Queue Machines: Hardware Compilation in Hardware

Herman Schmit, Benjamin Levine and Benjamin Ylvisaker
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{herman,blevine } @ece.cmu.edu

Abstract - In this paper, we hypothesize that reconfigurable com-
puting is not more widely used because of the logistical difficulties
caused by the close coupling of applications and hardware plat-
forms. As an alternative, we propose computing machines that use a
single, serial instruction representation for the entire reconfigurable
computing application. We show how it is possible to convert, at run-
time, the parallel portions of the application into a spatial represen-
tation suitable for execution on a reconfigurable fabric. The conver-
sion to spatial representation is facilitated by the use of an
instruction set architecture based on an operand queue. We describe
techniques to generate code for queue machines and hardware virtu-
alization techniques necessary to allow any application to execute
on any platform.

I. Introduction

To motivate this work, we will first consider the difficulties
of a software developer creating applications for a reconfig-
urable computing platform. We will assume that the target
reconfigurable computing platform looks like most such sys-
tems described in the literature: a microprocessor-based com-
ponent integrated with an FPGA-based component. The
application representation now consists of at least two com-
ponents: one corresponding to the microprocessor system,
and one corresponding to the FPGA-based system. Both the
microprocessor and FPGA components require significant
interface code. The overhead imposed by the interface code
means that parallel sections of code must last longer (e.g.
have more loop iterations) to justify the setup and communi-
cation time. The heterogeneity of the application code as well
as the dependence on the interface code makes this software
very tightly coupled to the hardware platform. Any variation
in the hardware platform will make the application difficult to
run on the hardware. Upgrading the hardware platform will
require re-compilation of all applications, which is not desir-
able from a business or logistical perspective, and could be
technically impossible. No software developer would invest
time and effort developing for such a platform if it creates
such logistical nightmares.

As an alternative, we propose an approach that streamlines
these logistics by using a single representation for the entire
application. This representation will look like conventional
software in that it will be a sequence of instructions with a
serial semantic. The application is initially executed in a
serial mode, but when the serial machine encounters a loop
with parallelism, a spatial representation of this loop body is

Memory and IO space

1L T

Memory and 10 space

T 17

Serial Spatial Serial | control | Spatial

Engine Engine Engine | Handoff" | Engine

&J\/ Compilation ﬁ &J\/ Compilation ﬁ
Engine Engine

Serial Mode

with Spatial Compilation Spatial Execution Mode

Fig. 1. Modes of execution in integrated machine

created for execution on reconfigurable hardware in subse-
quent loop iterations. As illustrated in Figure 1, such an archi-
tecture would have a serial execution engine and a
reconfigurable hardware component, which we call the spa-
tial execution engine. Both engines share access to architec-
tural resources like the memory space. A “compilation
engine” would create spatial implementations from the serial
code. When the compilation of a spatial portion of code was
complete, the serial engine would suspend and the spatial
engine would continue the execution of that portion of code.
When that loop exits, control would return to the serial
engine.

This approach means there is only a single representation
for the application, using a single model of computation.
Conversion to a spatial representation takes place in the hard-
ware itself on every execution, which means that there are no
binary management or compatibility issues. Finally, since
there is one representation of the executable and a shared
interface to the remaining components of the architecture,
there are no interface issues. Compilation of programs is eas-
ier because there is one architectural view of memory and I/
O, there is no interface synthesis necessary, and the entire
program, including the parallel portions, is expressed as a
sequence of instructions.

A. Illustrative Example

This vision seems fantastically difficult to achieve, espe-
cially considering the inefficiency that is often attributed to
FPGA compilation. This section will give an example of what

Data Flow Graph

Assembly Code Hardware

if (x > 10) x = 10;

X = X * 4;

for (i = 0; i < x; i +=4) {
a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e =a+Db; £=a-b;
g=c+d; h=c-d;
B[i] = e+ g; B[i+1l] = £ + h;
B[i+2] = e-g; B[i+3]= £ - h;

1d $r1, 0(Sro0)
1d $r2, 1(sro0)
add $r3,$rl, sr2
sub $r4,Srl,Sr2
1d $r1, 2(sro0)
1d $r2, 3(sro0)
add $r5,S$rl,$r2
sub $r6,3rl,Sr2
add rl,Sr3,Sr5
add $r2,$r4,Sré6
st Sr1l, 0(Sr7)
st $r2, 1(sr7)

sub $rl,$r3,$r5
sub $r2,3%r4,$r6
st $rl, 0(Sr7)
st $r2, 1(sr7)

Fig. 2. Initial C code for a simple loop, the data flow graph for the loop body, and the assembly code generated by the compiler. The hardware required to
implement this block “looks like” the data flow graph, but is hard to recover from the assembly language.

we want to achieve, and simultaneously illustrate the difficul-
ties accomplishing this goal using a typical instruction set
architecture (ISA). The subsequent sections of this paper will
illustrate how this is possible using a different kind of ISA.

