = (w,®x)), ¢(yfx) = (1 — yf(x);, and ¢ is a fixed
parameter.® This is a convex optimization problem, which has the following
dual form [Scholkopf and Smola 2002]:

max 220@— Z ooy y; K(x,x;). (4)
i—1

O<a=<c —
1<i,j<n

The algorithm finds optimizing values of {¢;} which are then used to form the
discriminant function in Eq. (2).

It is known that the solution to this optimization problem can be found in
the worst case in O(n?) computational time. Thus if there are k2 regions to clas-
sify, this result suggests a total training time of O(n3k2). However, this generic
worst-case estimate is overly conservative in our setting. Indeed, an estimate
based on the number of support vectors n; returned by each classification al-
gorithm (those X; such that o; # 0) reveals that the computational complexity
is O(n? + n2n) instead of O(n?). Usually n; < n. Our simulation experience
(to be presented in the next section) shows that when discs with radius R are
used, the support vectors reside mostly along the boundaries of the discs, hence

5The parameter c is a regularization parameter associated with the SVM algorithm. In all our
experiments, we fix ¢ = 10.
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Coarse localization algorithm

Input: X; = z; € R? for i = 1,...,n; signal matrix [s(zi,zj)]1<i,j<m Where n < m;
a region C' C R2.

Output: y; € {£1} for j=n+1,...,m.

(1) Fori=1,...,n,let y; =sign(z; € C).

(2) Define a positive semidefinite kernel matrix [K(z;,x;)]1<i j<m based upon
[s(zi, )i

(3) Solve the optimization problem (4) for optimum {a;}P ;.

(4) Forj=mn+1,...,m,y; =sign (>0, ;K (zi, zj)) .

Fig. 1. Summary of the coarse localization algorithm.

ng ~ O(min(nwR%/L?, 27 R)) in which case the overall training phase takes
only O(R?nk?) time. Note also that this training phase is the most expensive
part of our algorithm and is performed at a central station.

Once the training phase is complete, each base sensor is required to store
the n parameters (o, ..., o,) for the purpose of classification of the remaining
(location-unknown) sensors. If the first-tier kernel is used, a new sensor X ; for
J =n+1,...,mrecords the signal s(x;, x;) from the n, base sensorsi € {1, ..., n}
and combines these with the nonzero values «;, resulting in a cost of O(n;) in
time and storage. If a second-tier linear kernel or a third-tier Gaussian kernel is
used, a new sensor X ; records n-element signal vectors (s(x;, x1), ..., s(x;, x,))
from the ng base stations, resulting in a O(ngn) cost in time and storage. The
kernel values K (x;, x;) are then readily computable from the received signals
s(x;, x7) in O(1), O(n), O(n?) time for the first-tier, second-tier and third-tier
kernel, respectively. Then a simple computation (Eq. (3)) determines for sensor
X j whether it resides in the region C or not. The attractive feature of the
localizing step is that it is done locally (in a distributed fashion), taking only
linear (for the first-tier and second-tier kernels) or quadratic (for the third-tier
Gaussian kernel) time and storage space (in terms of n). Since the localization is
done on an as needed basis, its time and storage cost do not depend on the total
number of sensors m in the network. A summary of our algorithm is provided
in Figure 1.

Now we turn to fine-grained localization. At both algorithmic and system
levels, this involves invoking the coarse localization subroutine %22 times with
respect to regions Cy, .. ., Cy2. Therefore, for each region g = 1, ..., k%, we have
a set of parameters (;)"_;. Each sensor X ; can then determine its location by
setting x; to be the centroid of the intersection of all regions Cj that it finds
itself residing in. In the case in which Cy are discs with centers cg, this yields

L T olX; € Cp)
TSI e Cy)

Clearly, the computational cost of a fine-grained localization algorithm is %2
times as much as the computational cost of each coarse localization step. In
summary, our fine-grained localization algorithm is shown in Figure 2.
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Fine-grained localization algorithm

Input: X; =x; € R% for i = 1,...,n; signal matrix [s(z, z;)]1<;,j<m Where n < m;
k; R.

Output: z; € R2 for j=n+1,...,m.

(1) Let Ay = min{(x;)1}? ;5 Br = max{(z;)1},; A2 = min{(z;)2},; B2 =
max{(z;)2}7 ;.

(2) LetCgforg=1,..., k2 be k? discs with radius R distributed uniformly in a grid
of coordinates [A1, B1] X [A2, Ba].

(3) Forp=1,..., k2, run the coarse localization algorithm with respect to region
Cp to get values {yg,;}7L, ;.

