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ABSTRACT

Configurable computing hardware has many advantages over both general-purpose

processors and application specific hardware. However, the difficulty of using this type

of hardware has limited its use. An automated system for implementing image-

processing applications in configurable hardware, called CHAMPION, is under

development at the University of Tennessee. CHAMPION will map applications in the

Khoros Cantata graphical programming environment to hardware. A relatively complex

automatic target recognition (ATR) application was manually mapped from Cantata to a

commercially available configurable computing platform. This manual implementation

was done to assist in the development of function libraries and hardware for use in the

CHAMPION systems, as well as to develop procedures to perform the application

mapping. The mapping techniques used were developed in such a way that they could

serve as the basis for the automated system. Many important considerations for the

mapping process were identified and included in the mapping algorithms.

The manual mapping was successful, allowing the ATR application to be run on a

Wildforce-XL configurable computing board. The successful application implementation

validated the basic hardware design and mapping concepts to be used in CHAMPION.

Nearly a tenfold performance increase was realized in the hardware implementation and

performance bottlenecks were identified which should enable even greater performance

improvements to be realized in the automated system. The manual implementation also

helped to identify some of the challenges that must be overcome to complete the

development of the automated system.
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I.  INTRODUCTION

A. Motivation

Since the first electrical computing devices were created in the 1940s, an ever-

increasing variety of computations has been done by electronic hardware. The earliest

computers calculated artillery tables and decrypted codes for the military. There is now

virtually no type of computation that is not performed by computer at least some of the

time. Clearly, in the intervening years an extremely large number of new applications

for computing hardware have been developed. The calculations performed in these

applications range from those that were previously done by hand, such as accounting

and scientific calculations, to entirely new sorts of computations that can only be done

by computer, such as digital image processing and complex simulations. Regardless of

the type of computation being done, the same basic operations are used ubiquitously.

For example, arithmetic operations, such as addition and multiplication, and logical

operations, such as Boolean ANDs and ORs, are used for virtually all types of

calculations. While the same operations are used repeatedly, the type of hardware

performing these basic operations can vary widely.

For many years, electronic hardware used for computation could be divided into two

main types, general purpose, and application specific. General-purpose hardware is

exemplified by microprocessors such as the Intel 80x86 family and the Motorola 68000

family, which serve as the main processing unit in most personal computers. The

architecture of these devices is fixed and includes specific hardware to implement a

limited, pre-defined, set of instructions. These microprocessors run programs, which

are lists of instructions to be executed that are stored in external memory. New
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programs can be loaded into memory from disk or other storage as needed. The

software program determines the computation to be done, not the hardware. Because

their instruction sets include very general operations such as arithmetic and logical

operators, branching and recursion, and memory access, this type of hardware can be

programmed to perform any conceivable function. In fact, as the work of Church and

Turing shows, all computations can be performed by such a general-purpose computer.

However, general-purpose computers can be very slow at performing certain kinds of

operations, such as those involving floating-point calculations or complex mathematical

functions. For this reason, most modern computers have one or more coprocessors,

which are application specific hardware that performs certain functions very quickly.

Examples include math coprocessors that perform floating-point calculations and other

mathematical operations, and graphics coprocessors that perform 3D rendering.

Application-specific computing hardware performs functions very quickly, but the price

of this speed is limited flexibility. As their name implies, this type of hardware can only

perform one function, or a group of closely related functions. The hardware determines

the type of computation to be done. They cannot be reprogrammed to perform entirely

new functions that were not anticipated and included in the original design. If

application specific hardware is needed to perform a new function, then a new hardware

design will have to be created. Since this type of computation hardware is generally

implemented as carefully designed Application Specific Integrated Circuits (ASICs),

creating a new design takes a great deal of effort and knowledge. Since they are custom

ICs, they are also very expensive to fabricate, and it takes week or months to design a

new ASIC and have it fabricated. Therefore, application specific hardware is only useful

if the functions needed are known in advance and the requirements of the functions

they perform are not expected to change during the useful lifetime of the hardware.
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In spite of these drawbacks, application specific hardware is widely used whenever

speed is an important design consideration. By structuring the hardware to match the

problem, application specific hardware can often achieve computation speeds several

orders of magnitude faster than general-purpose hardware. This high level of

performance is obtained by utilizing several techniques, including the performance of

operations in parallel; the organization of hardware for efficient data transfer, which

reduces delays while data is moved from place to place; and the utilization of hardware

structures that permit efficient data scheduling, reducing inefficiencies introduced

when computation is halted to wait for new data.

In recent years, a new class of computing hardware has been gaining increasing

research interest. Configurable computing hardware has some of the advantages of both

general-purpose and application-specific hardware. This type of hardware may be based

on commercially available Field Programmable Gate Arrays (FPGAs), or on ICs designed

specifically for the purpose. In either case, this type of hardware consists of a relatively

large number of functional units with programmable interconnections. The functionality

of the hardware is determined by how the interconnections between functional units are

configured, and in most, but not all, architectures, how the functional units themselves

are configured. By changing the configuration, the hardware can be made to perform a

completely different function. Since the configuration is specific to the application at

hand, it is in effect a custom computer for the particular design. For this reason,

computing devices using configurable hardware are often called Custom Computing

Machines (CCMs).

The functional units in a CCM are usually relatively simple logical functions equivalent

to a few gates, or a few tens of gates. Some configurable computing hardware has

slightly more complex functional units such as small Arithmetic Logic Units (ALUs). The
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functional units may be fixed in function, or their functionality may be configurable.

For instance, many FPGAs use Look-Up Tables (LUTs), for which the output (or

outputs) for every possible input can be programmed. In this way, LUTs can implement

any possible logical function of the inputs, giving great flexibility. Most architectures

also include flip-flops in each functional unit, to register the outputs and allow for

synchronous designs.

The interconnections between functional units provide much of the utility of most

configurable computing architectures. Programmable switches can selectively connect

tracks wired to the inputs and outputs of the functional blocks, allowing the desired

functions to be implemented. These interconnections are internal to the IC; if multiple

ICs are used in a CCM, then there are usually programmable interconnections between

the ICs as well.

Since the structure of the hardware has effectively been changed for the specific

function to be implemented, many types of computations can be performed by CCMs at

speeds close to those obtained using application specific hardware. In addition, the

configuration can be changed relatively quickly from one function to another, giving

some of the same flexibility as general-purpose hardware. In effect, configurable

computing allows the benefits of both application-specific and general-purpose

computing to be present in the same hardware.

Despite these advantages, configurable computing hardware has not been widely used.

Perhaps the main reason is the difficulty involved in configuring this hardware to

perform a specific function. A typical CCM may consist of several interconnected

FPGAs, as well as memory and other components. In order to map an application to

this hardware, the designer must first design the hardware configuration needed to
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perform the necessary functions. This is usually done with either schematic capture, or

increasingly with a Hardware Description Language (HDL) such as VHDL or Verilog. In

either case, the designer must understand digital design and be able to separate an

application into data processing and control elements. The design must then be

partitioned spatially, so that the design is spread across the resources available on the

FPGAs. If the design does not fit in the available FPGAs, then it must also be partitioned

temporally, by allocating functional units to different configurations of the same FPGA.

In addition, any configuration of the CCM itself must be determined, and a program to

communicate with a host computer must usually also be created. While commercial

tools exist to help with parts of this process, it still requires a great deal of skill,

knowledge of digital design, time, and effort. These steep requirements have severely

limited the potential users of this type of hardware and prevented its widespread

acceptance.

The development of methods to allow CCMs to be used more easily will make their

advantages available to more users. Ideally, tools will be developed to allow users with

no knowledge of digital design to use CCMs, just as users who know nothing about the

design of a microprocessor can use computers. The less important knowledge of the

underlying hardware is, the larger the pool of potential users of CCMs will be. The

current pool of users consists almost exclusively of researchers and digital hardware

engineers. If the use of CCMs is to spread beyond this limited group, then much more

research into better tools to use them will have to be done.
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B. Research Objectives

Research at the University of Tennessee is currently underway to develop an automated

system for mapping image processing applications in a graphical programming

environment called Khoros Cantata to configurable computing hardware. It is expected

that this system, called CHAMPION, will help make the power of configurable hardware

more accessible to users who lack digital design experience. It is also expected that the

system will allow new applications to be implemented in much less time than is

required now, since many portions of application mapping that must currently be done

manually will be automated. The work described in this thesis is a part of the overall

research being conducted as part of the CHAMPION project.

The author’s research concerns the manual mapping of a complex application running

in Khoros Cantata to a commercially available CCM, the Annapolis Micro Systems

Wildforce-XL. A systematic method of doing this application mapping was developed.

The manual mapping used a library of parameterizable hardware modules developed

concurrently for CHAMPION. The entire manual mapping was done with the goals of

CHAMPION considered at every step. The resulting implementation was thus quite

different from that which would have been developed if the only goal were to implement

the application in hardware. However, the goal of the research was not just to simply

implement the application in hardware, but to provide information on the requirements

of the implementation to the developers of the automated system.

The proposed benefits of performing a manual mapping were fourfold. First, to help

develop application-mapping methods that could be used to help design the automated

system by determining the requirements of the system and possible methods by which

the mapping could be performed. Second, to help guide the library development process
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by showing what types of library modules would be needed and what the requirements

of those modules should be. Third, to show that the mapping methods and library

modules developed could be used to implement a significant application. Fourth, the

successful implementation of the application would give researchers measurements of

the time required to manually map the application and the performance of a manually

mapped implementation.

The process of mapping an application from software to hardware is a complicated one

and there are many factors that had to be considered at each step of the process. Some

of these were readily apparent, such as ensuring that the hardware chosen implements

the same operations as the software application. Others were not considered until the

mapping process had begun. By performing a mapping manually, all of the steps

needed could be determined, and all of the factors that needed to be considered could

be identified. The mapping process was successful, showing that the methods

determined in the mapping process were viable, and could be used as the basis for an

automated system. The manual mapping also clearly delineated the requirements for an

automated system to perform the mapping process.

There are hundreds of functions available in the Khoros Cantata toolboxes and in

publicly available extensions. Since not all of these could or should be included in the

CHAMPION system, decisions had to be made as to which functions would be needed.

Some of the decisions were obvious; simple arithmetic operators such as addition, and

the basic Boolean operators should definitely be included in a system such as

CHAMPION. Other choices were not as obvious. By determining the types of functions

needed to implement a real application, better decisions as to which functions to

include could be made. The implementation process also helped determine the

requirements of the hardware implementing these functions. Design details of the
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hardware modules such as control lines and I/O ports were determined to large extent

by what would be necessary to make the initial application work.

In order to evaluate the effectiveness of the automated system, some idea of the time

required to do a manual mapping is necessary. Only by having information on the time

required for a manual implementation can the productivity gains provided by

CHAMPION be measured. The manual implementation also provided information on the

performance of the application, in terms of the rate at which data can be processed.

While the performance of the applications mapped by the automated system is not a

primary goal of the project, it is still valuable to be able to measure any differences in

performance between the results obtained by CHAMPION and the results obtained by a

human designer.

The manual implementation did provide the type of information that was expected, as

discussed above. This information should prove useful in the development of the

automated system. However, the development of the automated system is mostly

outside of the scope of the author’s research and as such, will not be discussed in detail

in this paper. It is to be expected that later publications by others working on the

CHAMPION system will provide more information on its development.

This chapter presented an introduction to the research covered by this thesis. Chapter

II provides background information on configurable computing, Khoros Cantata, and

the CHAMPION project. Chapter III discusses the application to be mapped and the

CCM used to implement it. Chapter IV discusses the application mapping process,

including the libraries and procedures used. Chapter V gives the results of the

hardware implementation, including specific information on the final implementation
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and its performance, as well as the time taken to complete it. Chapter VI presents

overall conclusions about the research.
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II. BACKGROUND

A. Configurable Computing

To date, most research in configurable computing can be divided into three main areas.

The first has been the development of configurable computing hardware. The second

has been the implementation of various types of applications on configurable computing

hardware. The third has been the creation of software to assist in the implementation of

applications on configurable computing hardware. All three of these areas have helped

determine which types of applications are best suited to implementation on CCMs, and

the benefits of running these applications on this type of hardware as compared to

either general-purpose or application-specific hardware. Portions of each of these areas

are relevant to the current research and will be discussed in the following sections.

1) Hardware

Numerous configurable computing machines have been built by research groups. More

recently, commercial vendors have begun producing CCMs. While some research groups

have designed their own ICs for configurable computing, (e.g., PipeRench [1] and RaPiD

[2]), most CCMs have been constructed using commercially available FPGAs. A list of

dozens of FPGA-based CCMs is given in [3]. Some of the more significant FPGA-based

CCMs include Splash 2 [4], DECPeRLe-1 [5], and the Virtual Computer [6]. Versions of

these CCMs, and CCMs derived directly from them, are used today by many CCM

researchers.

