
Mapping of an Automated Target Recognition Application from a Graphical
Software Environment to FPGA-based Reconfigurable Hardware

Benjamin Levine, Senthil Natarajan, Chandra Tan, Danny Newport, Don Bouldin
Microelectronic Systems Research Laboratory

University of Tennessee, Knoxville, TN 37996-2100
{levine, senthil, chandra, newport, bouldin}@microsys0.engr.utk.edu

Abstract
A significant obstacle to the widespread adoption of FPGA-
based configurable computing hardware has been the difficulty
of mapping applications onto this hardware. We are developing
a software development system called CHAMPION to automate
the process of mapping applications in the graphical software
environment Khoros to multiple FPGA-based architectures.
The work described here consists of the development of
requirements for the library primitives used by CHAMPION
and the manual mapping of an automatic target recognition
algorithm onto FPGA hardware.

1. Introduction
FPGA-based reconfigurable computing systems have been shown to
have considerable performance advantages over conventional
processor-based systems for certain types of applications [1][2].
Despite this, these systems are not in widespread use. One of the main
obstacles to their use has been the difficulty inherent in implementing
applications on this hardware. Current systems require the user to be
familiar with digital hardware design, hardware description languages,
and device-specific tools such as compilers and place and route
software. We are developing a software development system, called
CHAMPION, for the automated mapping of applications in the
Khoros Cantata graphical programming environment to FPGA-based
reconfigurable computing hardware. Khoros is already widely used
for algorithm development and simulation. CHAMPION will be used
to map Khoros applications to a reconfigurable coprocessor, speeding
execution of the application and greatly increasing designer
productivity. Since multiple hardware architectures can be targeted,
CHAMPION should also be able to map a completed algorithm to
reconfigurable hardware to be used independently of a host computer.
Before the automated system can be completed, manual mapping of
algorithms from Khoros to hardware is necessary to gain familiarity
with the steps required, and also to give benchmarks for the
performance and time for completion achievable using manual
techniques.

2. Library Primitives
Khoros contains libraries of operators that are represented onscreen by
an icon, or glyph. These glyphs are connected in a manner
representing the dataflow to create an application. A glyph can
represent a single, simple function such as addition, a high-level
function such as convolution, or a group of related functions such as
statistical calculations. An essential feature of CHAMPION is the
development of a comprehensive set of precompiled library primitives
corresponding to the various Khoros glyphs. In the case of simple
functions such as addition, there will be one corresponding

precompiled primitive for each glyph. More complex functions such
as convolution can be formed as macros of lower-level functions, so
that many primitives will correspond to a single Khoros glyph. In the
case of glyphs that represent a number of distinct, but related
functions, such as statistics, a primitive (or macro) will exist for each of
the separate functions. One primitive will be required for each of the
distinct functions selected by the user from those available in the
corresponding glyph. In a few cases, library primitives were needed to
perform hardware-specific functions for which there are no exact
equivalents in Khoros. For example, in some cases data must be
stored in RAM while results needed for a subsequent operation are
computed. A library primitive is thus needed to perform transfers from
the FPGAs to RAM. Instances where these hardware specific
primitives are needed are generally easily identifiable and can be
automatically inserted by CHAMPION. In addition to the
functionality needed to perform the operation of the corresponding
Khoros glyph, each library primitive also needs additional hardware to
implement data transfer and interconnection between glyphs. A set of
control lines and a standard data format were developed to allow the
hardware glyphs to be connected together in the same manner that the
Khoros glyphs can be connected together. Since the primitives are
precompiled for a particular FPGA family, they can be characterized
in terms of area and delay. CHAMPION will not need to compile the
entire application; instead, it must partition the application spatially
across multiple FPGAs; partition temporally, if necessary, across
multiple configurations of each FPGA; and combine the precompiled
primitives with the necessary interconnects.

3. START Algorithm
The application selected for the initial manual mapping is an
automatic target recognition algorithm called START (for Simple,
Two-criterion, Automatic Recognition of Targets). This algorithm
takes as input infrared images and uses statistical methods to find
probable targets such as tanks and armored personnel carriers, if
present, and draws a box around any that are found. The algorithm
was chosen because it is a non-trivial algorithm using common image
processing functions. A representative set of input and output images
can be seen in Figure 1.