The C code in Figure 2 consists of some setup code and a
loop. Inside the loop, a calculation is performed on four val-
ues read from memory. There are no memory-carried depen-
dencies or loop-carried dependencies in this loop. The data
flow derived from this code shows all eight memory accesses
and eight arithmetic operations as nodes connected by depen-
dencies. Our objective is to have the serial engine execute the
code outside the for loop, then execute one iteration of the
loop body while the compilation engine creates the hardware
structure at right in this figure. On subsequent loop iterations,
the hardware design is executed to perform the loop body.
Assuming there are adequate hardware resources and memory
ports, the hardware can initiate and complete one loop itera-
tion per cycle. Once the loop is done, control passes back to
the serial engine.

The structure of the desired hardware design strongly
resembles the structure of the data flow graph, with registers
inserted to pipeline the computation, and functional units
replacing the operators. The dependency arcs in the DFG are
associated with wires connecting registers and functional
units. The DFG is created by the compiler, which uses it to
generate machine code. In the example, we show MIPS-like
code for this loop body. Unfortunately, the DFG structure is
almost impossible to recover from this machine code. The
compiler has done a number of things that obfuscate the
structure of the hardware. First, it has re-ordered code to min-
imize register usage. This re-ordering pushes independent
instructions away from each other. For example, every other
instruction in the loop body depends somehow on the load
instructions. Yet to save a pair of registers, the second pair of
load instructions is not performed until after the first pair of
additions and subtractions. This obscures the fact that the load
instructions should all be executed as soon as possible to

enable the execution of the maximum number of additions
and subtractions. In order to further conserve registers, the
compiler assigns one register to multiple arcs in the DFG. In
order to recover the dependency information, a compilation
engine would have to be able to look through all instructions
in the loop body to discover the last use of an input operand.
Finally, in this assembly language code example, six architec-
tural registers are used. If the loop body was significantly
larger, it would likely use more registers. At some point it
might exceed the number of registers provided by the archi-
tecture, in which case it would “spill” the registers to mem-
ory. This register spill further obscures the data dependencies,
and places a final limit on the size of the hardware block we
could possibly reconstruct from such code.

While the DFG has the hardware structure embedded, the
realities of the ISA forces the compiler to destroy the struc-
ture. This paper will demonstrate that given the proper
instruction set architecture and techniques of hardware virtu-
alization, the structure of a hardware design can be preserved,
even in an ISA with sequential semantics. The key ISA inno-
vation is the use of a an operand queue, rather than a stack or
register file, to express the dependencies between operations
in the computation.

The next section will describe the basic queue machine in
terms of its sequential semantics. Section III will describe
how it is possible to generate queue machine code from a gen-
eral data flow graph, and Section IV will describe an algo-
rithm to “place-and-route” a queue machine representation of
an algorithm on a virtual datapath fabric. Section V will also
discuss how this virtual datapath fabric can be executed on a
physically constrained hardware fabric.

II. Queue Machines

Our objective is to create an ISA that can be used to capture
complete applications. The applications we are interested in
capturing do not run fast enough on conventional processors,
and contain segments of code with substantial parallelism.

Stack Machine Model

Top— 1+2 =3 [<*+— Top

iadd

EVN NN I\
~D

Queue Machine Model

Head —»| 1 4 +— Head
2 iadd ?
4 1+2 =3 |[«— Tail
Tail — ?

Fig. 3. Stack and Queue Machine Models

These are the target applications for reconfigurable comput-
ing platforms. Like any ISA, we need mechanisms to express
control flow and mechanisms to express data flow. An ISA
designed for reconfigurable applications must, in addition,
facilitate detection of highly parallel loops and conversion of
the data flow in the program into a spatial representation.

In order to enable the compilation engine to identify por-
tions of code for hardware compilation, we require instruc-
tions that indicate the boundaries of parallelizable loops. Our
machine uses two instructions for this purpose: loopbegin
and loopend. This loopbegin instruction initializes and
increments an index variable for the loop, using a specified
minimum and maximum bound for the loop index. Between
the loopbegin and 1loopend instructions, there can be no
other control flow instructions like branches or other nested
loops. If any of these instructions are encountered, the compi-
lation to hardware is aborted. These instructions have a clear
sequential semantic and can be executed serially on the first
iteration while compilation of the loop body is performed.