Many different CCMs have been built with the same FPGAs, especially those produced

by Xilinx, Inc. of San Jose, California. Despite their use of the same FPGAs, CCMs can
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vary widely in a number of other specifications. CCMs can vary in the number and size

of FPGAs used; the number of interconnections between the FPGAs and whether or not

these interconnections are configurable; the topology of the interconnections; whether

or not other resources are available in the CCM, such as RAM or DSP chips; and how

the CCM connects to an external host computer. Table II-1 shows some of the

specifications for several different CCMs that use Xilinx FPGAs and illustrates some of

the differences between them.

Much of the research in CCMs has attempted to determine what kinds of CCM

architectures are most efficient, fastest, cheapest, and so forth. The answer to these

questions usually varies depending on the characteristics of the applications that are

being run. For instance, some applications require the frequent storage of intermediate

Table II-1. Comparison of Four Xilinx FPGA-based CCMs.

DECPeRLe-1

Splash 2
(per array
board; up to 16
array boards
may be used)

Virtual
Computer

Wildforce-XL
(as used at UT-
Knoxville)

FPGA Family Xilinx XC3000 Xilinx XC4000 Xilinx XC4000
Xilinx
XC4000XL

Number of
FPGAs
(available for
computation)

16 x XC3090 17 x XC4010 52 x XC4010
4 x XC4013XL
1 x XC4036XL

Total Gate
Equivalents 96,000 170,000 520,000 88,000

RAM 4 MB 8.5 MB 8 MB 640 KB

Interconnection
Topology

4 x 4 Matrix

Linear Array
with
Programmable
Crossbar

Spherical

Linear Array
with
Programmable
Crossbar

Host Interface TurboChannel SUN S-Bus SUN S-Bus PCI Bus
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results in RAM. If these applications were implemented on a hypothetical CCM, denoted

CCM-A, which has relatively low RAM access bandwidth, than the performance would

be lower than if they were run on another hypothetical CCM, denoted CCM-B, which

has higher RAM access bandwidth. However, CCM-B might achieve its higher RAM

access bandwidth by devoting more I/O pins on each FPGA to memory interfacing,

leaving fewer available pins for interconnection between FPGAs. If CCM-A and CCM-B

both have the same number and type of FPGAs, then all else being equal, CCM-B will

have less connectivity between FPGAs than CCM-A. Another class of applications might

require many interconnections between functional units. These applications would fit

better into CCM-A than into CCM-B, using computation resources more efficiently in

the former. For these and other obvious reasons, there can be no one CCM architecture

that is ideal for all applications.

However, there are CCMs with architectures that seem to work relatively well for a

range of problems. CCMs are now available from commercial vendors such as Annapolis

Micro Systems and the Virtual Computer Company. These systems offer many of the

same features found on research CCMs including: multiple FPGAs on a single board,

state readback of processing elements for diagnostic purpose, direct access to RAM

from each FPGA, host I/O through a fast interface bus such as PCI or VME, and pre-

developed APIs for host interface code and hardware configuration. These commercial

CCMs can be used to implement fairly complex and demanding applications.

Missing from these commercial offerings are the powerful tools necessary to make these

CCMs easy to use. Once again, the most pressing problem in configurable computing

seems to be the development of tools to efficiently use CCMs. Tool development is

lagging behind the development of configurable hardware, and seems to be a limiting

factor in its adoption, so there is currently somewhat less interest in hardware
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development than in earlier years. Research does continue in various areas of CCM

hardware development. Recent research in architectures often involves the integration

of configurable hardware and general-purpose processors ([7], [8], and [9]) or DSP chips

[10]. New architectures are also being developed to take advantage of developments in

commercial FPGA designs. Xilinx Corporation’s new Virtex family, which offers much

higher densities than its other FPGAs, faster reconfiguration, and partial

reconfiguration, seems to be of particular interest to the CCM community.

2) Applications

In addition to studying CCM hardware and the software tools needed to use it,

researchers have been investigating the types of applications that are well suited for

implementation on CCM hardware. CCM hardware is especially good at applications

that require the repeated application of simple operators on large amounts of data.

Performing operations in parallel and optimizing them so that the operations can be

performed at high speed is one of the primary ways that CCM architectures can achieve

good performance. If applications show some exploitable parallelism and use relatively

simple operators, then they may be good candidates for implementation using a CCM.

Most configurable computing hardware is very inefficient at performing floating point

calculations. These calculations require large amounts of FPGA resources and run

relatively slowly. Applications requiring many floating-point calculations are not usually

good candidates for implementation on CCM hardware. In some cases, however, an

application originally developed using floating point numbers can be implemented using

fixed-point data representation without a significant degradation of its performance.

Determining the number of bits necessary to represent data at various stages of an

application and the effect of changing floating-point representations to fixed-point can
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be an important step in determining the suitability of application to CCM

implementation, and there has been increasing research on this topic [11], [12].

Several application domains have proved particularly suitable to implementation on

CCMs. In particular, applications involving image and video processing [13], [14],[15],

communications [16],[17], and CAD applications [18],[19],[20], have been the subject of

recent research. Since image-processing applications have been widely implemented on

CCM hardware, image processing seemed to be a particularly fruitful application

domain for an automated system such as CHAMPION. The availability of a widely used

tool for image processing application development, Khoros Cantata, made image

processing even more attractive as the focus for CHAMPION and for the initial manual

implementation presented in this paper.

Image processing applications are well suited for implementation on configurable

computing hardware, for several reasons. They involve relatively large amounts of data.

For example, one 640 x 480 image with 256 gray levels represents 300 kilobytes of data.

If the images being processed come from a standard real time source at 30

frames/second, nearly 8 megabytes per second must be processed. Many image

processing operations require only simple arithmetic and logical operations that are well

suited to configurable hardware and avoid more complex mathematical operators and

floating point calculations that are more poorly suited. Image-processing applications

exhibit a high degree of parallelism, in that the same operations are often applied to

each pixel in an image or portion of an image. In a general-purpose computer, each

operation on each pixel must be done sequentially, which can be time consuming for

large images. CCM implementations of image processing applications can often be

designed so that multiple pixels can be processed simultaneously by arrays of

functional units, greatly improving performance. This kind of array processing has been
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widely used in application specific VLSI designs [21] and much of this experience is

transferable to CCM designs.

3) Development Software

Ideally, software should be developed that would allow a user to capture their design at

a high level, without any consideration of digital design or the specific CCM architecture

being targeted. The high level design would then automatically be converted into an

equivalent hardware description and this hardware description partitioned across the

available resources. Finally, the software would generate the host code and

programming files to run the application on the targeted architecture. This would allow

a user to run their application on CCM hardware without having any knowledge of

digital electronics and without even being aware of the mapping process taking place.

Unfortunately, this is a very difficult task. No one has yet come even close to meeting

these specifications. Much research has been done into tools that can perform parts of

the application mapping process, however, and it eventually should be possible to

approach this hypothetical ideal case.

Much research has been performed recently to make it easier to run applications on

CCMs by allowing high level design information to be entered using general purpose

programming languages. Many papers, such as [22], [23], [24], [25], [26], and [27] have

reported work on systems to map programs in C or C++ to various types of configurable

hardware. Since C is a widely used language, the ability to map applications from C to

CCMs should greatly increase the number of people with the ability to utilize

configurable hardware. Other work has been done mapping applications from other

programming languages to CCMs [28], [29], and [30]. All of these language-based efforts

usually work with subsets of the programming languages and require not only

programming ability, but also varying degrees of knowledge of the underlying hardware.
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These efforts do increase the pool of potential users of CCMs, but mapping applications

to hardware with these tools is not completely automated and still requires significant

technical expertise.

There have been successful efforts to create tool suites specifically designed for

implementing designs on CCM architecture (e.g., [31] and [32]). This type of system

provides powerful tools to help the hardware designer create and test designs on CCMs.

They are intended for technical users, however, and aim more at increasing the

efficiency of the users, rather than widening the pool of potential users. Their primary

goal is not to isolate the user from detailed technical information about the hardware,

but to make access to that information easier and more useful.

Other systems have attempted to automate portions of the application mapping

process. For instance, one style of design for CCMs uses libraries of parameterizable

modules that perform standard functions. A design can be created by combining these

modules in a design with the necessary interfacing and interconnections. Several

systems have been developed that are focused on creating, maintaining, and

implementing these libraries of modules (e.g. [33], and [34]). Again, these tools greatly

assist the hardware designer, but do not significantly lower the skill requirements for

using CCMs.

One system that does make CCMs more accessible to users who are not necessarily

experienced hardware designers was developed at Virginia Tech [35]. It allows the

implementation of image processing applications by connecting pre-designed modules

that perform common operations, such as filtering and thresholding, using a schematic

capture tool. These applications are then implemented on a configurable computing

engine developed at Virginia Tech, using a set of specific software tools. The system is
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designed to work only with one specific architecture, however, and many of the steps in

the mapping process are manual. Nonetheless, the system does greatly decrease the

skill required to create CCM implementations of relatively complex applications.

B. Khoros Cantata

Khoros is a software system from Khoral Research Incorporated (KRI). At the core of

Khoros is a set of toolboxes containing over 300 operators. These operators include

arithmetic operators for scalars, vectors, and matrices; image and signal processing

functions; data visualization and display operations; and many functions for

manipulating and examining sets of data. The operators can be run as stand alone

programs from the command line, or as functions called by a C or Fortran program.

In addition to the operators, Khoros defines three robust data structures. The geometry

data model allows for representation and storage of complex geometric structures, and

allows for easy access to, and manipulation of these structures. The color data model is

used for the storage of color maps in a format that allows for easy transformations of

the color space. The polymorphic data model is the most flexible data model. It is

capable of storing multi-dimensional data including audio signals, images, video, vector

spaces, or virtually any other type of data that can be represented with up to three

spatial dimensions and optionally one time dimension.

While Khoros can be used by running commands manually, it is perhaps most widely

used with its graphical programming environment called Cantata. Cantata allows the

user to create an application by drawing a graphical representation of it. Each function

in the Khoros toolbox is represented on the screen by a small icon called a glyph. The
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glyph has an input terminal corresponding to each of the possible inputs to the

function and output terminals for each of the outputs. In addition, each glyph has a

pane, which is a set of interface objects that allow the user to set options for the

operation of the glyph. Each of these objects corresponds directly to a parameter that

can be passed to each function on the command line.

Figure II-1 shows a simple Cantata workspace. A glyph for calculating the trigonometric

sine is shown, as well as another glyph that reads in the input data. The pane for the

sine glyph is shown directly below the glyph itself. It has a text box for the input and

output filenames and radio buttons to select whether the sine or arc sine is to be

computed. The input filename is set automatically to be the same as the output of the

preceding glyph. In this case, the first glyph is set to read in a file called

/v4/levine/data.in. This filename is then passed to the sine glyph. The output filename

is automatically picked by Cantata, and corresponds to a temporary file. This filename

will be passed to any following glyphs, and the data in the file can be further processed,

written to another file, or displayed, depending on which glyphs are used. The user does

not have to worry about the filenames for the inputs and outputs, as they are chosen by

Cantata. The user also does not have to be concerned about the type of data in the files;

Cantata will take care of any conversions between types necessary. It does not matter

whether the input is one floating-point value or a three-dimensional array of double

precision values. In every case, Cantata determines how to handle the data without

user intervention. As mentioned previously, anything in Khoros can be done at the

command line as well as in Cantata. The command line equivalent to the two glyphs is

shown at the bottom of Figure II-1. Each parameter in the command line has a

corresponding user interface object in the glyph pane. On the command line, the user

has to type each parameter in manually. In Cantata, the parameters are generated

automatically from the settings in the glyph pane. Regardless of whether it is called



19

karith1   -i /v4/levine/data.in   -o /tmp/io36F4.0   -sin

Figure II-1. Khoros Cantata Glyphs and Command Line Equivalent.

Khoros Cantata glyphs

glyph pane

glyph output

glyph input

glyph connector
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from the command line or from Cantata, the same software routine performs the

desired operation on the data.

The power of Cantata, like other graphical programming environments, is that it allows

a user to simply draw a diagram of their application and have it run. They do not have

to worry about the details of how data is passed or where it is stored. They do not have

to be concerned about converting data from one data type to another. They do not even

have to compile their code. This means that users do not even have to be conversant

with traditional programming methods to quickly implement and test their algorithms

and ideas. Since Cantata can work on such a wide range of data, users can test their

applications using real data. The visual nature of Cantata also makes it easy to modify

an existing application by simply adding or removing glyphs and changing connections.

Cantata can be used by users who may be skilled in their own area of expertise, but

who may not necessarily be able to program well enough to test their ideas. For

instance, a mathematician who is adept at creating algorithms for computer vision, but

might otherwise be limited by a lack of programming ability, can use Cantata to

implement and test algorithms using real data. Cantata has become widely used partly

because of its ability to isolate users from the underlying technology and still let them

exploit the power of the computing platforms they are using.

