
: Power and
Performance Evaluation of a

Programmable Pipelined Datapath

Benjamin A. Levine and Herman H. Schmit

Dept. of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA USA 15213

blevine@cmu.edu, herman@ece.cmu.edu

ben
(c) B. Levine 2002

Acknowledgements

Research Sponsors
• DARPA
• NSF
• Northrop Grumman

Electronic Systems
• Pittsburgh Digital

Greenhouse

CMU Faculty
Seth Goldstein

CMU Graduate Students
• Mihai Budiu
• Hari Cadambi
• Matt Moe
• R. Reed Taylor
• Andrew Tsai
• David Whelihan

ben
(c) B. Levine 2002

Is a Reconfigurable Computing
Device

Reconfigurable
Computing

Device =
A Computing Device which can be
reconfigured for each different
application that it runs, by changing the
functionality of its hardware and the
way that its hardware is connected.

was developed by students and
faculty at Carnegie Mellon.

ben
(c) B. Levine 2002

Why Reconfigurable
Computing?

More Design Effort

PERFORMANCE

ADAPTABILITY

ASIC CPUDSP
NPRECONFIGURABLE COMPUTING

ben
(c) B. Levine 2002

Why Reconfigurable
Computing?

We want performance and adaptability:
– Performance of an ASIC

Implement application as custom datapath to:
• Increase parallelism.
• Decrease memory traffic (through locality).
• Increase performance.
• Use less power.

– Adaptability of a CPU.

Completely reprogram as needed for new
applications.

ben
(c) B. Levine 2002

Why NOT Reconfigurable
Computing?

• FPGA design is more like HW than SW
– No real C to FPGA yet, so must use HDL

• FPGA configuration is fixed to one FPGA
– Must redesign to gain performance on larger FPGAs
– Can't use design on FPGA with fewer resources.
– Compares poorly to SW for microprocessors:

• No portability
• No scalability

ben
(c) B. Levine 2002

Solution:
Use A Virtual Architecture

Different:
* Technology
* $$
* Performance

App Architecture

Execution

Compilation

Compile ONCE! Run Everywhere!

Through Ultra-high
speed reconfiguration.

ben
(c) B. Levine 2002

Virtual Architecture
• Compile to virtual machine

– Makes compilation easier
– Compile from high-level language (DIL)
– Binaries decoupled from specific hardware
– Scalable / Re-usable

• Restrict the model of computation to
pipelined datapaths
– Makes virtual architecture possible

ben
(c) B. Levine 2002

Pipelined Datapaths Xin

Yout

*W0

*W1 +

*W2 +

Xin
for (i=0; i<maxIn; i++)

{

y[i]=0;

for (j=0; j<Taps; j++)

{

y[i] += x[i+j]*w[j];

}

}

1

2

3

4

5

6

Lots of apps fit:
• DSP
• Image Processing
• Cryptography
• Packet Processing

7

8

Yout

ben
(c) B. Levine 2002

Fabric
PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

A programmable, pipelined
data path containing:

Processing elements
Local interconnect
Pass Registers
Unbounded Depth

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

ben
(c) B. Levine 2002

Pipeline Virtualization

9 virtual stripes
stored in
configuration
cache

3 physical
stripes

ben
(c) B. Levine 2002

Pipeline Virtualization

2

1

3

45

6

• Stripes are connected in a ring.
• Data can always pass between adjacent virtual

stripes in the physical fabric.

ben
(c) B. Levine 2002

Performance Scaling

Real
Device

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

2 Stripes
2 Outputs / 6 Cycles

4 Stripes
4 Outputs / 6 Cycles

6 Stripes
6 Outputs / 6 Cycles

ben
(c) B. Levine 2002

Chip Structure

Stripe 1

Stripe 15

Stripe 8

Stripe 7

Stripe 0PE PE PEPE

Pass Register File
Connections

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

Configuration Store

R0 State Store

Input Queue

Output Queue

..

.
..
.