In addition to a mechanism for expressing and identifying
the portions of code that map to hardware, we need a mecha-
nism for representing the data flow of the computation. In our
machine, we are going to use an operand queue for expressing
the data flow for a program segment. A machine that uses an
operand queue for expressing the structure of the computation
is called a queue machine. An operand queue is similar to the
more familiar operand stack. A machine with an operand
stack works by obtaining input operands by popping them off
a stack. The result (or results) of the operation are pushed
back on the top of the stack. The queue machine works simi-
larly, except that the inputs for an operation are read from the
head of the queue, and the results are pushed onto the tail of
that queue (which is at the other end of the queue from the
head). The two machines are compared in operation in
Figure 3.

Machines with a single operand stack can be used to repre-
sent acyclic data flow graphs that either: have a undirected

covering graph that is a tree, or have an undirected covering
graph that contains at most one cycle with that cycle having a
directed Hamiltonian path [3]. This is an advantage for a
compiler, as most expressions are parsed as trees and convert
to stack operand form easily. However, this limits the class of
data flow graphs that one can successfully express. Ideally,
we want a machine that can capture any directed acyclic
graph (DAG). Stack machines such as the JVM [9] have stack
manipulation instructions that can, for example, pop an oper-
and off the stack and push two copies of that operand on the
stack. This extends the capabilities of the stack so that a sub-
tree can have multiple fanouts, but it does not make it possible
to capture general data flow graphs without the use of a sepa-
rate memory or scratch space.

Programs for queue machines can represent all data flow
graphs that have an embedding that is a directed arched lev-
eled-planar graph [3]. We will consider a subset of this class
of graphs, DAGs with an embedding that is a leveled-planar
graph. A leveled graph is one in which there exists a mapping
A of vertices to integers such that if there is an arc from ver-
tex u to vertex v, then A(u) = A(v)+1 for all arcs in the graph.
Visually, a leveled graph can be drawn with the operations in
rows such that every arc goes from an operators in one row to
an operator in the next row. No arc skips a row. An example
of a leveled graph is shown in Figure 5b. Planarity means that
it is possible to draw the data flow graph without any depen-
dency arc crossing another dependency arc. A leveled-planar
graph is a graph that is both leveled and planar. Examples of
leveled-planar graphs are shown in Figure Sc and Figure 5d.
The class of leveled-planar data flow graphs includes all
rooted directed trees, so the queue machine is as useful for a
compiler as a stack machine. Section III will discuss how all
data flow graphs can be converted to a planar representation
through the use of queue manipulation instructions.

The sequence of instructions on a queue machine has a
number of advantages for parallel and spatial execution. To
illustrate this, consider the stack and queue instruction sched-
ules for the eight-operation data flow graph in Figure 4. The
stack machine does a depth-first traversal of this graph (which
is a rooted tree), and the queue machine does a breadth-first
traversal of the graph. There are some sets of instructions in
this graph that are independent and can execute simulta-
neously. In the queue schedule, the independent instructions
such as Op_1, Op_2, Op_3, and Op_4, are adjacent to each
other in the code. In the stack machine, dependent (rather
than independent) instructions are close and as a result, inde-
pendent instructions are sometimes forced away from each
other. As the size of the graph grows, so will the distance
between independent instructions in a stack machine repre-
sentation.

The representation of a data flow graph in a queue machine
forces all independent instructions at the same level in the
graph to be in one contiguous block of code. This fact has
benefits when trying to convert this program to a spatial exe-

Stack Schedule:

Op_1
Op_2
Op_5
Op_3
Op_4
Op 6
QOp_7

@

Queue Schedule:
Op_1
Op_2
Op_3
Op_4
Op_5
Op 6
Op 7

Fig. 4. Stack and Queue Machine Schedules: A tree DFG scheduled on a stack machine and queue machine. The independent operations are distant
from each other in the stack schedule, and consecutive in the queue schedule.