C. CHAMPION

The goal of research currently being pursued at the University of Tennessee is to

produce a system, called CHAMPION, which will automatically map applications

implemented in Khoros Cantata to configurable computing hardware. This would
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greatly increase the number of potential users of CCMs, as little or no knowledge of

hardware design would be required. Khoros Cantata was chosen as a front end to

CHAMPION due to its widespread use in the image processing community, and also

because it isolates the user from the technical details of the hardware doing the

computations. This is important because it will allow the same application to run on a

workstation or on configurable hardware without visible differences in the application,

as long as the CHAMPION libraries are used.

CHAMPION will require the creation of a set of libraries and a set of tools or procedures.

The libraries will consist of Cantata glyphs that are compatible with hardware

implementation and a corresponding hardware version of each of the Cantata glyphs.

As long as the user uses these CHAMPION glyphs to create their Cantata workspace,

CHAMPION should be able to convert the Cantata application into a hardware

implementation to be run on a CCM. The Cantata glyphs and the corresponding

hardware will perform the same operations, so the hardware implementation should

perform identically to the Cantata implementation. The determination of the types of

glyphs needed and how these will be implemented in hardware is an important part of

the development of CHAMPION, and will be guided by the results obtained in the

research presented in this paper.

In addition to the two sets of libraries, CHAMPION will require the development of a set

of tools to perform the application. Tools will need to be developed for each step of the

mapping process. First the Cantata workspace for the application must be read and

converted into an intermediate form for use by CHAMPION. Each glyph in the Cantata

workspace must be replaced by its hardware equivalent, and then the hardware

partitioned to fit the target architecture. The programming files for each FPGA must be

generated and the necessary code for the host processor must be generated. Exactly
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what is required at each step of this process will be determined in large part by the

results of the manual implementation presented herein.
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III. PROJECT GOALS

The goals of this research project were to manually implement a significant Khoros

Cantata application on configurable hardware, using glyph libraries and procedures

that will be usable in the context of the larger CHAMPION project. The specific

application chosen was an automatic target recognition application called START and

the specific CCM was a commercial product called the Wildforce-XL. Details of the

application and the hardware it was implemented on are presented in this chapter.

Details about the implementation process are presented in Chapter IV, and the results

of the implementation are presented in Chapter V.

A. START Application

A relatively complex image processing application that was well understood by the

author was desired for the first manual application implementation. Using a complex

application would provide several benefits. It would help identify more useful hardware

glyphs than would a simpler algorithm. Using an algorithm large enough to require

reconfiguration of the board would test that capability of the board and require the

determination of techniques to partition the design temporally as well as spatially.

Finally, using a complex algorithm would validate that the libraries and procedures

developed were sufficient to complete problems of a significant nature.

An Automatic Target Recognition (ATR) application developed by the author for a digital

image processing course was picked as the application to be implemented. The

application was named Simple, Two-criterion, Automatic Recognition of Targets, or

START. The application was not chosen for its merit as an ATR algorithm; rather it was
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chosen because it was sufficiently complex and because it was an existing application

developed by the author. This familiarity with the application allowed the efforts of the

author to be concentrated on the hardware implementation and not on understanding

the application to be implemented, or on devising a new one.

The START application uses a statistical algorithm to find regions in Forward-Looking

InfraRed (FLIR) images where a target may exist and draws a box around such regions.

Algorithms of this sort are often used for target queuing; that is, they automatically

identify areas of possible interest for further examination by human operators. The

algorithm does not positively identify a target, nor does it identify the type of target, as a

true ATR algorithm does. It simply identifies segments of the image as areas where

there is a high probability of there being one or more targets.

The START algorithm was tested with FLIR images from Colorado State University’s Fort

Carson RSTA Data Collection. This is a freely accessible collection of image data

available over the Internet [36]. Forty images were chosen from the entire set of

available images. The images chosen had corresponding color visual light images

available so that the actual location of targets could be determined more accurately, as

identifying targets in the FLIR image can sometimes be difficult for a human observer.

The FLIR images were taken of varied, generally hilly terrain, with either no vehicles

present, or up to four vehicles present. The vehicles used to represent targets were an

M60 main battle tank, an M113 armored personnel carrier, an M901 anti-tank vehicle,

and a GMC pickup truck. A representative FLIR image is shown in Figure III-1(a).

Many variables were present in the image set. Vehicles varied in their distance from the

sensors and in their orientation, greatly changing their apparent size and shape.

Vehicles were sometimes partially concealed by terrain features, which also introduced
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(a) FLIR Image Used as Input to START Algorithm.

(b) Target Pixel Map from First Phase of START Algorithm.

(c) Output image from START Algorithm.

Figure III-1. Sample Images from START Algorithm.
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variation in size and shape. The overall image contrast was variable, as was the relative

background intensity. These variables made the determination of target regions

challenging. A straightforward algorithm based on statistical evaluation of two criteria

was found to provide reasonably good results, however.

Areas of interest are assumed to have two characteristics. First, they must contain

pixels hotter than the surrounding terrain. In a FLIR image, hotter pixels are brighter or

higher in numeric value. An area of interest must also contain pixels having a high

numerical value after the application of an edge detection filter. A high numerical value

indicates large gradient intensity between adjacent pixels, which corresponds to a sharp

temperature gradient between adjacent regions. Vehicles are likely to exhibit sharp

temperature gradients, either between the vehicle and the surrounding terrain, or

between different components of the vehicle, such as an exhaust port and the chassis.

An area of interest must satisfy these two different criteria; it must contain hot pixels

and it must contain pixels that exhibit large gradients. These are the two criteria in the

name Simple, Two-criterion, Automatic Recognition of Targets.

While the core idea of the algorithm is relatively simple, many details of the START

algorithm are important to its success. First, the images are low-passed filtered initially

to remove noise, as image noise is generally high frequency in nature and produces

strong responses in edge detection filters. The threshold values for each of the two

criteria are specified as a certain number of standard deviations from the mean. These

values are important to the performance of the algorithm and were determined

empirically during processing of a large set of input images. The intermediate binary

images in the target identification process are low-pass filtered and then thresholded.

This favors larger clusters of pixels and eliminates the occasional falsely identified pixel.
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1) First Phase

Figure III-2 shows a block diagram of the first part of START algorithm, in which a map

of potential target pixels is generated. The input image is first low-pass filtered to

remove noise. The unfiltered input image is also passed to the second portion of the

algorithm through the connector marked “A”. The low-pass filter is implemented by

convolving the image with the 3 x 3 mask shown here:
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The resulting image is then divided by 8 to normalize the values. Since the actual

maximum multiplier from the mask is 9, dividing by 8 causes some intensity scaling of

the low-passed image. Since the relative pixel values remain the same, this has so

significant effect on the results. Dividing by 8 can be implemented by a simple right

shift, while dividing by 9 is much more expensive in terms of hardware, so the former

was chosen.

The filtered image is passed to a block that computes the mean and standard deviation

of the intensities of the pixels. These statistics are then used to check for pixels that are

more than two standard deviations above the mean. Pixels meeting this criterion are

given the value 1 and all others are given the value 0. This produces a map of the pixels

that meet the criterion of being relatively hot, since the intensities are linearly

proportional to temperature in a FLIR image.

The low-pass-filtered image is also passed to a block that performs edge detection. Edge

detection is essentially a high-pass filtering operation, which gives high values to pixels

with sharp gradients and low values to pixels with low gradients. The particular edge
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Figure III-2. First Phase of START Algorithm.
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detection method chosen uses the Sobel operators to approximate the gradient. The

Sobel operators are two 3 x 3 masks as shown here:
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The image is convolved separately with each of the two Sobel operators and then the

output image is computed as the sum of the absolute values of the responses, which

approximates the magnitude of the gradient response [37].

The statistics for the image after edge detection are then computed. The next block then

marks all pixels more than four standard deviations above the mean as 1 and the

remaining pixels as 0. This produces a pixel map of all pixels meeting the criterion of

having a high gradient value and thus being associated with a transition between

regions of greatly differing temperatures. This pixel map is then low-pass filtered,

without scaling. This gives each output pixel a value from 0 to 9, representing the

number of pixels in each 3 x 3 region that had the value 1 in the pixel map. Pixels with

values from 0 to 3 are marked as 0 and pixels with values 4 and above are marked as 1.

This creates a new pixel map, which indicates where clusters of pixels meeting the

gradient criterion were located. This eliminates insignificant temperature changes or

changes involving very small objects.

The gradient criterion pixel map and the intensity criterion pixel map are then logically

AND’ed together. This produces a new pixel map with all pixels that meet both criteria

being marked as ones and all other pixels marked as zeros. This map then has the

clustering operation described previously applied. Next, regions along the edges of the

image and in the immediate foreground are marked as zeros, since it is known that

these are not valid regions for targets to appear in, based on the camera setup and
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geometry. A final target pixel map is thus generated and output at connector “B” of the

flowchart in Figure III-2.

2) Second Phase

In the second phase of the algorithm, the target pixel map is used to identify target

regions and draw frames around these regions. A flowchart of the second phase is

shown in Figure III-3. The target pixel map enters the second phase flow chart through

the connector labeled “B”. The next block determines whether there are any pixels in

the target map with value 1; and if so, the column and row location of the first such

target pixel. This information is passed to two more blocks. The first block marks a

square frame centered around the first non-zero pixel found in the previous block.

These frame pixels are marked on a blank frame map, which consists of all zeros. The

second block masks all target pixels within 30 pixels of the first target pixel found by

setting those pixels value to zero. This ensures that only one target is identified for

every group of pixels corresponding to a particular vehicle in the FLIR image.

The masked target map is then passed to another block, which repeats the operation of

finding the first non-zero pixel. This information is passed to blocks that repeat the

frame marking and target masking operations. After six total repetitions of frame

marking, the frame mask is complete. The frame is a binary image with pixel values of

one everywhere a target frame should appear and pixel values of zero everywhere else.

The frame map may contain from zero to six frames, depending on the number of target

regions identified. A sample frame map can be seen in Figure III-1(b). This frame map

corresponds to the input image shown in Figure III-1(a).
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Figure III-3. Second Phase of START Algorithm.
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The final step of the START algorithm is to combine the frame map and the original

image. The original image enters the flowchart through the connector marked “A”. The

maximum intensity value in the image is found. This value will be used as the value

assigned to the frame pixels. By using the maximum value for the frames, the frame

pixels will appear white, but without changing the apparent contrast of the image when

displayed. The next block simply replaces every pixel in the original image for which the

corresponding frame pixel is one with the maximum intensity value. The pixels in the

original image corresponding to zero pixels in the frame map are unchanged. The

resulting output image then consists of the original image, with square white frames

marked around the identified targets. A sample output image, corresponding to the

input image in Figure III-1(a), is shown in Figure III-1(c).

B. Wildforce Board

A commercially available CCM was chosen to implement the first application. Early

research efforts often required the design of a new CCM board to meet the requirements

of the research. As the field has matured, however, commercial companies have begun

to produce hardware that is flexible enough to be used for a wide range of research

topics as well as commercial or industrial applications. The Wildforce-XL board from

Annapolis Micro Systems was chosen as the first architecture used in the CHAMPION

project and was therefore the board available for the manual implementation presented

in this paper. The Wildforce-XL board is based on technology licensed from the

developers of Splash-2 [4] and like that CCM, uses Xilinx XC4000 series FPGAs. This

section will briefly describe the structure of the Xilinx XC4000 series FPGA, as well as

detailing the architecture of the Wildforce board itself.
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1) Xilinx FPGAs

The Xilinx XC4000 series FPGAs have been widely used for developing CCMs. These

FPGAs are in general use throughout the electronics industry, and are thus widely

available and relatively inexpensive. There are also many commercial tools available for

synthesizing designs for these FPGAs. Xilinx also has an extensive program for

supporting university researchers with free or low-cost hardware and software. These

facts, combined with their powerful and flexible design, explain the popularity of Xilinx

XC4000 series FPGAs with configurable hardware developers.

The basic functional unit of the Xilinx FPGA is the Configurable Logic Block (CLB). A

diagram of the CLB is shown in Figure III-4 (Some details relating to RAM functions and

carry logic are not included in this diagram). Each CLB has five main components: two

four-input function generators, one three-input function generator, and two storage

elements. Each of the function generators can be configured to implement any possible

function of three or four variables. The function generators can be also combined to

produce functions of up to nine variables. The two four-input function generators

receive their inputs from outside the CLB. The three input function generator can use

the outputs of the four-input function generators for up to two of its inputs. The

remaining input(s) must come from outside of the CLB. The four-input function

generators can also be configured to be used as RAM, with up to 32 bits of RAM in each

CLB.

In addition to the function generators, there are two configurable storage units in each

CLB. These can be configured to act as D-type flip-flops or level sensitive latches. The

inputs to the storage units can be configured to come from outside the CLB or from any

of the function generators. When used as flip-flops, they can be configured to be clocked
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Figure III-4. Xilinx 4000 Series FPGA Configurable Logic Block.
Source: Xilinx, Inc, The Programmable Logic Data Book 1998. San Jose, CA, 1998. [38]

on either the rising or falling edges of the clock, and when used as latches they can be

configured to be transparent for either high or low clock inputs. The storage elements

also have configurable set/reset control and enables.

There are 16 multiplexers in each CLB, six with four inputs and ten with two inputs.