• Ring Structure
– Interleaved

• Global Buses
– Inputs
– Outputs
– Configuration
– State Storage

• 16 Stripes
– 16 8-bit PEs in

each stripe

ben
(c) B. Levine 2002

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses

To
 &

 F
ro

m
ot

he
r P

Es
To

 P
E n+

1
To

 P
E n+

1

Fr
om

 P
E

n-
1

To
 P

E n+
1A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

St
at

e
R

es
to

re
 B

us
G

lo
ba

l O
ut

pu
t B

us
S

ta
te

 S
to

re
 B

us

FUNCTIONAL
UNIT

PASS
REGISTER

FILE

INTERCONNECT

ben
(c) B. Levine 2002

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses

To
 &

 F
ro

m
ot

he
r P

Es
To

 P
E n+

1
To

 P
E n+

1

Fr
om

 P
E

n-
1

To
 P

E n+
1A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

St
at

e
R

es
to

re
 B

us
G

lo
ba

l O
ut

pu
t B

us
S

ta
te

 S
to

re
 B

us

Eight-bit
Buses

ben
(c) B. Levine 2002

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses

To
 &

 F
ro

m
ot

he
r P

Es
To

 P
E n+

1
To

 P
E n+

1

Fr
om

 P
E

n-
1

To
 P

E n+
1A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

St
at

e
R

es
to

re
 B

us
G

lo
ba

l O
ut

pu
t B

us
S

ta
te

 S
to

re
 B

us

Crossbar
Interconnect

ben
(c) B. Levine 2002

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses

To
 &

 F
ro

m
ot

he
r P

Es
To

 P
E n+

1
To

 P
E n+

1

Fr
om

 P
E

n-
1

To
 P

E n+
1A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

St
at

e
R

es
to

re
 B

us
G

lo
ba

l O
ut

pu
t B

us
S

ta
te

 S
to

re
 B

us

Flexible, Cascadable
Shifters

ben
(c) B. Levine 2002

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses

To
 &

 F
ro

m
ot

he
r P

Es
To

 P
E n+

1
To

 P
E n+

1

Fr
om

 P
E

n-
1

To
 P

E n+
1A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

St
at

e
R

es
to

re
 B

us
G

lo
ba

l O
ut

pu
t B

us
S

ta
te

 S
to

re
 B

us

Eight-bit
Cascadable
Functional Units

ben
(c) B. Levine 2002

Functional Unit Architecture

3-LUT

carry
enable

3-LUT

carry
enable

...

A B

Ze
ro

 /
C

ar
ry

 /
X

In
te

rc
on

ne
ct

Fr
om

 P
E

n-
1

To
 P

E n+
1

Xout

Cout

Zout

Functional Unit Output (8-bts)

8

Bit 7 Bit 0Bit 6-1

ben
(c) B. Levine 2002

PE Architecture

Register File

shiftA

shiftB

R0

7

6

5

4

3

2

1

Functional Unit

constconst

7

77

7

33

From Previous
Stripe

To Next Stripe

Global Busses

To
 &

 F
ro

m
ot

he
r P

Es
To

 P
E n+

1
To

 P
E n+

1

Fr
om

 P
E

n-
1

To
 P

E n+
1A B

All wires are 8-bits unless otherwise noted

This vertical bus connects to one horizontal
wire, depending on which PE it is.

G
lo

ba
l I

np
ut

 B
us

St
at

e
R

es
to

re
 B

us
G

lo
ba

l O
ut

pu
t B

us
S

ta
te

 S
to

re
 B

us

Pass Register File

ben
(c) B. Levine 2002

Pass Register File
• Two values can be read in each stripe.
• PE can write one new value

to a single register.
• Otherwise: each register is written

with value from previous stripe.

From Previous Stripe

To Next Stripe

Crossbar

FU

ben
(c) B. Levine 2002

Pass Register File Operation

4

2

1

3

5

1 FU

2 FU

3 FU

FU4

FU5

ben
(c) B. Levine 2002

Pass Register Problem

Old register values cycle through fabric endlessly.
Extra switching consumes power.

ben
(c) B. Levine 2002

Pass Register File Operation

4

5
last use

last use

11 FU

22 FU

3 FU 3

FU4

FU5

ben
(c) B. Levine 2002

Solution: Register Kill
Configuration bits control
which registers are read….Configuration word

From Previous Stripe

To Next Stripe

Crossbar

FU

ben
(c) B. Levine 2002

Solution: Register Kill

Crossbar

Configuration word

To Next Stripe

Configuration bits control
which registers are read….