(4) Letting cg be the center of Cg for 3 =1...,k?, then:

_ 2152:1 cpl(yp,;=1)

Tj= "2 .

> =1 Wyp,;=1)

Fig. 2. Summary of the fine-grained localization algorithm.

5. EXPERIMENTAL RESULTS

We evaluate our algorithm on simulated sensor networks in the first two
sections, and then on a real network using Berkeley sensor motes.

5.1 Coarse Localization

Simulation set-up. We consider a network of size 10 x 10 square units. The base
sensors are distributed uniformly in a grid-like structure. There are a total of
n such sensors. We are concerned with recognizing whether a sensor position
x, characterized by the signal reading s(x;, x) fori =1, ..., n, lies in a region C
or not.

We first define a signal model: Each sensor location x is assumed to receive
from a sensor located at x’ a signal value following a fading channel model:
s(x,x’) = exp —M + N(0, ), where N (0, t) denotes an independently gen-
erated normal random variable with standard deviation r. This signal model
is a randomized version of a Gaussian kernel. We have also experimented with
a signal strength model that is a randomized version of the polynomial kernel:
s(x,x’) = (J|Jx — «’|])77 + N(0, 7). The results for the polynomial kernels are
similar to the Gaussian kernels, and are not presented here. It is emphasized
that, although the use of these models have been motivated elsewhere as signal
models [Seidel and Rappaport 1992; Sheng and Hu 2003], in our case, they are
used merely to generate the signal matrix S. Our algorithm is not provided
with any knowledge of the procedure that generates S.

Next, we define a region C to be recognized. In particular, C consists of all
locations x that satisfy the following equations: (x —v)” Hy(x —v) < R and (x —
V)T Hy(x —v) < R, wherev =[55]T, H; =[2 —1;—1 1] and Hy; =[2 1;1 1]. The
radius R is used to describe the size of C. For each simulation set-up (n, R, o, 7),
we learn a discriminant function f for the region C using the training data given
by the base sensor positions. Once f islearned, we test the classification at 100 x
100 sensor locations distributed uniformly in the region containing the network.

Figure 4(a) illustrates C as a shaded region for B = 2, while the black bound-
ary represents the region learned by our localization algorithm. Qualitatively,
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Fig. 3. Simulation results with (randomized) Gaussian models. The x-axis shows the number of
sensors employed along each dimension of the network. The y-axis shows the ratio between the
number of incorrectly classified points and the number of points inside the area to be recognized.
(Note that this ratio is larger than the overall failure rate; in the latter, the denominator includes
the points outside the area to be recognized).
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Fig. 4. (a)Illustration of a simulated sensor network with 15 x 15 base sensors and the recognized
boundary in black (with R = 2) using a Gaussian kernel with o = 1. The black squares are the
support vector base sensors. The test error in this figure is 0.27. (b) Plots show the effect of the
sensor fading signal parameter o and signal noise parameter t on coarse localization performance.

the algorithm has captured the shape of the target region C. We now present
a quantitative analysis of the effects of n, R, o, and t on the localization (i.e.,
classification) performance:

Effects of n. The plots in Figure 3 show the localization (test) error with
respect to the number of base sensors deployed in the network. The test error
is defined to be the ratio between the number of misclassified points and the
number of points located within the area C (out of 100 x 100 locations distributed
uniformly in the grid). In this set of simulations, we fix the noise parameter
7 = 0, and let 0 = 1 and o = 7, while varying n. The plots confirm that
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the localization error tends to decrease as the sensor network becomes more
densely distributed. Note that if we need to recognize a particular area, we
only need to plant base sensors in the area near the boundary because these
are the likely locations of support vectors. Of course, in our context, coarse-
grained localization is only a subroutine for fine-grained localization, and it is
in our interest to have base sensors spread throughout the whole geographical
area.

Effects of o and t. The parameter o is used to describe the sensitivity of the
signal strength with respect to the sensor distance. In particular, for a Gaussian
signal function, a small value of o implies that the signal strength fades very
quickly for distant sensors. The plots in Figure 4(b) display the effects of both
o and 7 on the localization performance. In this set of simulations, we fix the
number of base sensors along each dimension to be 10, and set the radius of C
to be R = 2, while varying o and 7. The localization performance degrades as
we increase the noise parameter 7, and the degradation is more severe for the
least sensitive signal, that is, when o is large.