These multiplexers are configured to determine the functionality of the CLB. The total

functionality of the CLB is determined by the setting for the multiplexers and the

settings for the function generators, giving a great deal of flexibility and power in each

CLB. The configuration process for the FPGA sets the control inputs to every

multiplexer with bits of SRAM. The values in the function generators are also stored in

SRAM. This means that the Xilinx FPGA must be reconfigured whenever the power

supply to the FPGA is removed and restored.
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Every Xilinx 4000 series FPGA contains a square matrix of CLBs, surrounded by a ring

of Input/Output Blocks (IOBs). The IOB connect the CLBs to the pins of the FPGA. The

IOBs are configurable and can be programmed for different electrical characteristics,

use of registers, etc. Each FPGA has an extensive set of internal routing tracks, and

many blocks of programmable switches which can form connections between the tracks

and the CLBs and IOBs. Different FPGAs in the XC4000 series have different numbers

of CLBs, and differ in the exact interconnections available internally and pins available

externally.

Each FPGA configuration consists of individual settings for every CLB and IOB, and

settings for every programmable interconnection point. The total configuration stream

can reach nearly two million bits for the largest Xilinx FPGAs. In CCM applications, the

configuration data is usually sent to the FPGA from a host computer. The data can be

sent to the FPGA serially or in parallel, at either 1 MHz or 8 MHz clock rates. Even at

the faster speed, configuring a large FPGA can take tens or hundreds of milliseconds.

The Xilinx XC4000 series FPGA cannot be partially configured; that is, the entire FPGA

must be reconfigured to change any of the device settings.

2) Board Architecture

Annapolis Microsystems manufactures several different types of CCM boards. The one

used in this project is the Wildforce-XL board. It is a PCI-bus card, which uses five

Xilinx XC4000XL FPGAs for processing elements. The specific version of the board used

had 1 XC4036XL FPGA and 4 XC4013XL FPGAs available for processing. A comparison

of the resources in each FPGA is shown in Table III-1. Other Xilinx FPGAs are used to

implement a programmable crossbar.
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Table III-1. Resources Available in FPGAs Used on Wildforce-XL.

Logic Cells CLB Matrix Total CLBs Number of
Flip-Flops

Equivalent
Gate Count

XC4013XL 1368 13 x 13 576 1536 10,000 –
30,000

XC4036XL 3078 36 x 36 1296 3168 22,000 –
65,000

Source: Xilinx, Inc, The Programmable Logic Data Book 1998. San Jose, CA, 1998. [38]

Annapolis Microsystems refers to the FPGAs on the Wildforce board as processing

elements. The XC4036XL FPGA is called a control processing element and given the

designation CPE0. It differs from the other FPGAs in that it is larger, and also in that it

has control lines available for various resources on the board, such as the external I/O

interface and crossbar configuration register, that are not available to the other FPGAs.

The four XC4013XL FPGAs are given the designations PE1, PE2, PE3, and PE4. These

four processing elements are connected together in a linear array by a 36-bit systolic

bus. All five FPGAs can be connected by the 36-bit crossbar, which selectively allows

connections between any of the processing elements. CPE0 can only connect to the

other processing elements through the crossbar.

Each FPGA on the board has a small daughterboard associated with it, which can be

populated with memory or a Digital Signal Processing (DSP) chip. Each of the FPGAs on

the board used in this project had 32 KB of 32-bit SRAM on its daughterboard. These

daughterboards have a dual-port memory controller such that both the FPGA and the

host computer can access the SRAM.

The board also contains a PCI interface for communicating with the host computer, and

several FIFO registers to facilitate data transfer across the PCI bus. Figure III-5 shows a

simplified block diagram of the Wildforce board. Since there are many resources
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Figure III-5. Basic Wildforce-XL Block Diagram.

available on the Wildforce board and many configurations of the crossbar and other

components, it was decided to use a constrained configuration of the board for the

initial manual and automatic implementations. This reduces the problem complexity to

a more manageable level. Eventually the constraints on the board utilization will be

relaxed so that all of the power of the Wildforce-XL board will be available in the

automated CHAMPION system.

The constrained configuration of the board used in this project did not use any of the

FIFOs. All communication with the host was done through the SRAM associated with

each processing element. The crossbar was used only to provide a 36-bit path from

CPE0 to PE1. The connections between processing elements are normally bidirectional.

For the constrained implementation, however, it was decided that the direction of all

connections between processing elements would be fixed so that all signals would pass

in one direction only. The board topology became a linear array, with all signals starting
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in CPE0 passing to PE1. No signals could run from PE1 back to CPE0. Similarly, all

signals from PE1 ran to PE2, with no signals allowed to pass back from PE2 to PE1. A

diagram showing the configuration of the Wildforce-XL board as used in this project is

shown in Figure III-6.
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Figure III-6. Wildforce-XL Board As Used.
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IV. IMPLEMENTATION

A. Cantata Implementations of START

1) Standard Cantata

The START algorithm was initially developed for a graduate class in digital image

processing and was written in the MATLAB language. After the decision was made to

adopt the START algorithm for this project, it first had to be implemented in Cantata.

The first Cantata version used glyphs from the standard toolboxes supplied with the

Khoros software package. It took approximately eight days to successfully implement

the application in Cantata using the standard glyphs. The standard Cantata

implementation took 57 seconds to process one 256 x 256 image from the set of test

images.

Ninety-nine total glyphs were needed to implement the algorithm. Only 20 different

glyphs were needed, but many of these glyphs were used repeatedly. A list of the glyphs

used is shown in Table IV-1. Upon examination of the Cantata workspace, it was

apparent that some of the glyphs used could be implemented directly in hardware and

some could not be directly implemented in any practical manner. For instance, the

glyphs classified as arithmetic in Table IV-1, addition and absolute value, are standard

operators that can be easily implemented in hardware. The glyphs classified as Khoros

specific, on the other hand, perform functions that are specific to the data structures

used in Khoros. Since these complex data structures are not readily implementable in

hardware, functions related to these data structures have no direct hardware

equivalent. Determining which glyphs had hardware equivalents and which did not was

crucial to the eventual implementation of the START algorithm in hardware.
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Table IV-1. Glyphs Used in Standard Cantata Implementation of START.

Glyph Name Glyph Type Hardware Equivalent? Times Used
Read File File I/O Yes 6
Save File File I/O Yes 1
Right Shift Bitwise operator Yes 1
AND Bitwise operator Yes 1
OR Bitwise operator Yes 6
NOT Bitwise operator Yes 1
> = Comparison Yes 4
> Comparison Yes 7
Absolute Value Arithmetic Yes 2
Add Arithmetic Yes 8
Inset Geometric No 1
Pad Geometric No 18
Statistics Mathematical No 9
Convolve Mathematical No 5
Convert Type Data Handling No 5
Switch Data Handling Yes 6
Constant Data Handling Yes 15
Copy from Value Khoros Specific No 1
Insert Segment Khoros Specific No 1
Unmask Khoros Specific No 1

Besides the addition and absolute value glyphs, other glyphs that were clearly readily

implementable in hardware were the comparison operators and the bitwise operators.

The file I/O operators would not actually be accessing file structures on a hard drive,

but would be accessing data transferred to the CCM hardware by the host, and would

thus perform an analogous function. They were therefore also considered to have a

hardware equivalent. The switch glyph performed a function identical to that performed

by a multiplexer, so it had a clear hardware equivalent. The constant glyph simply

generates a constant value, which can be done in hardware by simply fixing wires to

logical ones or zeros.

Many other glyphs had no clear hardware equivalent. The pad and inset glyphs

performed geometric operations on a two-dimensional image. There was no directly

equivalent way to do these two-dimensional operations in a hardware implementation
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where the images would be streamed through in one dimension. The statistics glyph

presented a different problem. This glyph calls a Khoros routine that can perform over

25 different statistical functions, from simple functions such as mean, to much more

complex functions such as skew and kurtosis. It would not be efficient to create a

hardware module that performed all of these functions if only one or two were used in a

given application. Since the START application only needed the mean and standard

deviation functions, it made sense to have these be implemented separately, using other

hardware glyphs, rather than by a monolithic statistics block capable of performing

other operations. The convolve operator had a problem similar to the statistics glyph, in

that its functionality was too broad. It could perform a convolution of one image with a

mask of any size and with any values. This sort of flexibility can not be implemented

efficiently in hardware. An efficient implementation of convolution would have to have a

structure specified by the mask to be used, so a general-purpose convolution block had

no direct hardware equivalent. The convert type glyph converts data from one data type

to another, such as from floating point to integer. Since the data types would have to be

managed quite differently in hardware than they are in software, there could be no

glyph performing this exact function in hardware. As mentioned previously, the three

glyphs that performed Khoros specific function also had no hardware equivalents.

The implementation of the START algorithm in standard Khoros revealed several

problems. As just discussed, many of the glyphs used in standard Khoros have no exact

hardware equivalent. The START algorithm would have to be implemented in Cantata

again, using only glyphs that had hardware equivalents. However, the functionality of

the glyphs that did not have hardware equivalents would have to be duplicated in some

fashion that was compatible with glyphs that could be implemented. This required the

creation of glyphs to perform new functions that would map directly to a hardware

implementation.
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2) Hardware Equivalent Cantata

After the problems with the standard Cantata implementation were identified,

development of a new Cantata implementation that would be more compatible with

hardware implementation was begun. Some portions of the original workspace

contained only hardware compatible glyphs and could be retained, but in general, the

algorithm had to be re-implemented from scratch. It took more than three weeks to

develop the hardware equivalent Cantata workspace, including the time taken to

develop the custom glyphs.

The hardware equivalent implementation took 17 minutes and 34 seconds to process

one 256 x 256 image from the test image set. This is more than eleven times longer

than the standard Cantata version. Not only did the hardware equivalent version have

more glyphs than the standard version, but also some of the glyphs in the hardware

equivalent were custom glyphs. Due to the way that Cantata integrates custom glyphs

with the standard ones, custom glyphs are much slower.

 The new implementation was identified as being hardware equivalent Cantata. It

contained a mix of standard Cantata glyphs and glyphs that were designed especially

for this project and were linked to C programs that performed the desired functions.

The hardware equivalent Cantata version required a total of 305 glyphs, of 24 different

types. The glyphs used are shown in Table IV-2. Many of the glyphs used are in the

standard Cantata toolboxes, although not all of these were used in the standard

Cantata implementation. This is because some of the functions that were performed by

glyphs that did not have hardware equivalents could be implemented instead by other
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Table IV-2. Glyphs Used in Hardware Equivalent Cantata Implementation of START.

Glyph Name Glyph Source In First Version ? Times Used
RAM Read Custom No 1
RAM Write Custom No 1
Convolution Stream Custom No 4
Stream Max Custom No 7
Stream Sum Custom No 4
Row/Column Counter Custom No 7
Add Khoros Yes 62
Subtract Khoros No 24
Absolute Difference Khoros No 4
Right Shift Khoros Yes 15
Left Shift Khoros No 3
Square Khoros No 4
Square Root Khoros No 2
> = Khoros Yes 18
> Khoros Yes 12
<= Khoros No 12
< Khoros No 14
== Khoros No 24
AND Khoros Yes 50
NAND Khoros No 6
OR Khoros Yes 26
NOR Khoros No 1
Clip Khoros No 3
Constant Khoros Yes 1

 standard Cantata glyphs, which did have hardware equivalents, or by combinations of

these glyphs with custom glyphs.

All of the custom glyphs were needed because of differences in the way that image data

is represented in Cantata and the way it is represented in hardware. In the standard

Cantata implementation, the images are represented by two-dimensional arrays of pixel

values. Since the hardware implementation would use one-dimensional streams of

pixels, the mapping would be simplified if the hardware equivalent Cantata version

used one-dimensional arrays of pixel values as well. This required new Cantata glyphs

that operated on one-dimensional stream of pixel values, as well as glyphs to read and
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write these streams. These functions were written in C and used to create new Cantata

glyphs using the development tools provided with the Khoros software package.

The hardware equivalent Cantata implementation was tested using the same suite of

FLIR images used to test the standard Cantata implementation (These results will be

discussed in Chapter V). Due to slight differences in the way some calculations were

done, and the way data was represented, not all of the results were identical when

compared pixel by pixel. However, the results were identical when the targets identified

and missed were compared between the two versions. The hardware equivalent version

had the same effective functionality as the standard Cantata version and so it was

accepted as suitable for implementation in hardware.