(a) Original Graph (b) Leveled Graph

(c) Leveled-planar
Graph

op0
opl
op2,
op3,
dup
op4
op5,
dup
dup,
swap
op7
dup
opé,
swap
dup
op8
op9
op10

(d) Compressed

Leveled-planar Graph (e) Code for (d)

Fig. 5. Graph Transformations: (a) general DAG, (b) leveled DAG, (c) leveled-planar, (d), compressed level-planar graph, and (e) code generated by tra-

versal of part (d).

cution model. If the graph in Figure 4 were mapped to an
architecture like PipeRench [1], parallel operations like 1-4
and 5-6 would be placed on a single stripe, assuming ade-
quate hardware resources. The sequence of instructions in the
queue machine parallels this structure exactly. In Section IV
we will describe how the levels of the graph can be recovered
from one serial execution of the code, and how different inde-
pendent instructions can be assigned to functional units on a
reconfigurable fabric.

III. Queue Machine Code Generation

Generating queue machine code for a basic block of a pro-
gram involves creating a data flow graph for that basic block,
converting a data flow graph into a level-planar data flow
graph, and then performing a breadth-first traversal of the
graph. The first phase, creating the data flow graph, is a gen-
eral compiler topic. The conversion of the data flow graph to
a level-planar graph can be broken into a levelization phase

followed by a planarization phase. To illustrate the process we
will use an example shown in Figure 5. In order to complete
the mapping we will need two special operators: a duplicate
operator for levelization (dup), and a swap operator for pla-
narization (swap).

Levelization is easy. A topological sort of the graph is per-
formed, as shown in Figure 5(a), so that all nodes that have a
maximum path of length n from the source node or nodes in
the graph are on the nth level. In a topologically sorted graph,
there can be arcs that span one or more levels. For example, in
Figure 5(a), arcs from operation 0, 3, and 4 span more than
one level. Special operators, called duplicate instructions or
(dup), are added to make all arcs go from one level to the
subsequent level. In the queue machine, the semantics of the
dup operator is to take an operand from the head of the
queue, and write it to the tail of the queue. A variation of this
operator, dup,, places two copies of the input operand on the
tail of the queue.l Figure 5(b) shows a levelized version of the

graph that has been obtained by adding three dup instructions
and one dup, instruction.

This level graph is not planar. In our drawing in
Figure 5(b), two arcs cross. We first attempt to find an order-
ing of nodes on each level that produces a planar embedding.
We use the algorithm described in [5] to do this. Assuming
there is no planar embedding, the crossings can be replaced
by a swap operator, shown as a diamond with an “S” in
Figure 5(c). In the queue machine, a swap instruction reads
two operands, first x and then y, off the head of the queue, and
writes y and then x on to the tail of the queue. We use a heu-
ristic algorithm to minimize the number of arc crossings in
the drawn graph, and then we replace each crossing with a
swap instruction. The swap operator may make the graph
planar, but can destroy the level property. Therefore, the pro-
cess of creating a level-planar graph requires a re-levelization
phase after swap instructions are used to create planarity.
Figure 5(c) shows a level-planar graph generated from
Figure 5(b) using two swap operators and five dup operators.
After planarizing the level graph, the graph can usually be
compressed by looking for cut sets of the graph composed
entirely of dup nodes. The removal of these dup nodes
results in a compressed level-planar graph shown in
Figure 5(d).

The code sequence in Figure 5(e) is obtained by a breadth-
first traversal of the graph in Figure 5(d). In this case the code
length of the is 18 instructions, which means that almost half
of the instructions are ones that manipulate the queue only
(swap and dup).

IV. Hardware Compilation from Queue Machine Code

Compilation of this code at run time to a spatial representa-
tion requires an algorithm to generate placement and routing
information for each instruction in the graph. To deal with the
general case, we present an algorithm that targets an infinitely
large fabric of functional units. If the virtual hardware design
created by this algorithm is too large for the physical fabric,
we will use hardware virtualization techniques to execute it
on the hardware that exists. We will first describe the genera-
tion of the virtual and unbounded hardware.

Our virtual hardware target consists of an unbounded, two-
dimensional matrix of functional units. Each functional unit is
capable of executing every loop-legal instruction, including
memory loads and stores. We assume that the data flow graph
has operators that consume no more than two operands. The
interconnections of these fabric elements is as shown in
Figure 6. Each row in the fabric obtains operands from the
interconnection network, which connects the outputs of the
previous row of functional units. There are no connections
between functional units on the same row, therefore they can

1. We use the same convention for all queue instructions. A sub-
script means that multiple copies of the result of the operation are
placed on the tail of the queue.