5.2 Fine-Grained Localization

Simulation set-up. The network set-up is the same as the previous section,
except that the n base sensors are now distributed approximately uniformly at
random in the whole area. By this we mean that each base sensor is initially
planted at a grid point in the L x L square, where L = 10, and then perturbed by
Gaussian noise N (0, L/(2./n)). There are 400 other sensors whose locations are
tobe determined using our algorithm. These 400 sensors are deployed uniformly
in the grid. Again, we assume the signal strength follows a Gaussian signal
model with noise parameter t = 0.2.

We applied the algorithm described in Section 3 for fine-grained localization.
The algorithm involves repeated coarse localizations with respect to a set of
regions that cover the whole network area. We choose these regions to be discs
of radius R and distributed uniformly over the network. Let £ be the number of
discs along each dimension such that there are a total 22 discs to recognize. In
this simulation, we study the effects of R, £ and the number of base sensors n
on the localization performance. Specifically, we examine the trade-off between
the computational cost and localization accuracy of our algorithm by varying
these parameters, as suggested by the theoretical analysis in Section 3.3.

Effects of n. Figure 5(a) shows that the mean localization error (averaged
over all sensor networks and over all sensors) decreases monotonically as more
base sensors are added to the network. This agrees with the theoretical re-
sult presented in Section 3.3. Figure 7 illustrates the localization results for
each node in the networks with 25 and 64 base sensors. The mean localization
error (averaging over all sensors) for these two networks are 0.47 and 0.39,
respectively.

Effects of R and k. Figure 5(b) shows the effects of R and % on the localization
performance. In this set of simulations, we fix 1 = 0.2, 0 = 2, and n = 100, while
varying R and k. The analysis in Section 3.3 suggests that, for each value of R,
there exists an optimal value for £ that increases as R decreases. Since there are
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Fig. 5. The left panel shows the effect of the number of base sensors n on fine-grained localization
error mean and standard deviation (for all nodes). The right panel shows the effects of the size of
discs (by radius R) and the number of discs (k%) distributed uniformly on the field. The means and
variances are collected after performing the simulation on 20 randomly generated sensor networks.
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Fig. 6. This figure shows the effects of the size of discs (R) on the fine-grained localization error.
The number of disks (£2) is chosen so that the mean localization error (per node) is smallest. The
error rate is compared with the curve O(R2/3).

k2 classification problems to solve, the computational cost generally increases
as R decreases. However, the mean localization error improves as R decreases.
Hence, there is a trade-off between computational cost and localization accuracy
as manifested by the behavior of R and &.

To gain more insight into the effects of the size of discs (R) on the fine-
grained localization error, we plot the mean localization error for the optimal
value of £ in Figure 6. This figure shows that the optimal mean localization
error increases as R increases. We also compare the rate of increase with that
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Fig. 7. Localization results for a simulated sensor network of size 10 x 10 square units with
25 base sensors (left figure) and 64 base sensors (right figure). The base sensors are the black
squares. Each line connects a true sensor position (in circle) and its estimate. The signal model is
Gaussian. The mean localization error is 0.4672 in the left figure and 0.3877 in the right figure.

of R?/3. As shown in Figure 6, the rate is approximately that of R?/2 in a middle
range and eventually surpasses R?/3. Recall from the analysis in Section 3.3
that we expect this increase in rate due to the increase in ¢(R). On the other
hand, the analysis does not predict the smaller rate of increase observed for
small values of R.

5.3 Localization with Berkeley Sensor Motes

Experiment set-up. We evaluated our algorithm on a real sensor network using
Berkeley tiny sensor motes (Mica motes) as the base stations. The goal of the
experiment is to estimate the positions of light sources, given the light signal
strength received by a number of base sensors deployed in the network. Our
hardware platform consists of 25 base sensors placed 10 inches apartona 5 x 5
grid in a flat indoor environment. Each sensor mote is composed of one Atmel
ATmega 103 8-bit processor running at 4MHz, with 128Kb of flash and 4Kb
of RAM, RFM TR1000 radio, EEprom and a sensor board that includes light,
temperature, microphone sensors, and a sounder. Our experiment makes use
of light sensor data received by the motes. The measured signals are a scalar
field produced by a light source shining on the sensor network from above; the
height and intensity of the light source were constant. Only the position of light
sources placed at the base sensors are given as training data. To be estimated
are 81 light source positions distributed uniformly in a 9 x 9 grid, spread over
the whole network.

A range-based algorithm. We compared our algorithm to a state-of-the-art al-
gorithm that epitomizes a majority of localization algorithms in the literature.
This algorithm was described in Whitehouse [2002] and consists of two main
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Fig. 8. Panel (a) shows the noisy relationship between signal strength received by sensors and
the distances. Few sensors exhibit a clear signal strength-distance functional pattern as in panel
(b), while most are like those in panels (c) and (d).

steps: (1) a ranging procedure aimed at establishing a mapping between the sig-
nal strength received by a base sensor and the distance to the light source, and
(2) a localization procedure giving the distance estimates using least-squares
methods.