B. Glyph Libraries

A major part of the development of the CHAMPION project is the creation of glyph

libraries. A set of hardware-equivalent glyphs for use in the Cantata environment was

needed for developing applications. These hardware equivalent glyphs were identified by

determining which ones were needed for implementing the START algorithm. A

corresponding set of hardware glyphs was also needed to implement the application on

the CCM hardware. Further implementations of other applications will expand the

libraries available for CHAMPION. Much of the hardware glyph development was done

by another member of the CHAMPION team, Mr. Senthil Natarajan. A more complete

account of this aspect of the research may be found in his M.S. thesis, submitted in

August 1999, to the University of Tennessee in Knoxville.
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1) Khoros Cantata Glyphs

The are many glyphs available in the toolboxes that come with Khoros. These range

from very basic operations such as addition and subtraction, to very complicated ones

such as kurtosis and fast Fourier transforms. All of the glyphs share common code that

provides support for the various Khoros data structures and for the graphical user

interface used in the Cantata environment. Built into each glyph is code to support data

transfer from one glyph to another, handling of different data types and structures, and

other low-level functions. The actual operations performed by the glyphs are performed

by separate programs that can be called from the command line, as well as from

Cantata. The glyphs thus represent fairly complex software constructs, which is part of

what gives Cantata its power and flexibility.

Unfortunately, as previously discussed, many of the standard Khoros glyphs do not

map very well to hardware. In addition, the complex software wrappers that provide the

sophisticated data handling of the glyphs abstract away some important considerations

for data transfer and synchronization that must be considered in hardware. The

standard hardware glyphs are too “high-level” for completely trouble-free use in the

CHAMPION system. By eliminating glyphs that cannot be implemented in hardware and

creating new ones specifically designed for use in hardware implementations, and by

making allowances for the different data handling characteristics of Cantata and

hardware, the problems with the standard Cantata glyph libraries can be overcome.

2) Hardware Equivalent Glyphs

A set of glyphs that could be used in CHAMPION had to be chosen. These included

standard Cantata glyphs that could be implemented in hardware, as well as custom

glyphs developed specifically for CHAMPION. While not every existing Cantata
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workspace will have the potential to be mapped to hardware, the goal of the CHAMPION

project is to be able to map to hardware any Cantata workspace which is entirely

composed of hardware compatible glyphs. If the set of hardware compatible glyphs is

large enough, them most, if not all, workspaces that can be implemented in Cantata

can be implemented using hardware equivalent glyphs, and thus can be mapped to

hardware by CHAMPION.

The glyphs chosen to be used in CHAMPION had to not only be implementable in

hardware, but they also had to operate in Cantata in a manner equivalent to the way

the hardware glyphs would operate. For this reason, the Cantata glyphs used in

CHAMPION are called hardware equivalent glyphs. Many of the standard Cantata

glyphs were considered to be hardware-equivalent, even though they had more

functionality than the corresponding hardware. As long as the glyphs can produce the

same outputs as hardware when presented with the same inputs, they are considered

hardware equivalent, even if the Cantata version can handle a wider range of inputs

than the hardware versions.

Glyphs for many of the standard functions needed, such as basic arithmetic and logical

operators, could be supplied by the standard Cantata toolboxes. However, those

operations that depend on the geometry of the data needed to be created especially for

CHAMPION. This is because of the two-dimensional representation of images used in

Cantata, as compared to the one-dimensional representation of images in hardware.

Custom glyphs were created to perform functions on streams of pixel images. These

functions were needed to perform the types of operations that are normally

implemented with two-dimensional geometric operators in standard Cantata. All of the

custom hardware equivalent glyphs are listed in Table IV-2.
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3) Hardware Glyphs

A hardware glyph is a block of hardware that performs a certain specific function that

corresponds directly to a hardware-equivalent glyph in the CHAMPION toolbox. A

hardware glyph had to be developed for every hardware-equivalent glyph used in the

START algorithm. The glyphs were developed in VHDL. This was done to allow for

compatibility with CCMs other than the Wildforce. By using VHDL, the behavioral

description of each glyph was independent of the specific FPGA that it would be

implemented on. The VHDL description of each glyph was parameterizable, meaning

that various characteristics of the glyphs, such as the number of bits in the input, were

specified as generics that could be changed as needed. This meant that one VHDL

template could be used to synthesize many different instances of specific glyphs. For

instance, an addition glyph template could be used to synthesize adders for inputs of 8

bits, 9 bits, or however many input bits were needed for a specific application.

By using glyphs with characteristics that matched those needed by the application, a

more efficient use of hardware could be made. Using an 8-bit adder when two 5-bit

numbers are being added wastes nearly half of the resources used by the adder glyph.

Each specific version of each glyph was synthesized and stored in a format specific to

the hardware being used. Since Xilinx FPGAs were used on the Wildforce board, the

specific glyph instances were synthesized into the Xilinx Netlist Format (XNF) and

stored in a library. In CHAMPION, if an application needs an instance of a glyph that

does not yet exist in the library, the VHDL template will used to create it. The new glyph

will then be kept in the library in case it is needed in the future. In this way, most of the

glyphs needed by applications can be pre-synthesized, speeding up the application

mapping process. In the initial manual application, the library was created with only
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the glyphs needed to implement START. By implementing more applications, the library

of pre-synthesized hardware glyphs will be enlarged.

All of the hardware glyphs were designed in such a way that any glyph can be

connected with any other glyph, assuming that the number of bits in the inputs and

outputs are equivalent. Special glyphs for padding and truncating bits can be used to

interface glyphs that otherwise could not be connected because of differing data widths.

In addition to data inputs and outputs, each hardware glyph had three standard control

lines associated with every data stream being input to or output from the glyph. These

control lines helped to emulate the data transfer characteristics of Cantata glyphs. The

three control lines were called Stream Valid (SV), Pixel Valid (PV), and Data Valid (DV).

Each hardware glyph handled these three control lines in a consistent way so that the

meaning of the control lines was the same through out an entire hardware

implementation.

Stream Valid was used to delimit the beginning and end of each stream of data. A single

stream of data consisted of one unit of data that was to be considered as a whole, such

as a single image. In Cantata, these units of data are transferred as one single data

structure. Since in hardware, these units are transferred one data value at a time, a

way of delimiting one stream from another was needed. The SV control line is normally

low. When a new stream begins, the SV line associated with that stream goes at high at

the first pixel of the stream and goes low after the last pixel. In other words, the SV line

is high whenever a stream is present and low whenever it is not. As long as least one

clock cycle is inserted between successive streams, the hardware glyphs could

distinguish between them.
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Pixel Valid was used to indicate if individual data values in a stream were actually part

of an image, or if they were meaningless data inserted as a spacer by a glyph that could

not produce a results every clock cycle. For instance, one method of performing

convolution in hardware can only produce a value every nine clock cycles. In this case,

eight out of every nine data will have the PV line set low; only the ninth data value,

which corresponds to an actual pixel, will have the PV line set high. All of the data

values will have the SV line set high, however, as there is only one stream of data

present.

The Data Valid line is used to signal whether a particular data value contains data that

is valid. These are data values that do represent valid pixels, so the PV line is high, but

the value stored in that pixel location may not be data that should be used in further

calculations. For instance, the pixels along the edges of an image that has been

convolved with a mask contain values that are not valid, as they are the result of both

the image and the zero-padded edges. These border pixels could skew statistical

calculations involving the image, so they are marked by having the DV line associated

with these pixels low, signaling that the data in these pixels is invalid. Table IV-3 shows

the different possible combinations of control lines and their meanings.

Table IV-3. Hardware Glyph Control Line Combinations and Meanings.

SV PV DV

0 X X If SV is low, there is not a data stream present. The values of PV
and DV have no meaning in this case.

1 1 1
In this case, SV, PV, and DV are all high, indicating that a valid
data stream is present, the current data represents a valid pixel
location, and the current data value is valid.

1 1 0 Since DV is low, the current data value is not valid, but it is a valid
pixel location and is part of a valid stream.

1 0 X
Since PV is low, the current value is not a valid pixel location. In
this case, the data is always invalid, so DV line has no meaning.
This data value is still part of a valid data stream.
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C. Differences Between Cantata and Hardware

At first glance, an application in Khoros Cantata may seem very similar to a schematic

for a hardware design. Each glyph can be seen to represent a functional block and the

connections between glyphs can be seen to represent wires or buses connecting the

functional units. Unfortunately, upon closer examination things are not quite that

simple. The Khoros Cantata software takes care of many details that are not apparent

from the graphical workspace. Operations such as converting between different data

types, synchronizing data, and transferring blocks of data between glyphs are handled

by software wrappers in each glyph. In a hardware design, these operations may need

to be performed by specific hardware modules that have no corresponding glyphs in the

Cantata workspace. Three different types of operations were found that were handled

significantly differently in Cantata and in hardware. These operations and the way they

are handled are discussed in the next three sections.

1) Data Transfer

In Cantata, data transfer from glyph to glyph is handled by the operating system. In the

most common operating mode, the data output by one glyph is written out to a

temporary file using system functions. The Cantata system records the name of the

temporary file and passes it to the glyph(s) that will use that data as their input(s).

These succeeding glyphs then use system functions to read in the data. The actual

transfer method involves storage on a hard drive, and the entire file is transferred at

one time. The data is stored in one of the Khoros data structures.

In the type of implementation that is suited for operation in FPGA-based hardware, data

is transferred between glyphs one value at a time, rather than an entire block of data.
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Instead of transferring an entire image, as in Cantata, only one pixel is transferred at

each clock cycle in hardware. The transfer method requires registers to hold the data

values as they are transferred between glyphs. In some cases, data must be stored in

RAM as an intermediate type of storage between glyphs. Even if data is stored in RAM,

though, data is still transferred one value at time.

To prevent problems from occurring when mapping to hardware, this difference in data

transfer must be accounted for. If a hardware glyph operates on each value in a stream

individually, than this difference in data transfer will not matter. For instance, a

hardware equivalent glyph that adds a constant to each value in a stream only needs to

work with one value at a time. So the equivalent hardware glyph can work with one

data value at a time as well and the mapping will be simple. A hardware equivalent

glyph that needs every data value in a stream before it can produce a valid output, such

as a glyph for finding the sum of all the pixels in an image, will not map to hardware

easily, unless the hardware glyphs take the differences in data transfer methods into

account. By creating hardware glyphs that do not bring the output SV line high until

they have processed the entire input stream, the mapping from Cantata is again made

simple.

2) Data Synchronization

In Cantata, each glyph is a separate C program that is called by the main routine.

These separate glyph routines are called whenever there is new data for all of their

inputs. If only some of the data needed is present, than the main routine will wait to

call the glyph routine until the missing data is also present. In this way, there are never

any data synchronization errors in Cantata. In the hardware implementation, however,

data must be synchronized because all of the hardware is synchronous and processes

whatever data is at the inputs at every rising clock edge.
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In Figure IV-1(a), a simple network of two hardware glyphs, designated X and Y, is

shown. Both glyphs run off the same clock signal, as do all of the hardware glyphs in

every FPGA. If images A, B, and C all become available at the same time, then their SV

lines will go high on the same clock cycle. When both input SV lines to glyph X go high,

it can add the two inputs, which are the first pixel from image A and the first pixel from

image B. On the next clock cycle, the SV line at the output of glyph X will go high, since

it can output valid data. However, at the same time that the SV lines for images A and B

go high, the SV line for image C goes high as well. One of input SV lines for glyph Y is

high, since it is the image C SV line, but the other input SV line for glyph Y is the

output SV line for glyph X, and it will not go high for another clock cycle. This means

that the inputs to glyph Y are out of sync, and the results in hardware will not be the

same as the results obtained in Cantata.

To fix this problem, a delay buffer, D, needs to be inserted before one of the inputs to

glyph Y, as shown in Figure IV-1(b). Now the SV line for image C is delayed one clock

cycle before it reaches glyph Y, synchronizing it with the output of glyph X. The data

synchronization for all glyphs with more than one input must be checked and fixed

throughout the entire application. If the correction factor needed is too large, than it will

be impractical to insert delay buffers to synchronize the data. Instead, the data must be

stored in RAM and synchronized by correct timing of the RAM read operations. It is

important to note that the glyphs inserted for data synchronization do not appear in the

original Cantata workspace. Instead, they are identified and inserted during the

mapping process, whether the mapping is done manually or automatically.
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(a) Unsynchronized Glyphs.
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(b) Glyphs Synchronized by Delay Insertion.

Figure IV-1. Data Synchronization Problem and Solution.
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3) Data Conversion/Operator Sizing

In Cantata, data conversion is handled automatically by the software. If the inputs to a

glyph are of different types, the mismatched data will by recast, using the standard

rules of the C language, adapted to prevent data loss. For instance, if an integer is

added to a floating-point number, the result will be a floating-point number. If a double

precision number is added to single precision number, the result will be double

precision. This is easy to do in software, since every operator can work on any valid

data type. For instance, one addition program can easily be made to work on any kind

of input data.