From Previous Stripe

FU

ben
(c) B. Levine 2002

Solution: Register Kill

From Previous Stripe

Crossbar

Configuration word

…and which are "killed" by
clearing the register.

Last use for
variable in

this register

…they can also control
which registers are passed…

Variable in
this register
used later.

To Next Stripe

FU

ben
(c) B. Levine 2002

Solution: Register Kill

From Previous Stripe
Configuration word

"Last use" bit controls whether
read register are killed or passed

This requires only
minimal additional HW.

To Next Stripe

Crossbar

FU

ben
(c) B. Levine 2002

Implemented Hardware Design

• Industrial Partner: ST Microelectronics
• Process Technology: 0.18 micron, 6 metal

3.65 million transistors
56 sq. mm die
120 MHz fabric operation
60 MHz I/O operation
< 3W power
Reconfigure entire fabric in 133ns.
Switch applications in 8ns.

ben
(c) B. Levine 2002

CUSTOM:
PipeRench Fabric

STANDARD CELLS:
Virtualization & Interface Logic

Configuration Cache
Data Store Memory

STRIPE

PE

ben
(c) B. Levine 2002

Fabric Layout

PE

ben
(c) B. Levine 2002

PE Layout

Register
File

Bus Drivers

MUXes
&

Shifters
ALU

ben
(c) B. Levine 2002

PipeRench Status
• Chips running in our lab at CMU.
• Applications running at:

– 132 MHz fabric speed
– 66 MHz I/O speed.

• Decimation and correlation kernel from
SAR ATR algorithm running on HW:
– At 66 MHz, processes radar imagery at

over 50 M Pixels/s.
– consumes less than 800 mW

ben
(c) B. Levine 2002

Register Kill Effectiveness
• Worst case power consumption due to pass

register switching:
~ 150 mW @ 120 MHz.
> 25% of the total chip core power

consumption.
~ 50% fabric power consumption.

• Actual power savings varies by application,
but can approach worst case.

• Required only trivial hardware modification
and a simple additional assembler pass.

ben
(c) B. Levine 2002

Other Performance
Encryption
• IDEA Encryption: 450 Mbps

– Key is compiled into hardware
– Compilation (including P&R) takes less than one minute

• Comparison:
– 800 MHz Pentium III Xeon: 75.4 Mbps

Filtering
• 40 Tap 16-bit FIR Filter

– 41.8 MSPS
• Comparable to high-end DSPs

– Much lower clock rate
– Without a full multiplier
(taps are compiled into hardware)

ben
(c) B. Levine 2002

Conclusions
• A practical virtual machine for pipelined

programmable datapaths is possible.
• Virtual hardware ⇒ physical hardware:

– Completely self-managed on chip at run-time.
– Enabled by fast incremental reconfiguration.

• Virtual architecture allows:
– Easier compilation
– Forward compatibility / Scalability

• Implemented chip has high performance and
low power requirements

ben
(c) B. Levine 2002

Future of PipeRench
• CMU has granted an exclusive worldwide license for

PipeRench to SiliconMöbius.
• SiliconMöbius is commercializing PipeRench

– Producing a family of binary-compatible chips for streaming
applications like packet processing, cryptography, DSP,
image and video processing.

– Expanding the application model to include a wider range
of applications.

http://www.siliconmobius.com info@siliconmobius.com

	: Power and Performance Evaluation of a Programmable Pipelined Datapath
	Acknowledgements
	Why Reconfigurable Computing?
	Why Reconfigurable Computing?
	Why NOT Reconfigurable Computing?
	Solution: Use A Virtual Architecture
	Virtual Architecture
	Pipelined Datapaths
	Fabric
	Pipeline Virtualization
	Pipeline Virtualization
	Performance Scaling
	Chip Structure
	PE Architecture
	PE Architecture
	PE Architecture
	PE Architecture
	PE Architecture
	Functional Unit Architecture
	PE Architecture
	Pass Register File
	Pass Register File Operation
	Pass Register Problem
	Pass Register File Operation
	Solution: Register Kill
	Solution: Register Kill
	Solution: Register Kill
	Solution: Register Kill
	Implemented Hardware Design
	Fabric Layout
	PE Layout
	PipeRench Status
	Register Kill Effectiveness
	Other Performance
	Conclusions
	Future of PipeRench

