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Is a Reconfigurable Computing 
Device

Reconfigurable 
Computing 

Device =
A Computing Device which can be 
reconfigured for each different 
application that it runs, by changing the 
functionality of its hardware and the 
way that its hardware is connected.

was developed by students and 
faculty at Carnegie Mellon.
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Why Reconfigurable 
Computing?

More Design Effort

PERFORMANCE

ADAPTABILITY

ASIC CPUDSP
NPRECONFIGURABLE COMPUTING
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Why Reconfigurable 
Computing?

We want performance and adaptability:
– Performance of an ASIC

Implement application as custom datapath to:
• Increase parallelism.
• Decrease memory traffic (through locality).
• Increase performance.
• Use less power.

– Adaptability of a CPU.

Completely reprogram as needed for new 
applications.
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Why NOT Reconfigurable 
Computing?

• FPGA design is more like HW than SW
– No real C to FPGA yet, so must use HDL

• FPGA configuration is fixed to one FPGA
– Must redesign to gain performance on larger FPGAs
– Can't use design on FPGA with fewer resources.
– Compares poorly to SW for microprocessors:

• No portability
• No scalability
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Solution: 
Use A Virtual Architecture

Different:
* Technology
* $$
* Performance

App Architecture

Execution

Compilation

Compile ONCE! Run Everywhere!

Through Ultra-high 
speed reconfiguration.
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Virtual Architecture
• Compile to virtual machine

– Makes compilation easier
– Compile from high-level language (DIL)
– Binaries decoupled from specific hardware
– Scalable / Re-usable

• Restrict the model of computation to 
pipelined datapaths
– Makes virtual architecture possible
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Pipelined Datapaths Xin

Yout
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Xin
for (i=0; i<maxIn; i++)

{

y[i]=0;

for (j=0; j<Taps; j++)

{

y[i] += x[i+j]*w[j];

}

}
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Lots of apps fit:
• DSP
• Image Processing
• Cryptography
• Packet Processing
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Fabric
PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

A programmable, pipelined
data path containing:

Processing elements
Local interconnect
Pass Registers 
Unbounded Depth

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect
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Pipeline Virtualization

9 virtual stripes
stored in 
configuration 
cache

3 physical
stripes
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Pipeline Virtualization

2

1

3

45

6

• Stripes are connected in a ring.
• Data can always pass between adjacent virtual 

stripes in the physical fabric.
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Performance Scaling

Real
Device
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2 Outputs / 6 Cycles
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Chip Structure

Stripe 1

Stripe 15

Stripe 8

Stripe 7

Stripe 0PE PE PEPE

Pass Register File
Connections

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

Configuration Store

R0 State Store

Input Queue

Output Queue

..

.
..
.

• Ring Structure
– Interleaved

• Global Buses
– Inputs
– Outputs
– Configuration
– State Storage

• 16 Stripes
– 16 8-bit PEs in 

each stripe
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PE Architecture
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PE Architecture
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PE Architecture
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PE Architecture
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PE Architecture

Register File
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Functional Unit Architecture
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PE Architecture

Register File
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Pass Register File
• Two values can be read in each stripe.
• PE can write one new value 

to a single register.
• Otherwise: each register is written 

with value from previous stripe.  

From Previous Stripe

To Next Stripe

Crossbar

FU
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Pass Register File Operation
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Pass Register Problem

Old register values cycle through fabric endlessly. 
Extra switching consumes power.
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Pass Register File Operation

4
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Solution: Register Kill
Configuration bits control 
which registers are read….Configuration word

From Previous Stripe

To Next Stripe

Crossbar

FU
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Solution: Register Kill

Crossbar

Configuration word

To Next Stripe

Configuration bits control 
which registers are read….

From Previous Stripe

FU
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Solution: Register Kill

From Previous Stripe

Crossbar

Configuration word

…and which are "killed" by 
clearing the register.

Last use for 
variable in 

this register

…they can also control 
which registers are passed…

Variable in 
this register 
used later.

To Next Stripe

FU
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Solution: Register Kill

From Previous Stripe
Configuration word

"Last use" bit controls whether 
read register are killed or passed

This requires only 
minimal additional HW.

To Next Stripe

Crossbar

FU
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Implemented Hardware Design

• Industrial Partner: ST Microelectronics
• Process Technology: 0.18 micron, 6 metal

3.65 million transistors
56 sq. mm die
120 MHz fabric operation 
60 MHz I/O operation
< 3W power
Reconfigure entire fabric in 133ns.
Switch applications in 8ns.
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CUSTOM:
PipeRench Fabric

STANDARD CELLS:
Virtualization & Interface Logic

Configuration Cache
Data Store Memory

STRIPE

PE
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Fabric Layout

PE
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PE Layout

Register
File

Bus Drivers

MUXes
&

Shifters
ALU
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PipeRench Status
• Chips running in our lab at CMU.
• Applications running at:

– 132 MHz fabric speed
– 66 MHz I/O speed.

• Decimation and correlation kernel from 
SAR ATR algorithm running on HW:
– At 66 MHz, processes radar imagery at 

over 50 M Pixels/s. 
– consumes less than 800 mW
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Register Kill Effectiveness
• Worst case power consumption due to pass 

register switching:
~ 150 mW @ 120 MHz.
> 25% of the total chip core power   

consumption. 
~ 50% fabric power consumption.

• Actual power savings varies by application, 
but can approach worst case.

• Required only trivial hardware modification 
and a simple additional assembler pass.
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Other Performance
Encryption
• IDEA Encryption: 450 Mbps

– Key is compiled into hardware
– Compilation (including P&R) takes less than one minute

• Comparison: 
– 800 MHz Pentium III Xeon:     75.4 Mbps

Filtering
• 40 Tap 16-bit FIR Filter

– 41.8 MSPS
• Comparable to high-end DSPs

– Much lower clock rate
– Without a full multiplier
(taps are compiled into hardware)
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Conclusions
• A practical virtual machine for pipelined 

programmable datapaths is possible.
• Virtual hardware ⇒ physical hardware:

– Completely self-managed on chip at run-time.
– Enabled by fast incremental reconfiguration.

• Virtual architecture allows:
– Easier compilation
– Forward compatibility / Scalability

• Implemented chip has high performance and 
low power requirements
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Future of PipeRench
• CMU has granted an exclusive worldwide license for 

PipeRench to SiliconMöbius.
• SiliconMöbius is commercializing PipeRench

– Producing a family of binary-compatible chips for streaming 
applications like packet processing, cryptography, DSP, 
image and video processing.

– Expanding the application model to include a wider range 
of applications.

http://www.siliconmobius.com info@siliconmobius.com
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