As discussed earlier, all of the hardware glyphs are parameterized for the number of

input bits. There are also different glyphs for signed and unsigned numbers, and when

floating point support is added to CHAMPION, there will be different glyphs for floating

point numbers. All of the glyphs are designed with the assumption that the inputs will

all be of the same type. So two unsigned five-bit numbers can be added together, but a

five-bit number cannot be added to a six-bit number, and an unsigned number cannot

be added to a signed number. If the inputs to a glyph are of different types, one of the

inputs must be converted to match the other. Since there are so many different possible

combinations of input types, there is no way for the glyph to do this automatically. Part

of the mapping process must therefore include checking to see that all of the inputs are

of the same type. If not, than one or more inputs must be converted to correct the

mismatch. This is done by inserting a hardware glyph to perform the correct

conversion. These conversion glyphs do not appear in the Cantata workspace. Just like

the glyphs inserted for data synchronization, they are not identified and inserted until

the mapping process.
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In addition to ensuring that data is converted to consistent types at the inputs of a

glyph, the glyph itself must also be of the correct size for the data being input. The

Cantata workspace will have the same adder glyph every place that addition is to be

performed, regardless of the type of data being added. In hardware, the addition glyph

selected must be chosen to match the type of numbers being added. If two five-bit

unsigned numbers are being added, an adder glyph for five-bit unsigned numbers must

be chosen from the library of pre-synthesized hardware glyphs. If that specific adder

glyph is not already in the library, it can be created using the VHDL template for adder

glyphs. In this way, the correct glyph for the data can always be made available. The

information as to the specific adder being used does not exist in the Cantata workspace.

The mapping process must determine which specific hardware glyph is needed, based

on the data being presented to it.

D.  Mapping Procedure

Once the glyph libraries had been completed and the differences between Cantata and

hardware were understood, the development of the mapping process could begin. A

simple example, actually a portion of START, will be used to illustrate the steps involved

in mapping from Cantata to hardware. The same techniques demonstrated with the

example were also used to map the entire START application.

1) Workspace Conversion

The first step in the process was to convert the Cantata workspace into a graph form

that could be manipulated more easily. The example hardware equivalent Cantata

workspace is shown in Figure IV-2. This workspace performs a simple low-pass filtering



56

Figure IV-2. Example Hardware Equivalent Cantata Workspace – Low Pass Filter.

operation. A one-dimensional stream of pixel values, representing a two-dimensional

image enters the workspace through the terminal labeled “IN.” The convstream glyph

produces nine data streams from the input. For each pixel in the input stream, nine

pixels are output from the convstream glyph, representing the eight neighboring pixels,

and the original pixel itself. An entire stream representing each of the neighboring

pixels is generated by the glyph, with zeros inserted for any pixel neighbor which falls

outside the original image. These pixel neighbor streams, along with the original

stream, can be used to implement a convolution with a 3 x 3 mask. In the example, all

of the streams are added together, and the result is divided by eight. This is equivalent

to convolution with the mask shown below:

8
1

111

111

111

 ⋅
















This is the same low-pass filter operation described in section III.A.1. The divide by

eight is implemented by a right shift of three places, and the output is clipped to a value
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Figure IV-3. Graph Form of Low-Pass Filter Workspace.

of 255, so that the data remains 8-bits wide. The equivalent graph form of this

workspace is shown in Figure IV-3. This graph form consists of a set of vertices, which

correspond to glyphs, and a set of edges, which correspond to the connections between

glyphs. The graph form is widely used for design automation and can easily be stored

and manipulated by computer, making it ideal for the automated system, CHAMPION.

For the manual implementation, the graph form was simply a convenient representation

that made the mapping process easier to visualize. The graph form was produced

manually by simply drawing the Cantata workspace as seen on the workstation screen.

In CHAMPION, the workspace data files will be automatically converted to a proprietary

data structure

2) Data Sizing and Glyph Selection

The graph form is missing much of the information necessary to complete the mapping

process. The vertices are identified by the type of operation each one represents, but

there is no information associated with the edges. This is not a problem in Cantata,

since all data is treated the same way. In hardware, however, the number of bits wide
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each connection is must be known. This information must be determined before the

mapping process can continue.

The information about the vertices is also not complete. The type of glyph is known

(e.g., addition, clip, etc.), but the exact version of the glyph is not known. As discussed

previously, it is not enough to know that an addition glyph is needed in hardware; the

input bit width of the glyph (and possibly other parameters) must be known as well. The

process of filling in this information for both the vertices and edges must proceed

simultaneously, since the inputs to the glyphs determine which specific glyph is

needed, and the output of the glyph determines the width of the input to the next glyph.

The bit width of the data entering the workspace must be supplied by the user. Other

information, such as the size of the image being processed, may also be required of the

user. For the convstream glyph, both the image size and input size must be supplied.

Once these two pieces of information are known, the correct version of the convstream

glyph, convstream_8_256_256 can be selected from the library, and the new designation

associated with that vertex of the graph. Each hardware glyph has an information file

associated with it that contains, among other things, information about the size of the

outputs of the glyphs. These information files are referred to as INF files, due to the file

extension used to designate them. By referring to the INF file for the

convstream_8_256_256 glyph, it can be determined that all of its outputs are 8 bits

wide. This information is then associated with the nine edges that represent the outputs

of the glyph.

Next, the four adders to the immediate right of the convstream glyph can be specified.

Since their inputs are 8 bits wide, the add_8 glyph is selected from the library, and that

designation is added to the corresponding vertices. The INF file indicates that the
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output of the cdd_8 glyph is 9 bits wide, so that information is associated with the

appropriate edges. This process is repeated for the next two adders, which are to the

immediate right of the four add_8 glyphs, and for the next adder to the right of those.

The appropriate edges are specified using information from the INF files. All of the

vertex and edge information determined so far can be seen in Figure IV-4. At this point,

a problem arises. The last adder gets one of its inputs from the convstream_8_256_256

glyph and the other from the add_10 glyph to its right. These two inputs are supplied by

edges with different widths. Since all of the hardware glyphs have been designed to have

all of their inputs be the same width, a glyph must be inserted to convert one of the

inputs to be the same as the other input. This can be done by inserting a

pad_high_8_11 along the edge running from the convstream_8_256_256 glyph to the

last adder. This glyph simply adds three zeros to the left of the most significant bit of

the input, producing an 11-bit output.

The pad_high_8_11 glyph does not exist in the Cantata workspace; it must be added

during the mapping process to ensure that the data is in the correct form. Although this

glyph does not have an equivalent in Cantata, it is otherwise the same as the other

hardware glyphs. It exists in pre-compiled, XNF form, it has an associated INF file, and

it handles the control lines correctly. Its function is very simple, however, and when the

entire design is synthesized, it will be represented by a wiring directive telling the FPGA

place and route software to connect three of the inputs of the adder to ground,

representing logical zero. By treating it the same as any other glyph, though, the

mapping process is simplified, since all vertices can be treated identically.

Once the pad glyph is added, the last adder can be specified and the annotation process

continued. The shift glyph shifts the data, but it does not change the number of bits.
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Figure IV-4. Data Alignment Problem in Low-Pass Filter Graph.

Since we want the output to be that same width as the input, a truncate_high_12_8

glyph must be added before the output. This is another data conversion glyph, like the

pad glyph. It has no corresponding glyph in the Cantata workspace. It simply truncates

the four most significant bits of the input. Since the inputs have been clipped to 255,

we know that the four high bits must be zero, so no information is lost. The data graph

with complete annotation for glyph type and connection width is shown in Figure IV-5.

3) Data Synchronization

The next step in the mapping process is data synchronization. Each glyph takes a

certain number of clock cycles from the time it is presented with a valid data stream to

output a valid data stream. This value is the latency of the glyph. It can be determined

from the VHDL template and is stored in the INF file for the glyph. Each edge is given a

time value. The edge at the output of a glyph is given a time value equal to the input

plus the latency of the glyph. By assigning the input to the graph time value T = 0, and
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Figure IV-5. Low-Pass Filter Graph with Data Widths and Glyph Types Annotated.

adding the latencies of each glyph in each term, data synchronization errors can be

found and corrected.

If the input is of our example workspace is given the time value T = 0, we must next

look at the latency of the Convstream_8_256_256 glyph. Its INF file indicates that the

latency is 257 clock cycles. This means that all of the outputs will be given the time

value T = 0 + 257 = 257. All of the adder glyphs have latency 1, so the outputs of all of

the add_8 glyphs will have time value T = 257 + 1 = 258. This process can be continued

in the same manner for the add_9, add_10, and pad_high_8_11 glyphs. The graph with

time annotations at this point can be seen in Figure IV-6. Each glyph has been

annotated with its latency.

There is a problem at the inputs to the add_11 glyph. One input has time value T = 257

and one input has time value T = 260. Since the time values are not equal, the data will

not be synchronized. To synchronize the data, a delay of D clock cycles must be

inserted before the input with the lowest time value, where D is the difference between
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Figure IV-6. Partial Time Annotation for Low-pass Filter Graph.

the two time values. In this case, D = 260 – 257 = 3 clock cycles. The delay can actually

be added in either of two places. It can be added before or after the pad_high_8_11. In

either case, the data synchronization problem will be corrected. If it is added before the

pad_high_8_11 glyph, the delay will have to buffer data that is 8 bits wide. If the delay

is added after the pad_high_8_11 glyph, it will have to buffer data that is 11 bits wide.

Since either position will work, it makes sense to use the position that will use less

hardware resources. It will require more hardware to buffer 11 bit data than to buffer 8

bit data, so the delay glyph should be added before the pad_high_11_8 glyph. Now that

the data size and delay values are known, the correct delay glyph can be specified. The

delay_3_8 glyph can now be added to workspace. The time value annotation process

continues through the reminder of the graph. Even though there are no more glyphs

with more than one input, and thus no potential for data synchronization errors, the

latency for the entire graph should be computed in case it is used as part of another,

larger graph. The completely annotated graph, which also shows the location of the

delay glyph, can be seen in Figure IV-7.
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Figure IV-7. Low-pass Filter Graph with Complete Time Annotation.

4) Partitioning

a) Background

At this point in the mapping process, the application graph is essentially complete. The

original Cantata workspace has been converted into a graph form, and the graph has

been annotated with the necessary information to specify the glyphs and the

connections between them. The differences between Cantata and hardware have been

accounted for by inserting glyphs to take care of data conversion and data

synchronization. Now the application must be partitioned to fit the available hardware.

This partitioning takes the form of mapping the vertices and edges of the application

graph onto the vertices and edges of the hardware graph. The hardware graph is a set of

vertices representing the hardware resources and a set of directed edges representing

the connections between them. Each vertex has a number representing the amount of

hardware resources available in the vertex, measured in CLBs. Each edge has a number

representing the number of available one-bit connections. The hardware graph for the
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Wildforce-XL board as used in this project is a simplified version of Figure III-6 and can

be represented simply as shown below. If a different CCM is to be used, or a different

configuration of the Wildforce-XL board, than the hardware graph would be changed

correspondingly. In this way the partitioning process is not specific to the CCM

architecture used.

Assigning the glyphs of the application graph to the resources on the hardware is called

spatial partitioing. If the application graph does not fit on the hardware graph, than the

CCM board must be reconfigured. This produces, in effect, another identical hardware

graph onto which the remainder of the application graph can be mapped. This

reconfiguration process can be repeated as many times as is necessary for the entire

application graph to be mapped to hardware. This mapping to different board

configurations is called temporal partitioning, since the board configurations are not

present simultaneously; they exist at different points in time.

b) Constraints

As the glyphs of the applications graph are mapped to the hardware graph, several

constraints  must be observed. First, the total number of CLBs used by the glyphs

mapped into each FPGA must not exceed the number of CLBs available in the FPGA.

The number of CLBs available in each FPGA is dependent on the board architecture

and is known in advance. This information is part of the hardware graph. The number

of CLBs used by each glyph is also known in advance. When the individual glyphs are

synthesized, the synthesis tool determines the number of CLBs used by the glyph and

CPE0
1296

PE1
576

PE2
576

PE3
576

PE4
57636 36 36 36
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this inrofmation is stored in the INF file. As each glyph is added to an FPGA, a running

total of the number of CLBs occupied must be kept to ensure that the capacity of the

FPGA is not exceeded.

The second constraint is that the number of edge connections in each direction is not

exceeded. As each glyph is assigned to an FPGA, connections from the glyph to glyphs

in other FPGAs must be made through the edges connecting the vertices of the

hardware graph. These edges have capacities, in terms of the number of bits that they

can carry from vertex to another, in each direction. In the hardware graph for the

Wildforce-XL as used in this project, the capacity of the connection from one FPGA to

the next is 36 bits in one direction and zero bits in the other direction. As each glyph is

added to an FPGA, the connection capacity used by connections to this glyph must be

calculated and checked to ensure that the available connection capacity is not

exceeded.

The third constraint is imposed by the architecture of the Wildforce-XL board. Each

FPGA on the board has one bank of associated  SRAM. There is a dual-port memory

controller  for each bank of SRAM. One port of the controller is used by the host

interface and one port is available to hardware in the FPGA. Since only one memeory

access port is available to the glyphs in the FPGA, the SRAM cannot be read and written

to at the same time. Given the design of the glyphs, only one glyph can access the RAM

in a given FPGA. This means that only one glyph that requires FPGA access can be

placed in each FPGA.