Functional Functional Functional
Unit Unit Unit

-Ean
“unbounded ‘ ‘
width”

T 7

Interconnect ‘

Y oyoov v vy

Functional Functional Functional
Unit Unit Unit

v v

T 7

Interconnect ‘
R R

“unbounded
depth”

Fig. 6. Hardware Fabric Block Diagram: This is our virtual hardware target,
unbounded in both dimensions.

row =0
this_q =0, next_q=0
foreach op {
if (this_q — inputs(op) < 0) {
row ++
place(op,row)
this_q = next_q — inputs(op)
next_q = outputs(op)
} else {
place(op,row)
this_q -= inputs(op)
next_q += outputs(op)

Fig. 7. Row placement algorithm.

only execute instructions that are independent of each other.
The outputs of the functional units connect to registers, and
the functional units can be arbitrarily pipelined. We first
assume the interconnection network is complete.

To create a placement for a code segment, one must deter-
mine, for each instruction, the row and column of the func-
tional unit assigned to that instruction. The row is determined
on the first serial execution of the loop body by monitoring
the status of the queue. We need to know the number of input
and output operands from each instruction. We keep track of
two variables: this_q, which indicates the number of oper-
ands remaining for this row of instructions; and next_gq,
which indicates the number of operands in the next row of
instructions. The pseudo-code for determining the row place-
ment is shown in Figure 7. These variables determine depen-
dencies between instructions. Figure 8 shows the process of
hardware compilation for the example code from Figure 5.

Operand Queue Length
Instruction in out this g next g
op0 0 1 0 0->1
opi 0 1 0 1->2
op2, 0 2 0 2->4
op3, 0 2 0 4->6
dup 1 1 6-1=5 1
op4 2 1 5->3 1->2
op5, 2 1 3->1 2->3
dup 1 1 1->0 3->4
dup, 1 2 4-1=3 2
swap 2 2 3->2 2->4
op7, 2 2 2->0 4->6
dup 1 1 6-1=5 1
op6, 2 2 5->3 1->3
swap 2 2 3->1 3->5
dup 1 1 1->0 5->6
op8 2 0 6-2=4 0
op9 2 0 4->2 0
op10 2 0 2->0 0

Fig. 8. Hardware Compilation Example.

There are a number of options for determining the column
placement within the row. The simplest technique is to have a
counter, which is initialized to zero when a new row is allo-
cated. This counter is incremented by one every time a new
instruction is mapped without allocating a new row. We call
this approach the right-justified row placement algorithm.
This approach is illustrated in the example in Figure 8.

In this example, the interconnect requirements for the fab-
ric are local. A functional unit at (x,y) need only obtain oper-
ands from the functional unit directly above itself (x,y-1), or
above and one column to either the right or left (x-1,y-1) or
(x+1, y-1). Unfortunately, this is not true in general. For
example, in Figure 9, one row contains a number of store
instructions (which generate no output). Using the right-justi-
fied row placement algorithm, the placement shown in
Figure 9 would require an interconnection network where the
functional unit at (x,y) can access functional units at (x-
1,y+k), where O<k<5. In general, assuming there is no bound
on the fanin or fanout of instructions, there is no bound on the
length of the interconnect between rows.

There are two potential solutions to this problem. The first
solution is to use a more sophisticated column placement
algorithm. One such algorithm would assign a column to an
instruction by averaging the column assignments of the
instructions that generate the instructions operands. This cal-
culation simply requires an adder. In the example in Figure 9,
this approach has reduced the length of the longest intercon-
nect to a span of two columns. In the worst case this algo-
rithm reduces the length of the longest interconnect to the

Col3 Col2 Col 1 Col0

Action Row 0
row =0
row =0
row =20
row =20
row = 1 Row 1
row = 1
row = 1
row = 1
row = 2 Row 2
row = 2
row = 2
row = 3
row =3
Row 3
row = 3
row =3
row =4
row =4
row =4 Row 4

X JOROROJOXOJO
OJONOROX RON N

Average Input Row
Placement

Right-justified Row
Placement

(a) (b)

Fig. 9. Row Placement Options

width of the previous row. This approach is also not as effi-
cient in utilizing functional units, as illustrated in Figure 9.

The second solution to limiting the interconnect length is to
make the placement explicit in the original code by adding
adequate dup and nop instructions where necessary. The nop
instructions are fillers. They do not affect the queue. They
only serve to consume a column and space the instructions
correctly to enforce local connections. Figure 10 shows the
worst case scenario from Figure 9 with additional operators
added to assure the interconnection network is local. The nop
instructions are shown as grey circles. This approach bloats
the serial code, hurting the performance of the initial serial
execution, but can be used to significantly improve perfor-
mance, decrease the area required by the hardware fabric, and
make it much easier to virtualize this hardware, as we will
discuss in Section V.