Figure 8 illustrates the difficulty of the ranging problem—the functional
relationship between distances and signal strengths is very noisy. Much of
this noise is device-specific. As shown in Figure 8, a few sensors exhibit a
clear distance-to-signal-strength pattern, while most others exhibit a very
noisy pattern. As presented in Whitehouse [2002], improvement in the ranging
step can be achieved by accounting for properties of specific base sensors.
This is done by introducing regression coefficients for each of these base sen-
sors. Once the ranging step is completed, we have estimates of the distance
between the base sensors and the positions of the light source. The initial
position estimates are obtained using the Bounding-Box algorithm and are
then iteratively updated using a least-squares method (see Whitehouse [2002];
Savvides et al. [2001]). Figure 9(a) shows the localization results for this
algorithm.

Results for the kernel-based algorithm. Three different kernels are used in
our algorithm. The first is a first-tier symmetric positive semidefinite approx-
imation of the signal matrix. In particular, as discussed in Section 3, given
a signal matrix S, we define S’ := (S + S7)/2 + 81. The remaining kernels
are a second-tier linear and third-tier Gaussian kernel, with the parameter o
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Fig. 9. Localization result for a real sensor network covering a 40 x 40 square-inch area. There
are 25 base sensors (Berkeley motes) spaced in a 5 x 5 grid. Each line connects a true position
(in circle) and its estimate. Panel (a) shows the results given by a traditional 2-step localization
algorithm, while panels (b), (c), (d) show the localization results obtained by our algorithm using
three different kernels (the first-tier, second-tier, and third-tier Gaussian kernel, respectively).

fixed to 0.5 in the latter case. For fine-grained localization, coarse localization
is repeatedly applied for discs of radius R = L/2 = 20 inches that cover part
of the network area. The centers of these discs are five inches apart in both
dimensions, and there are 10 discs along each dimension (i.e., £ = 10).

Table I shows that the localization error achieved by the kernel-based ap-
proach is smaller than that of the two-step algorithm. Among the three choices
of signal kernels, the second-tier kernels are much better than the simple first-
tier kernel. The localization results are depicted spatially in Figure 9. Note that
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Table I.
| Method | Mean | Median | Std |
Two-step ranging-based 6.99 5.28 5.79
First-tier signal kernel 6.67 4.60 7.38
Second-tier linear kernel 3.65 2.51 4.29
Third-tier Gaussian kernel 3.53 2.63 3.50

Comparison between a two-step ranging-based algorithm and our kernel-based localization algorithm
in a sensor network with 25 base sensors covering a 40 x 40 square-inch area. The localization error
mean, median, and standard deviation are taken over all position estimates and measured in inches.

the minimum distance between two neighboring base sensors is about 10 inches,
and the localization error of our algorithm (using second-tier kernels) is slightly
over one third of that distance.

6. DISCUSSION

We have presented an algorithm for coarse-grained and fine-grained local-
ization for ad hoc wireless sensor networks. Our approach treats the signal
strength as measured by sensor motes as a natural coordinate system in which
to deploy statistical classification and regression methods. For the localization
problem, this approach avoids the ranging computation, a computation which
requires accurate signal models that are difficult to calibrate. Instead, we use
signal strength either directly to define basis functions for kernel-based classi-
fication algorithms, or indirectly via derived kernels that operate on top of the
signal strength measurements. We show how a kernel-based classification al-
gorithm can be invoked multiple times to achieve accurate localization results,
and we present an error analysis for the accuracy that can be achieved as a func-
tion of base sensor density. Our algorithm is particularly suitable for densely
distributed sensor networks and is appealing for its computational scaling in
such networks: The preprocessing computations are performed at the base sen-
sors which are assumed to have sufficient processing and power capability, while
the localizing step at location-unknown sensors can be achieved in linear time.

We have argued for a simple approach to localization that dispenses with
ranging computations and sensor modeling. We do not necessarily believe,
however, that our statistical approach is always to be preferred. In particu-
lar, the level of accuracy that we appear to be able to obtain with our approach
is on the order of one third the distance between the motes. While this accu-
racy is sufficient for many potential applications of sensor networks, in some
applications, higher accuracy may be required. In this case, ranging-based ap-
proaches offer an alternative, but only in the setting in which highly accurate
models of the relationship between sensor signals and distances are available.
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