Computer Architecture Lab at Carnegie Mellon (CALCM) Technical Report 2008-2

REDAC: Distributed, Asynchronous
Redundancy in Shared Memory Servers

Brian T. Goldl, Babak Falsaﬁl’z, James C. Hoel, and Ken Mai!

1Computer Architecture Lab (CALCM), Carnegie Mellon University, Pittsburgh, PA, USA
ZParallel Systems Architecture Lab (PARSA), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

http://www.ece.cmu.edu/~truss

Abstract

The emergence of multi-core architectures—driven by
continued technology scaling—has led to concerns about
increasing soft- and hard-error rates in commodity designs.
Because modern chip designs consist of multiple high-speed
clock domains, conventional lockstepped redundant
execution is no longer practical. Recent work suggests an
asynchronous approach to redundant execution, where
processor pairs independently execute an instruction stream
and treat any differences like soft errors, invoking rollback
recovery. Because prior designs buffer instruction results
within the out-of-order instruction window, they are limited
to tightly coupled redundancy within a single chip, which
limits availability and serviceability in the presence of hard
errors.

We propose REDAC, a set of lightweight mechanisms for
distributed, asynchronous redundancy within a shared-
memory multiprocessor. REDAC provides scalable buffering
for unchecked state updates, permitting the distribution of
redundant execution across multiple nodes of a scalable
shared-memory server. The REDAC mechanisms achieve
high performance by enabling speculation across common
serializing instructions and mitigating the effects of input
incoherence. We evaluate REDAC using cycle-accurate full-
system simulation of common enterprise workloads and
show that performance overheads average just 10% when
compared to a non-redundant system. These results are
comparable to the performance of a similarly configured
lockstep design, but offer the substantial benefits of
asynchronous redundancy.

1 Introduction

As data processing and storage requirements continue
to grow, vendors of business-critical computing systems
rely increasingly on shared-memory platforms to build
high-performance, scalable servers that run existing appli-
cation and system software. Unfortunately, the increasing
levels of integration that drive scalability also result in ris-
ing soft- and hard-error rates [6,24]. Recent
work [3,16,20,23,30,31,32] has focused on tightly coupled
redundant execution, where instructions are executed redun-
dantly within a single chip. Although tightly coupled redun-
dancy mitigates soft error rates, availability and
serviceability are limited in the event a hard error occurs.

To provide strong reliability, availability, and service-
ability guarantees, systems must form redundant pairs
across chips. Conventional approaches to cross-chip, dis-
tributed redundancy rely on lockstepping of the redundant
pairs [4,34]. Because of the move to high-frequency CMP
designs with multiple, asynchronous clock domains, main-
taining lockstep is increasingly difficult and costly to engi-
neer [5,19].

Proposed alternatives to lockstep execution rely on
high-bandwidth structures such as the load-value queue
(LVQ) [31], which explicitly guarantees redundant execu-
tions observe an identical view of memory. These mecha-
nisms support synchronous redundancy, where the
redundant instruction streams are precisely replicated; how-
ever, bandwidth limitations preclude scaling LVQ struc-
tures to cross-chip redundant execution. Prior
proposals [15] for guaranteeing synchronous redundancy
across chips have instead relied on lockstep guarantees to
replay only off-chip load values.

In contrast, recent work [37] proposed asynchronous
redundancy, where replicated processors are permitted to
access the memory system independently. Although origi-
nally proposed for tightly coupled redundant pairs, we
observe that any system supporting asynchronous redun-
dancy must address three challenges:

¢ Buffering State Updates. Because the redundant execu-
tions are asynchronous, the processor must buffer state
updates until the redundant pair has compared the results.

® Serializing Instructions. The system must support seri-
alizing operations such as memory ordering operations,
programmed I/O accesses, special (non-renamed) register
accesses, and external interrupt delivery.

® Input Incoherence. Because asynchronous redundant
executions access the memory system independently,
they may observe different values for the same dynamic
load—what [37] refers to as input incoherence—which
requires rollback recovery to correct. The effect of these
rollbacks must be mitigated by limiting the frequency of
input incoherence and the associated recovery cost.

The Reunion [37] design constructs asynchronous
redundant pairs from the cores on a tightly coupled CMP
and leverages existing speculation support within the out-
of-order instruction window to buffer instructions pending
comparison. These mechanisms do not scale sufficiently to

". .l /_’7-<\
Vocal Vocal, Mute, Mute,
Cache Hierarchy
, e
e
7/
Mem Ctrl Node Ctrl ’
L Vocal, Vocaly Mute, Mute;
e
7 \ /
7
DRAM o \\ /

FIGURE 1. Example 8-node REDAC system. Each node consists of an identical CMP and a portion of the physical memory.