Table I shows, for a number of different kernels, the num-
ber of operators, the number of instructions required to gener-
ate a valid queue machine representations (the number of
nodes in the level-planar graph), and the number of instruc-
tions required to generate an interconnect limited version of

opl

op2,

op3,

op4,

op5

op6

dup

nop

nop

dup

dup Added
dup |nterconnect
nop Code
dup

dup

dup

dup,

dup

op7,

op8,

op9,

op10,

op11,

Fig. 10. Explicit code for limited interconnect

this level-planar graph, where only nearest column connec-
tions are required. The instruction set for this machine sup-
ports 16 bit additions and subtractions, a 16 bit x 4 bit
multiplication, a 6 bit table lookup, memory load and store,
and various logical operations.

Transforming the graph to a level-planar representation
requires a significant increase in the number of instructions in
the representation. It should be considered that because the
instructions have no explicit operand specification (such as
three register file addresses) the overall size of the executable
may not be much bigger than one that uses a register file. For
example, the queue machine instructions in these examples
could be encoded in a byte, while the register file machine,
because some of these applications have almost 64 live vari-
ables at a time would require at least 18 bits for operand spec-
ification (three operands, six bits each) and six to eight more
bits to specify the operation. Thus, the register file operands
would be at least three times as large as a queue machine
instruction. Undoubtedly, the queue machine representations
would be significantly more dense than the configuration bit-
stream for an FPGA or an architecture such as PipeRench.
Finally, this bloated code is only required when the applica-
tions developer wants that section of code to be mapped to
parallel hardware. If this is a serial portion of the application,
the general queue machine structure can be used. The results
in Table I could be significantly improved by implementing a
more sophisticated compression phase that executes after the
initial transformation to a level-planar representation.

Some applications have complex, non-local interconnect
that makes the queue machine implementation particularly
large. The best example of this is the fft8_iterative, which
has some stages that are local, and other stages that require
connections from one extreme edge of the row to the other
edge. There is no way to reduce this connectivity within the
algorithm. Other application kernels, like rc6 and dctl have
much lower connectivity requirements and therefore require a
smaller level-planar graph.

TABLE I Operation Counts and Depth of Application Graphs

Limited
Level-planar Interconnect
Original DFG Graph (LPG) LPG

Kernel Ops Depth | Ops Depth | Ops Depth
detl 122 18 537 49 568 49
fft8_iterative 88 7 909 41 945 41
haar16 124 6 918 17 940 17
rc6 74 23 330 42 338 42
idea 303 160 1462 235 1462 235
popcount 31 5 229 24 237 28

On average, making an explicit interconnect limited ver-
sion of the graph only requires 2% more instructions than the
general queue machine expression. This is lower than one
might initially expect, but it must be considered that what
usually causes wide fanouts is operations that have zero
inputs or zero outputs, such as loads or stores. In these appli-
cations kernels, there are few intermediate loads or stores.
Almost all the data must be acquired before we begin opera-
tions and most data to be written back into the memory is
ready at the same time. Thus, most loads and stores are forced
towards the top or bottom of the DFG, and as a result the
unfavorable scenario in Figure 9 rarely occurs. This result
leads us to believe that writing queue machine code that is
interconnected limited is a worthwhile trade-off, considering
the reduced hardware costs and the benefits to virtualization,
as described in the following section.

V. Hardware Virtualization

The virtual hardware design may be too large for the physi-
cal device it is running on. In addition, different variations of
the hardware platform might have different hardware capaci-
ties. Hardware virtualization techniques are necessary to exe-
cute these designs on a physically constrained hardware
component. Hardware virtualization works by time-multi-
plexing physical resources. An ideal hardware virtualization
technique would execute a virtual application of size v, on a
physical hardware of size p (p < v), with a performance deg-
radation of p/v. We will consider virtualization in the two
unbounded dimensions of the fabric in Figure 6. First we will
deal with the virtualization of rows, then the virtualization of
columns. The virtualization techniques can be applied inde-
pendently to allow the hardware fabric in Figure 6 to be emu-
lated on a physical fabric with bounds in both directions.