4. Manual Mapping
The START algorithm was first implemented in Khoros; the resultant
workspace can be seen in Figure 2. Note that this figure shows only
the topmost level of the application; much of the complexity is in
lower levels, represented on the top layer only as single procedure
glyphs. Library primitives for all of the glyphs used in the application
were created in VHDL and then compiled for the specific FPGAs
used, the Xilinx XC4000XL series. A value for size in configurable

logic blocks (CLBs) and delay was obtained for each primitive. The
total number of CLBs needed for the application was then determined
by adding up the CLBs used by each primitive required. The target
architecture for the initial manual mapping was an Annapolis Micro
Systems Wildforce-XL board. This board contains four Xilinx
XC4013XL FPGAs, called PE1 through PE4, used as general
purpose processing elements, as well as other FPGAs used for
interfacing and control and to implement programmable interconnects
between the FPGAs. The four XC4013XL FPGAs provide 2,880
CLBs [3]. As the application required more CLBs than were available
on the Wildforce board, more than one configuration of the board was
necessary and so the application needed to be partitioned temporally
as well as spatially. Manual partitioning was accomplished by
inserting successive primitives in the datapath into successive FPGAs,
until the number of CLBs needed exceeded the number available on
the FPGA. Then the primitive was put into the next available FPGA
and the process continued until the partitioning was complete. The
temporal partitioning was accomplished by considering the second
configuration to be a second set of identical FPGAs, with the addition
of primitives necessary to store intermediate results while the board
was being reconfigured. While more efficient packing of the
application into the FPGAs could have been done, this would have
necessitated more cuts in the dataflow graph and thus required more
interconnects between FPGAs, increasing delays and therefore
slowing execution of the application. The partitioning of the dataflow
graph for the START algorithm onto the target hardware is shown in
Figures 3 and 4. The numbers next to each operator show how CLBs
it uses and the larger numbers show the number of CLBs used in each
of the FPGAs.

5. Conclusions
Based on the known delays for the primitives and the characteristics of
the Wildforce board, we estimate that the hardware implementation of
the START algorithm should process one image in approximately
750ms. Compared with nearly 40 seconds to process one image in
the equivalent Khoros workspace, a speed-up factor of more than 54
appears achievable. CHAMPION will be expected to complete this
same mapping automatically, in a few minutes, as opposed to the days
necessary to complete the manual mapping. It is expected that the
automatic mapping should provide a speedup within 10-20% of that
achieved manually, as the same library primitives will be used by both
mappings. The speed of CHAMPION will greatly enhance the
productivity of the Khoros user and encourage the widespread use of
FPGA-based computing machines.

 Input FLIR Image Labelled Output Image

Figure 1: Representative Input Image and Resultant
Output of the START Algorithm.

Figure 2: Khoros Workspace for START Algorithm

Check Edge
Stats

Sobel Filter

RAM

48

237

216

Input
Image

Check Intensity
Stats

Pre-Process

13
RAM

48

Low-Pass Filter

207

216

Mask Invalid
Target Region

Low-Pass Filter
Check >= 4

227

229

RAM
48

Low-Pass Filter
Check >= 4

227

RAM
48

1

484

327

501

504

RAM

48

PE4PE3

PE2PE1

Figure 3: First Board Configuration

Blank
Frame Map

Combine Image
and Frames

Input
Image

Output
Image

379

RAM

48

452

Mask Target
Pixels

316

Mark Frame
Pixels

404

RAM

48

Find Target
Pixel

15

379

RAM

48

470

Mask Target
Pixels

316

Mark Frame
Pixels

404

RAM

48

Find Target
Pixel

15

18
PE4

PE3

PE2PE1

Figure 4: Second Board Configuration

6. Acknowledgements
The authors gratefully acknowledge the support of
DARPA grant F33615-97-C-1124.

References:
[1]J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J.
Kim, S. Devabhaktuni, and A. Agarwal, “The RAW Benchmark
Suite: Computation Structures for General Purpose Computing,”
Proc. IEEE Symposium on FPGAs for Custom Computing
Machines, 1997.
[2] N. Ratha, A. Jain, D. Rover, “Convolution on Splash 2,”
Proc. IEEE Symposium on FPGAs for Custom Computing
Machines, 1995.
[3] Xilinx, The Programmable Logic Databook, 1998.