All of the cores in Vocal; are paired with the cores in Mute;.

support cross-chip, distributed redundancy. With less band-
width and longer latencies for comparing redundant execu-
tions, the processor must effectively buffer large numbers
(e.g., hundreds or thousands) of instructions, which far out-
strips the available speculation resources in the out-of-order
instruction window. Because of the longer checking latency,
frequent serializing instructions such as memory ordering
operations become a major performance bottleneck. Finally,
because the redundant executions now include larger L2 or
L3 caches, the rate of input incoherence increases as stale
values are kept for much longer periods of time, and the cost
of subsequent recovery increases as more instructions must
be replayed and one or more off-chip accesses are required.

In this paper, we propose REDAC', a set of mechanisms
that enables distributed, asynchronous redundancy in scal-
able shared-memory servers with little performance over-
head. Figure 1 illustrates the basic architecture of REDAC.
We evaluate REDAC using cycle-accurate full-system simu-
lation of common enterprise workloads and show that per-
formance overheads average just 10% when compared to a
non-redundant system. These results are comparable to the
performance of a similarly configured lockstep design, but
offer the substantial benefits of asynchronous redundancy.
We make the following specific contributions in support of
REDAC:

¢ Scalable Result Buffering. We show that prior proposals
for long-range speculation provide sufficient buffering of
unchecked state updates for distributed, asynchronous
redundancy. Our evaluations demonstrate that with as
few as two hardware checkpoints, performance overhead
in REDAC averages just 15% (25% in worst case), while
four checkpoints reduce the average overhead to 10%
(17% in worst case).

® Speculative Serializing Operations. We show that prior
mechanisms [37] cannot efficiently support speculation
across common memory ordering instructions. We

1. REdundant Distributed Asynchronous Checking

describe an approach to integrate existing speculation
mechanisms [9,14,43] with redundant execution and
demonstrate that memory order speculation reduces stalls
in REDAC by up to 40%.

¢ Limited Input Incoherence. We propose mechanisms to
mitigate the impact of input incoherence in REDAC.
REDAC limits input incoherence to data races by provid-
ing invalidation hints to the redundant execution, which
reduces stalls by up to 70% in our study. Furthermore, we
observe that because most data races occur in or around
memory ordering and atomic operations, REDAC can limit
the cost of recovery by shortening the window of specu-
lation around these instructions. Our evaluations show a
drastic reduction in stalls—over 2X in several work-
loads—with this technique.

Paper Outline. In Section 2, we present background on
our fault model and the challenges of distributed, asynchro-
nous redundancy. Section 3 describes the proposed REDAC
mechanisms. We evaluate REDAC in Section 4, present
related work in Section 5 and conclude in Section 6.

2 Background: Redundant Computation
2.1 System and Fault Models

Increasing levels of integration, diminishing node
capacitance, and lower noise margins in high-performance
architectures have led to growing concerns about rising
error rates from a variety of transient, permanent, and inter-
mittent faults [6,22,41]. Our fault model assumes transient
faults, such as those arising from cosmic rays or alpha parti-
cles, manifest as bit flips in latches, embedded memory
cells, or incorrect logic results, but leave the underlying
hardware operational. Intermittent and permanent faults,
whether due to failing transistors or damaged wires [41],
may result in fail-silent operation (no further results follow-
ing error), fail-fast operation (an error detected and reported
immediately), or—in the worst case—silent data corruption
that goes undetected.

Redundant computation, as we propose in this paper,
provides protection for the processor datapath without
requiring modifications to the complex and timing-critical
pipeline itself. Instruction results that have yet to undergo
output comparison do not require additional protection, but
we must protect pending state updates which are being
checked or have already been checked. We assume informa-
tion codes protect cache arrays and critical communication
buses [34].

The mechanisms we propose in this paper reduce the
vulnerability of scalable shared-memory architectures, typi-
fied by the system of Figure 1. In such designs, a portion of
the physical memory space is collocated with each proces-
sor chip. We assume, as is common practice in industry
today [11,17], that each chip contains the necessary inter-
face logic to access the local memory and to handle network
traffic for coherent memory access from remote processor
and memory nodes. Although our evaluation in Section 4
uses directory-based coherence protocols, the REDAC mech-
anisms apply to snooping protocols as well.

The non-compute portions of the system—DRAM, /O,
and interconnect—are protected through combinations of
information redundancy (e.g., memory mirroring or
parity [28], RAID [27], and ECC [34]) and link- or proto-
col-level retry mechanisms (e.g., [39]). Control and inter-
face logic is assumed to be protected through hardening or
robust circuit design [34].