Row virtualization is performed in a manner identical to
pipeline reconfiguration in PipeRench [1]. The basic idea is
that the configuration information for a pipeline stage, or
stripe, is stored in a separate memory. By reading these con-
figuration words from the configuration memory, and storing
it in the physical fabric, a stage of the pipeline can be recon-
figured every cycle. Pipeline reconfiguration works by con-
figuring one stage ahead of the data in a pipeline. After p

3,0 2,0 1,0 0,0 1,0 0,0 1,0 0,0
B st
‘ Interconnect ‘ ‘ * I:terconneit * ‘
‘ # ‘ ‘ ‘ ‘ Interconnect ‘ Write addr | vemony
3,1 2,1 ‘ ‘ ‘ ‘ [Read addr_»|
{2 2 2

Interconnect ‘

Interconnect

R

E
VoY oy

1,1 0,1
vy

1,1 0,1 |
{2 2 2
| 1,1 0,1
v

Interconnect

(a) 4-wide fabric

(b) 2-wide fabric
to emulate 4-wide fabric

(c) 2-wide fabric using memory
to emulate 4-wide fabric

Fig. 11. Width virtualization options for general queue machines: (a) virtual fabric with width of 4, (b) 2-wide fabric without memory, (c) 2-wide

fabric using memory.
cycles, when the physical fabric with p stages is fully config-
ured, the first stage is reconfigured to be virtual stage p+1.
Reconfiguration proceeds, so that for a virtual pipeline con-
sisting of v stages, on cycle ¢, virtual stage ¢ (mod v) is config-
ured on physical stage ¢ (mod p). Using this approach, nearly
linear performance degradation is possible. In PipeRench, a
pipeline stage takes one cycle to reconfigure. Concurrently
with that reconfiguration, p-1 stages are operating on data.
Therefore the overhead of virtualization is a single physical
stage and the area necessary for storage of the virtual design.

Virtualization within a row is facilitated by the queue
machine model because all of the operators on a single row
are independent. Figure 11 illustrates a fabric with a width of
four functional units and two ways to build a fabric with a
width of two functional units that can emulate that 4-wide
fabric. In this case each cycle of the four-wide fabric is emu-
lated in two cycles of the two-wide fabric. In Figure 11(b) an
additional level of registers is required between rows so that
one row may perform the computation of one “virtual cycle”
before passing its results to the next row. Because the general
queue machine model requires complete inter-row intercon-
nect the fabric in Figure 11(b) has complete interconnect
between the entire row of eight potential operands from the
previous row. This clearly does not scale well because the
interconnect limits the width of a row that can be emulated on
a given fabric. In addition, there must be adequate registers to
support the complete width of the widest row. A better
approach to building a emulation fabric for a wide general
queue machine is shown in Figure 11(c). This implementation
uses a memory to emulate the complete interconnect of the
inter-row interconnect. Since the graph is planar, all operands
for a particular row can be written into a contiguous section of
memory and read back from that memory. The use of the
memory also allows for greater storage density of the results

from the previous row, and makes it possible to support a very
wide virtual row.

If the fabric is interconnect limited, as described in Section
IV, it is possible to construct a much more scalable real fabric
without use of a memory between each row. Because every
column in this fabric need only access one column to the left
or right, a smaller fabric needs to be able access only the left
most operand from the “next” micro-cycle and one operand to
the right in the previous micro-cycle, as illustrated in
Figure 12(a). This design allows virtual emulation to proceed
in a diagonal manner through the virtual design, as illustrated
in Figure 12(b).

VI. Related work

Queue machines have been invented and re-invented a
number of times. Sometimes they have been viewed as the
curious dual of the popular stack machine [8]. Other research-
ers have noticed the fact that in a queue machine the operands
and instructions are aligned with each other, which makes it
possible to build an efficient superscalar or data flow machine
[6][7][12]. To our knowledge, no other researcher has
explored the dynamic compilation of software to hardware
using a queue machine model.

Conversion of binaries from one form to another is a topic
of intense recent research. The Intel Pentium Pro and all sub-
sequent Intel 32-bit processors have converted the external
binary to a sequence of finer-grained RISC-like instructions
for execution on the internal core [11]. Transmeta also per-
forms conversion of Intel 32-bit code to an internal represen-
tation [10]. In a broader sense, many microarchitectural
innovations are essentially embedding some compiler optimi-
zation in hardware. For example, a trace cache [13] reorders
instructions and stores the decoded version of that code
sequence for efficient fetch and decode in subsequent itera-
tions. Another example is dynamic vectorization [14], which

Virtual Columns

Physical Columns
1 0

’ ’ Time = 2,5,8,.. Time = 1,4,7,.. Time = 0,36,
°
Time = 4,7,10,... Time = 3,6,9,... Time =2,5,8,... B3
w2
2
2 ®
o o
T @
Time =6,9,12,... Time =5,8,11,... Time = 4,7,10,... 1::s E‘
=0
7]
N

Time =8,11,14,... Time =7,10,13,... Time = 6,9,12,...

p o

(a) Interconnect limited fabric

(b) Time-space emulation of fabric

Fig. 12. Width virtualization options for interconnect-limited fabric: (a) block diagram (b) time-space emulation.

looks for looping behavior in instruction traces, and reorga-
nizes the execution in order to improve performance. The idea
of dynamic hardware compilation is a radical extrapolation of
such techniques for applications kernels that exhibit very
large levels of parallelism.