Reconfiguration imposes another consideration on partitioning. Whenever the board is

reconfigured, intermediate data streams must be stored in RAM while the

reconfiguration takes place. Then the intermediate data must be read out of RAM once
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the newly configured board start running again. This means that a RAM write glyph and

a RAM read glyph must be inserted into the application graph whenever a

reconfiguration takes place. These glyphs take up resources and may affect the

partitioning. Since these glyphs must access RAM, this also means that there cannot be

any other glyphs that need to access RAM in the same FPGA, which can also affect the

partition.

c) Partitioing Algorithm

There are numerous methods of partitioning a graph. There are many papers

addressing various partitioning algorithms. An overview of these, with an extensive list

of references can be found in [39]. The ones most commonly used are iterative

improvement methods that optimize the partition for some cost function. These can

often be computationally intensive. For the manual implementation, all that was

desired was one useable partition. Rather than use an automated partitioning method,

a simple partitioning heuristic was developed. A simple method was possible since the

Wildforce-XL board was being used in a simple linear array configuration. If a more

complicated configuration had been used, then a more complex partitioning method

would likely have been needed to produce an acceptable partition.

Partitioning was done at a macro level first. A macro is a set of hardware glyphs that

performs a specific function and that can be considered as one unit. The low-pass filter

used as an example earlier in this chapter is an example of a macro. Using macros

simplified the partitioning and synthesis of the application. A macro can be considered

to be a large glyph for partitioning purposes, but a macro can be broken down into

individual glyphs as needed to implement an efficient partitioning.
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Starting at the source node of the graph, the object was to pack in as many hardware

glyphs as possible in to the first FPGA. If a glyph could not fit in the first FPGA, it was

placed in the next FPGA to the right, as seen in the hardware graph on page 64.

Similarly, if placing a glyph in one FPGA violated the connection constraint or the RAM

access constraint, it was placed in the next FPGA to the right. If a glyph did not fit in

this next FPGA, it was placed in the one after that, as always working from left to right.

Each glyph was taken in turn and in placed in the first FPGA it could fit in without

violating any of the constraints. Once a glyph was placed, it was not moved again. Once

as much of the application as possible was placed on the hardware graph, a

reconfiguration was inserted and the remaining portion of the application graph was

placed on the new hardware graph. This process was repeated until all of the glyphs

had been assigned to a particular configuration of a specific FPGA.

5) Synthesis

Once partitioning was complete, it was necessary to create the programming files to

actually implement the desired hardware in the FPGAs on the Wildforce-XL board.

The programming files are created by first producing a VHDL file representing the

hardware desired for each FPGA. Since the glyphs themselves are pre-synthesized, it is

only necessary to identify the glyphs used, the connections between glyphs, and the

connections between glyphs and the other FPGAs. This can be done by using structural

VHDL. All of the behavioral information is in the pre-synthesized XNF files for each

glyph.

There are several other VHDL files supplied by the manufacturer of the Wildforce-XL

that specify the board architecture, internal interface logic for each FPGA, and global

signals present on the board. These files are combined by the synthesis tool with the
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one file created for the specific application to produce an XNF file describing the

hardware to be implemented in the FPGA. One of these XNF files is required for each

configuration of each FPGA.

The Xilinx place and route software is then used to map the hardware description in the

XNF file to the specific resources available in each FPGA. This results in a programming

file which specifies the configuration of all the function generators and storage units in

the CLBs, as well as the configuration of all of the programmable interconnections in

the FPGA and the configuration of the IOBs. This programming file can then be

downloaded to the FPGA to specify its behavior. One programming file is needed for

every configuration of each FPGA.

6) Host Code Generation

The Wildforce-XL board used for this project was installed in a Sun workstation. The

workstation acts as a host for the Wildforce-XL board, and a program running on the

host takes care of certain functions necessary to enable the Wildforce to be used. The

manufacturer of the Wildforce-XL board provides a driver and set of function calls to

communicate with the board. These function calls must be used to create the host

program, a C program created and compiled by the user. This host program must

initialize the Wildforce board and download the necessary programming files for each

FPGA. The host program also stores data to the SRAM on the Wildforce and reads result

data back from the SRAM. The host program reads image files from the workstation

hard drive to be used as input to the application, and writes the application results

back to the hard drive as another image file. In some cases, the formatting of the data

must be changed when it is moved from to SRAM to disk or vice versa.
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Each application will require a different host program, depending on the number of

reconfigurations, where data is transferred inside the application, and a number of

other factors. A small set of operations should be sufficient for most, if not all host

programs, however. In order to make it possible to generate this host code

automatically, a modular library was created by the author specifically for CHAMPION.

This library contains all of the functions that would be needed to create a host program.

By calling these functions in series, a working host program can be created. While this

was done manually for this project, it is hoped that the modular nature of this library

will enable the development of an automatic host code generator as part of the

CHAMPION system.

A pseudo-code representation of the host program used for running the START

algorithm on the Wildforce-XL is shown in Figure IV-8. Each line of pseudo-code

corresponds to a function call or small section of standardized code. First, the input

data is read from the workstation hard drive and formatted for storage in SRAM.

Communications are established between the board and the host computer, and then

the Wildforce-XL board and the crossbar are initialized. For each configuration of the

board, the board must be setup for configuration, and the programming files for that

configuration must be downloaded. Any data needed is written to SRAM, and then

execution is started. When the hardware is finished, it signals the host program using a

hardware interrupt. The host program then reads any necessary data from SRAM and

proceeds to the next configuration, if any. When the final configuration is complete, the

results can be written out to workstation hard drive.
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MAIN {

read in input image from disk;
format input image for storage in SRAM;
open session with Wildforce board;
initialize Wildforce board;
configure crossbar;

// First Configuration
setup board for configuration;
download first set of programming files to FPGAs;
write input data to Wildforce SRAM;
signal board to begin execution;
wait for interrupt signaling completion of execution;
read intermediate data from Wildforce SRAM;

// Second Configuration
setup board for configuration;
download second set of programming files to FPGAs;
write intermediate data back to Wildforce SRAM;
signal board to begin execution;
wait for interrupt signaling completion of execution;
read intermediate data from Wildforce SRAM;

// Third Configuration
setup board for configuration;
download third set of programming files to FPGAs;
write intermediate data back to Wildforce SRAM;
signal board to begin execution;
wait for interrupt signaling completion of execution;
read intermediate data from Wildforce SRAM;

// Fourth Configuration
setup board for configuration;
download fourth set of programming files to FPGAs;
write intermediate data back to Wildforce SRAM;
signal board to begin execution;
wait for interrupt signaling completion of execution;
read results from Wildforce SRAM;

format result data for disk storage;
write out result image to disk;
close Wildforce board;

}

Figure IV-8. Pseudo-Code for START Host Program.
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V. RESULTS

The entire START application was successfully run on the Wildforce board. Four board

configurations were required, an initial configuration and three reconfigurations.

Details of these configurations, the results of the running the application and timing

data will be presented in this chapter.

A. Configurations

The hardware equivalent Cantata workspace for the START application was converted

into graph form, as discussed in section IV.D.1. The glyph selection and connection

sizing discussed in section IV.D.2 was then applied to the graph. Finally, the data

synchronization procedure described in section IV.D.3 was applied. The final

application graph was then partitioned onto the Wildforce-XL graph using the algorithm

discussed in IV.D.4

Due to the partitioning constraints presented in section IV.D.4.b, the entire application

could not fit in one configuration of the Wildforce board. In total, four configurations

were required. Only two configurations would have been necessary if the number of

CLBs needed was the only consideration. However, the constraint preventing the

placement of two hardware glyphs requiring RAM access in the same FPGA made it

impossible to use fewer than four configurations. The later portions of the START

algorithm require frequent RAM access and relatively less computation, so the

constraint on RAM access dominated the glyph placement.
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Due to the repetition of the label function, and the necessity of beginning each

configuration with a RAM read and ending with a RAM write, some of the FPGAs ended

up with the same glyphs from one configuration to the next. This meant that not every

FPGA needed to be reprogrammed every time. Figure V-1 shows which FPGAs were

programmed for each board configuration.

A close examination of the resources used in each configuration illustrates how much

the RAM access constraint dominated the placement process. Table V-1 shows how

many of each hardware resource were used in each FPGA configuration. The total

resources used by any of the FPGAs did not exceed 57%. This number was not higher

due to the use of CLBs as the only measure of hardware resources. Keeping track of the
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Figure V-1. FPGA Programming for each Board Configuration.
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Table V-1. Hardware Resource Usage for Each FPGA Configuration.

FPGA
Config.

Calculated
CLB Usage

Actual
CLB Usage

Flip-Flop
and Latch
Usage

3-Input
FG Usage/
4-Input
FG Usage

I/O Pin
Usage

Total
FPGA
Resource
Usage %

CPE0.A
1159/1296
(89 %) 1296/1296

(100 %)
1853/2592
(71 %)

242/1296
(18 %)/
1601/2592
(61 %)

33/36
(92 %) 3696/6480

(57 %)

PE1.A
452/576
(78 %) 566/576

(98 %)
600/1152
(52 %)

114/576
(19 %)
691/1152
(59 %)

26/36
(72 %) 1405/2880

(49 %)

PE2.A
488/576
(85 %) 548/576

(95 %)
800/1152
(65 %)

84/576
(14 %)
559/1152
(48 %)

4/36
(11 %) 1443/2880

(50 %)

PEX.L 374/576
(65 %)

502/576
(87 %)

604/1152
(51 %)

53/576
(9 %)
386/1152
(33 %)

8/36
(22 %) 1043/2880

(36 %)

PE4.A
52/576
(9 %) 75/576

(13 %)
108/1152
(13 %)

11/576
(1 %)
51/1152
(4 %)

N/A 170/2880
(6 %)

CPE0.B
32/1296
(2 %) 53/1296

(4 %)
45/2592
(1 %)

10/1296
(1 %)
79/2592
(3 %)

5/36
(14 %) 134/6480

(2 %)

PE1.B
374/576
(65 %) 495/576

(85 %)
600/1152
(51 %)

53/576
(9 %)
374/1152
(32 %)

8/36
(22 %) 1027/2880

(36 %)

PE2.B
63/576
(11 %) 90/576

(15 %)
115/1152
(9 %)

30/576
(5 %)
99/1152
(8 %)

26/36
(72 %) 244/2880

(8 %)

PE3.B
0/576
(0 %) 6/576

(1 %)
2/1152
(1 %)

0/576
(0 %)
12/1152
(1 %)

8/36
(22 %) 14/2880

(1 %)

PE1.C
117/576
(20 %) 75/576

(13 %)
79/1152
(6 %)

12/576
(2 %)
100/1152
(8 %)

26/36
(72 %)

191/2880
(7%)

PE3.C
97/576
(17 %) 119/576

(20 %)
152/1152
(13 %)

30/576
(5 %)
121/1152
(10 %)

11/36
(31 %)

303/2880
(1 %)
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number of each type of function generators and the storage units separately would have

made the resource tracking more exact, at the expense of making partitioning more

complex. For CPE0, it can be seen that the calculated CLB usage was 89%, but the

actual CLB usage was only 57%. This is because the CLB usage figures from the

synthesis tool do not reflect the fact one glyph may use more of a specific hardware

resource than another may. To take an extreme case, two glyphs could both be

identified as using 100 CLBs, with one using all of the function generators in 100 CLBs

and one using all of the storage units in 100 CLBs. The partitioning algorithm would

assume that 200 CLBs would be needed for these two glyphs, when they could possibly

be placed in only 100 CLBs, by sharing the resources in those CLBs. This fact does not

account for the very low resource utilization in the later FPGA configurations, such as

CPE0.B and PE2.B. These were so low due to the RAM access constraint only allowed a

very few glyphs to be placed in each FPGA.

The first board configuration is shown in Figure V-2. The number of I/O lines used by

each signal leaving the FPGA is shown next to each signal. The number of CLBs used in

each FPGA is shown in the corner of the block representing the FPGA. Most of the

glyphs are shown as macros, to reduce the complexity of the graph. The actual

partitioning was done on an individual glyph level wherever necessary. Since this is the

first configuration and thus the beginning of the application, the input image must be

read in before anything else can be done. This means it must be read in CPE0. This is

done by a RAM read glyph, which is represented by the block labeled “Input Image” in

the figure. The first processing operation, low-pass filtering, was implemented by a

macro, also placed in CPE0. Two other large macros, for Sobel filtering and for

computing the intensity statistics, fit into CPE0. No other macros or individual glyphs

could fit into CPE0, as it was found that either the resource constraint, the I/O

constraint, or the RAM access constraint would be violated by the addition of any more
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Figure V-2. First Board Configuration.

glyphs. Once it was placed and routed, all 1296 CLBs of CPE0 were used, although the

actual resource usage was only 57%. Of the 36 I/O lines to PE1, 33 were used.

PE1 could hold two macros, for computing the edge statistics and checking the

intensity statistics, as well as one RAM buffer. Its calculated CLB usage was 78%,

although the actual resource usage was only 49%. PE2 and PE3 also reached fairly high

levels of calculated CLB usage, 85% and 65% respectively, although the actual resource

usage was much lower. The I/O usage was also well within the constraints. Since at

least one reconfiguration was needed, a RAM write was needed and was inserted into

the application graph. It had to go into PE4, but because of the RAM access constraint,

no other glyphs could be placed in PE4 with it, as any possible glyphs also needed RAM



76

access. The calculated CLB usage of was thus only 13%. This is the first example of

how the RAM access constraint prevented efficient usage of all of the FPGA resources.