VII. Conclusions

The logistical problems of development, delivery, mainte-
nance and support of reconfigurable computing applications
seriously hinders their entry into the general-purpose market.
This paper proposes to solve these problems with a unified
representation of complete applications and dynamic on-chip
compilation of those applications into hardware. This is very
challenging to do using a typical RISC instruction set archi-
tecture, because use of a register file tends to obfuscate the
structure of the data flow graph. Stack machines have no reg-
ister file, but they move independent instructions away from
each other in the instruction sequence and can only express
data flow graphs that are trees. Queue machines are more
complete, as any data flow graph can be converted to a queue
machine representation. This conversion does increase the
number of instructions in the application representation, but
these instructions may be significantly smaller than a RISC
instructions with explicit operands. Queue machines also
have properties that allow the structure of the data flow graph
to be easily extracted, in a single sequential execution of the
code. A queue machine application can be easily mapped to
an appropriate hardware fabric. In case the fabric generated
by the queue machine code is too large for the physical fabric
present on the chip, we presented a number of techniques to
virtualize the hardware.

Acknowledgments

This work was partially funded by DARPA ITO/TTO under
contract DABT63-96-C-0083. Herman Schmit is partially

supported by an NSF CAREER grant. Benjamin Levine is
supported by an IBM/SRC graduate fellowship.

References

[1] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. R. Tay-
lor, “PipeRench: A Reconfigurable Architecture and Compiler” in Com-
puter, pp. 70-77, April, 2000.

D. Cronquist, P. Franklin, S. Berg, and C. Ebeling, “Specifying and
Compiling Applications for RaPiD,” in Proc. IEEE Workshop on FPGAs
for Custom Computing Machines, (FCCM), pp. 116-127, 1998.

[3] L.S.Heath, S. V. Pemmaraju, A. N. Trenk, “Stack and Queue Layouts of
Directed Acyclic Graphs: Part I,” SIAM J. Comput. Vol 23, No. 4, pp.
1510-1539.

PACT Corporation, ‘“Parallel and Sequential XPP Processing Models,”
http://www.pactcorp.com/.

[2

—

[4

=

[5] M. liinger, S. Leipert, and P. Mutzel, “Level Planarity Testing in Linear
Time,” Technical Report, Zentrum fiir Angewandte Informatik Koln,
Lehrstuhl Jiinger, URL: http://www.zaik.uni-koeln.de/~paper, 1999.

[6] B. R. Preiss and V. C. Hamacher. “Data Flow on a Queue Machine,” in
Proc. 12th Int. Symp. on Computer Architecture, pages 342-351, Boston,
MA, August 1985.

[7]1 S. Okamoto, “Design of a Superscalar Processor Based on Queue
Machine Computation Model”, IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing, pp. 151-154, 1999.

[8] W. A. Wulf, “Evaluation of the WM Architecture,” Proc. 19th Int. Symp.
on Computer Architecture, pages 382-390, 1992.

[9] T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Sec-
ond Edition, Addison-Wesley, 1999.

[10] T.R. Halfhill, “Transmeta Breaks x86 Low-Power Barrier,” in Micropro-
cessor Report, Vol. 14, Archive 2, pp. 1,9-18, Feb. 2000.

[11]L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design,” Micro-
processor Report, Vol. 9, Issue 2, Feb 1995.

[12]M. M. Fernandes, J. Llosa, and N. Topham, Using Queues for Register
File Organization in VLIW Architectures, Technical Report ECS-CSG
29-97, Dept of Computer Science, University of Edinburgh, 1997.

[13]E. Rotenberg, S. Bennett, and J.E. Smith, “Trace Cache: A Low Latency
Approach to High Bandwidth Instruction Fetching,” in Proc. of the 29th
Annual Intl Symp. on Microarchitecture, November 1996.

[14]S. Vajapeyam, P. J. Joseph, T. Mitra, “Dynamic Vectorization: A Mecha-
nism for Exploiting Far-Flung ILP in Ordinary Programs,” in Interna-
tional Symposium on Computer Architecture, pp. 16-27, 1999.