The second board configuration is shown in Figure V-3. The RAM access constraint

prevented the placement of the RAM buffer in CPE0, and the first glyph in the Find

First Target Pixel macro had too many I/O lines for placement in CPE0. Consequently,

the only glyph that could be placed in CPE0 was the RAM read glyph. This meant that

only 2% of the hardware resources in the FPGA were used. PE1, PE2, and PE3 were

utilized to a much higher degree, although the actual resource utilization remained low.

PE4 had the same problem as in the previous configuration and was also underutilized.

The third board configuration is shown in Figure V-4. The same RAM access problems
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Figure V-3. Second Board Configuration.



77

53

72PE4PE2

PE3PE1

CPE0

Write to
RAM - C

Read from
RAM - B

5

500

Find First
Target Pixel

Mask Target
Pixels

RAM

4 4

Mark Frame
Pixels

500

Find First
Target Pixel

Mask Target
Pixels

RAM

4 4

Mark Frame
Pixels

0

Figure V-4. Third Board Configuration.

were also found in CPE0 and PE4 as were found in the second configuration. Due to the

high number of RAM accesses required in the remainder of the application graph,

nothing could be placed in PE3, except for the RAM write glyph put in PE4. It was

placed in PE4 to be consistent with the other configurations, simplifying the host code.

The fourth, and final, configuration is shown in Figure V-5. Due to the large number of

RAM access glyphs, as compared to other glyphs, the resource utilization for this

configuration was very low. The aggregate resource utilization for the five FPGAs in the

fourth configuration was only 6%. While the START algorithm had perhaps an

unusually high number of operations requiring RAM access, the low resource usage

engendered by the RAM access constraint is a concern that will have to be addressed in

the CHAMPION system.



78

53

72PE4PE2

PE3PE1

CPE0

Input
Image

11

75

90

119

Read from
RAM - C

RAM

RAM

Output
Image

4
11

Find Max
Intensity

11

4 11 11

11

Combine Image
and Frames

Figure V-5. Fourth Board Configuration.

B. Application Performance

1) Target Recognition

The entire test set of 40 images was run through the START application on the

Wildforce board. The targets identified, the targets missed, and the number of false

detections were recorded for each test image and compared to the results obtained by

running the same test images through the hardware-equivalent Cantata

implementation. The same results were obtained from the hardware implementation as

were obtained from the hardware-equivalent Cantata implementation. These results are

shown in Table V-2. The implementation would not be considered successful had the

same results not been obtained in each implementation, so this was an important

result.
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Table V-2. Results from Cantata and Hardware Implementations of START.

Test
Image #

Original
Image

Filename

Targets
Detected

Targets
Present

False
Detections

Targets
Detected

Targets
Present

False
Detections

Cantata Implementation Hardware Implementation
1 nov10903.xv 3 4 0 3 4 0
2 nov10955.xv 2 4 0 2 4 0
3 nov11000.xv 1 3 0 1 3 0
4 nov11205.xv 3 4 0 3 4 0
5 nov11230.xv 3 4 0 3 4 0
6 nov11326.xv 2 3 0 2 3 0
7 nov11329.xv 2 4 0 2 4 0
8 nov11348.xv 3 4 0 3 4 0
9 nov11350.xv 3 3 0 3 3 0
10 nov11442.xv 3 3 0 3 3 0
11 nov11445.xv 4 4 0 4 4 0
12 nov31001.xv 1 1 0 1 1 0
13 nov31003.xv 2 1 0 2 1 0
14 nov31007.xv 2 2 0 2 2 0
15 nov31025.xv 1 1 0 1 1 0
16 nov31102.xv 1 1 0 1 1 0
17 nov31110.xv 1 1 0 1 1 0
18 nov31112.xv 0 1 0 0 1 0
19 nov31115.xv 1 1 0 1 1 0
20 nov31300.xv 1 1 0 1 1 0
21 nov31301.xv 1 1 0 1 1 0
22 nov31304.xv 1 1 0 1 1 0
23 nov31337.xv 1 1 0 1 1 0
24 nov31339.xv 3 2 0 3 2 0
25 nov31342.xv 1 1 0 1 1 0
26 nov31345.xv 3 2 0 3 2 0
27 nov31447.xv 1 1 0 1 1 0
28 nov31452.xv 0 1 0 0 1 0
29 nov31530.xv 1 1 0 1 1 0
30 nov31535.xv 1 1 0 1 1 0
31 nov31545.xv 1 1 0 1 1 0
32 nov31546.xv 1 1 0 1 1 0
33 nov31550.xv 0 0 0 0 0 0
34 nov31553.xv 0 1 0 0 1 0
35 nov31602.xv 1 1 0 1 1 0
36 nov31604.xv 1 1 0 1 1 0
37 nov40857.xv 0 1 3 0 1 3
38 nov40903.xv 1 1 0 1 1 0
39 nov40905.xv 2 2 0 2 2 0
40 nov40907.xv 2 2 0 2 2 0
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2) Processing Time

The other test of the hardware implementation was how much faster it could process

images than the Cantata implementation. The host program was written to include code

to measure the time taken by each part of the process of running START on the

Wildforce-XL board, broken down into Wildforce-XL configuration time, data transfer

time (from the host RAM to and from the local RAM), and the actual hardware execution

time. The remaining time consisted of the Wildforce-XL setup time and the time to

actually run the host program. Timing varied according to server load, but the average

of 50 runs gave the following values:

Total time to process one image : 6770 ms

Board configuration time : 5159 ms

Host code run time +
Wildforce setup time : 1544 ms

Data transfer time :     34 ms

Hardware execution time :     33 ms

These results are also shown graphically in Figure V-6. The time to process one image is

greatly dominated by the time needed to configure the board. The actual time to process

one image is only 33 milliseconds, as compared to the nearly seven seconds needed for

the entire execution. The hardware implementation was still more than eight times

faster than the standard Khoros implementation and 156 times faster than the

hardware equivalent Cantata implementation. However, if the reconfiguration time

could be eliminated, the hardware implementation would be 36 times faster than the

standard Khoros implementation and over six hundred times faster than the hardware

equivalent Cantata implementation. Finally, if the hardware was set up to process
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Figure V-6. Breakdown of Image Processing Time for Hardware Implementation.

images sequentially, with no setup time or configuration time necessary, than the

hardware implementation would be over 1700 times faster than the standard Khoros

implementation and over 32 thousand times faster than the hardware equivalent

Cantata implementation.
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VI. CONCLUSIONS

The START algorithm was successfully implemented on the Wildforce board using the

hardware glyphs and the implementation strategy developed for this project. This is

important not only in the context of this project, but in the larger context of the

CHAMPION project as well. This success validates the design choices that were made as

to the basic structure of the hardware glyphs, as well as the techniques used to perform

the mapping. This will help form a foundation for the development of the automated

system. Some performance issues were found, related to the high time cost of

reconfiguration and the constraints placed on partitioning by the RAM access

constraint. The direction of future work on the CHAMPION project can be guided by

some of the results of this research. These conclusions will be discussed in greater

depth in the remainder of this chapter.

A. Glyph Libraries

The hardware equivalent glyph libraries were sufficient to implement a relatively

complex application in Cantata. Future application implementations will likely require

the addition of more glyphs to the glyph libraries, thus expanding the range of

applications that can be executed in Cantata while maintaining hardware compatibility.

The hardware glyphs were shown to perform the same on the CCM as the

corresponding hardware equivalent glyphs did in Cantata. This shows that despite the

differences in execution between Cantata and hardware, the use of glyphs in the two

implementations can be made to be congruent.

The hardware glyph design was shown to be satisfactory for use in CHAMPION system.

The concept of using parameterizable VHDL templates to produce the specific pre-
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synthesized glyphs needed proved to be a viable approach to the creation of hardware

glyphs. The control lines and other glyph interface details worked as designed, allowing

glyphs to be easily and automatically connected together without consideration of the

specific glyphs being connected.

One problem that arose with the hardware equivalent Cantata workspaces is that they

were much slower to execute than standard Cantata workspaces. A small part of the

problem was due to the larger number of glyphs needed in the hardware equivalent

workspaces. This may be alleviated by identifying common macros and compiling them

into single Cantata glyphs, which will run much faster than a collection of smaller

glyphs connected to perform the same function. This macro approach would also make

application development easier. Identifying useful macros will require careful study of

the application domain, however. The main reason that the hardware equivalent

workspaces were so much slower is related to the way that Cantata handles custom

glyphs. This problem is supposedly remedied in the newest version of Khoros and it is

hoped that updating to the new version will provide a substantial increase in speed for

the hardware equivalent workspaces.

One limitation of the current glyph libraries is that there is very little support for control

structures. The control in the START application is very limited, and it is inherent in the

data flow itself. To implement a wide range of applications, a method of handling

complex control structures in hardware must be designed, and a set of corresponding

hardware equivalent glyphs developed for Cantata. The implementation of explicit

control structures may require modifications of the mapping process as well.
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B. Mapping Procedure

The manual mapping procedure worked, although it was very tedious and time-

consuming. It took over 250 hours to complete the manual mapping, not including the

time spent developing glyphs and mapping procedures. All of the procedures in

mapping are, by design, well suited to implementation by computer program, so

automating the mapping process should be feasible. Some portions of the mapping

process may prove to require some human guidance, however, so complete automation

may not be achievable.

There are more sophisticated algorithms for data synchronization that can minimize the

number of delay buffers added and reduce the hardware complexity. While these are too

complex to be implemented manually, it may be worthwhile to include these in the

automated system. Similarly, they are much more robust partitioning algorithms that

will work with a much wider range of hardware architectures and produce better results

than the simple heuristic method used here. An automated partitioning method should

probably track all of the FPGA resources separately in order to achieve better hardware

utilization than can be obtained by tracking CLBs alone.

One portion of the automated mapping process that may require much more

investigation is the generation of host code. While the manual creation of host was done

in a modular manner to aid in the automation of the process, the exact mechanism by

which the requirements of the host code will be determined is not clear to this author.

Portions of the host code generation may have to be guided to some extent by the user.

Different boards may have very different host interfaces and thus very different host

code requirements, making automation even more difficult.
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C. Performance

The performance of the hardware implementation was not as good as had been hoped.

This was due largely to the amount of time needed for reconfiguring the Wildforce-XL

board. This is a common problem in CCM architectures, although the Wildforce-XL has

a particularly long reconfiguration time. There are two ways to reduce the total

reconfiguration time; either the time per reconfiguration must be reduced or the

number of reconfigurations must be lessened. The time per reconfiguration is

determined by the architecture, so that cannot be changed except by using a different

CCM. The only way to reduce the reconfiguration time is thus to minimize the number

of reconfigurations needed.

Since reconfiguration time is a very large percentage of the total image processing time,

reducing the number of reconfigurations would have a substantial impact on overall

performance. Better partitioning could reduce the number of FPGAs needed, but the

limiting factor was RAM access. The START algorithm had 13 glyphs that required RAM

access. With five FPGAs available per configuration, that means that at least 3 total

configurations would be needed to limit the number of RAM access glyphs per FPGA to

one. Each configuration after the first requires two additional RAM access glyphs, so a

total of 17 FPGAs are required to implement START. This means that despite the very

low resource utilization, the four total configurations used are the minimum needed for

implementing START.

Clearly some way of having more than one RAM access glyph per FPGA would be

desirable. This will difficult to do on the Wildforce-XL board without combining multiple

RAM access glyphs into one memory controller module, which would require some
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complicated graph transformations and require data scheduling, making the mapping

process much more complex.

D. Future Work

Many challenges await the developers of CHAMPION. The glyph libraries must be

expanded to allow the implementation of a wider range of applications. The creation of

macros will have to be studied to determine which macros are needed and how best to

implement their use into the mapping process. This may also be guided by the

implementation of new applications. The ability to utilize more complex control

structures will also likely be needed. This will require additional hardware development

and potentially changes in the mapping procedure.

The mapping process must be generalized for other CCM architectures and FPGA types.

New, more flexible, partitioning algorithms must be implemented and the partitioning

process should be optimized to make more efficient use of hardware resources. A

method of automatically generating host code may also be needed. However, even

partial automation of the mapping process will greatly increase designer productivity,

although partial automation, as opposed to complete automation, will limit the pool of

potential users.

To increase the performance of applications on the Wildforce and similar CCMs, a way

around the RAM access constraint must be found. It is not clear what form the solution

to this problem may take. Additional performance gains may be realized if a way can be

found to exploit the implicit parallelism of applications, thus leveraging one of the most

important strengths of CCMs.
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Despite the many challenges remaining, the manual implementation of the START

application validated many of the basic components and concepts behind the

CHAMPION project, including the glyph library structure and design, as well as the

basic mapping and partitioning procedures. It is hoped that the research presented

herein will help provide some of the underpinnings for future successes by the

CHAMPION team at the University of Tennessee, and perhaps in some small way, other

researchers working on related problems.
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