As in prior proposals [37] for tightly coupled asynchro-
nous redundancy, our design compresses architectural state
updates into a fingerprint signature [38]. Fingerprints enable
low-bandwidth comparisons while capturing essentially
every instruction result. Because the fingerprint uses a hash-
based signature, it is subject to collisions that can leave
errors undetected or uncorrected. However, designers can
strengthen the hash design to meet desired error budgets
while maintaining acceptable comparison bandwidth [36].

2.2 Challenges of Distributed, Asynchronous
Redundancy

To enable asynchronous, software-transparent redun-
dancy in shared-memory systems, Smolens et al. [37] pro-
posed the Reunion execution model and presented a design
that forms redundant pairs from tightly coupled cores on a
CMP. The enabling observation of Reunion is that, in the
absence of data races and errors, replicas will execute an
identical instruction stream. The rare case where execution
diverges is treated as a soft error, causing rollback and re-
execution. Upon rollback, a synchronizing request ensures
that replicas observe identical values and guarantees for-
ward progress.

Figure 2 illustrates the key challenges that prevent a
simple extension of the tightly coupled design in [37] from
supporting cross-chip distributed redundancy. As in
Reunion, we divide the dynamic instruction sequence into
intervals (shown as a numbered sequence in the diagram)

and compress status updates with fingerprints [38]. We
illustrate the execution of a series of fingerprint intervals
using a pipeline diagram, where each interval must first
accumulate instructions as they retire from the processor
core, then a fingerprint check is performed, and finally the
instruction interval is committed as permanent changes to
architectural state.

Distributing the redundant pairs reduces bandwidth
available for checking fingerprints and increases the com-
parison latency, thereby increasing drastically the number
of pending instructions that must be buffered (Figure 2(a)).
The tightly coupled design proposed in [37] leveraged exist-
ing buffering resources within the out-of-order instruction
window (e.g., 128 to 256 instructions). Our investigations
show that naively extending this approach to a distributed
design results in a 2 to 3X slowdown, as execution must
continually stall while waiting for previous intervals to
check and commit.

The second challenge comes from serializing opera-
tions, such as memory ordering instructions, instructions
that access special, non-renamed registers (e.g., timers), and
non-idempotent instructions (e.g., programmed 1/O), which
stall the pipeline until checking completes and the instruc-
tion is committed. As the checking latency increases, these
operations become a larger performance bottleneck
(Figure 2(b)). Of these, memory ordering instructions are by
far the most common and, in the workloads we study,
account for as much as a 40% performance overhead due to
exposed checking latencies.

The replicas in the Reunion execution model, which are
referred to as vocal and mute, access their local cache hier-
archy as a non-redundant system would. To preserve exist-
ing coherence protocols, Reunion specifies that the mute
portion of the memory system is phantom, meaning coher-
ence state is not tracked and memory requests from the mute
do not have to be coherent. As Figure 2(c) illustrates,
because the mute’s cache state is not tracked, it does not get
invalidated when a new value is written to a location the
mute has cached.

In a tightly coupled design, the mute’s phantom mem-
ory system includes just the L1 cache and rollback recovery
with a synchronizing request is comparable in latency to an
L2 cache hit. The deadblock time of the L1 cache—the time
from the last access of a block to its subsequent eviction—is
sufficiently short that the mute hierarchy is likely to have
discarded the now-stale block. If the stale block has not
been evicted prior to the next use, the performance loss is
minimal because of the short rollback recovery times. Nei-
ther of these conditions is true in the distributed case, as the
deadblock times now include the much larger L2 or L3
cache and rollback discards more instructions and requires
one or more off-chip memory accesses (Figure 2(d)). Our
results indicate execution times double in several workloads
due to these limitations.

Tightly Coupled

Distributed

Accumulate

| Check I

Insns
Pending

o

| Check |l
| Accumulate

| Accumulate

| Check I

Time

(a) Increased buffering. Intervals accumulate instructions (A), check fingerprints (C), and then commit (shaded).

Tightly Coupled Distributed
Ic] [Chex I
2 | Accumulate | Check |l
“—>
Stall Stall
(b) Longer stalls due to serializing instructions (shown in darkly shaded region).
Tightly Coupled Distributed
LD X LD X LD X LD X
Vocal | | | Vocal | | [Mute
Inval. X Mute Inval. X L
L1
LD X LDX [Shared L2 LD X LD X: stale! L2
Mute | [I Mute | I I Mem System
Evict X Writeback X
(discard) (to L2)

(c) Increased input incoherence due to longer deadblock times. The ‘phantom’ memory system is shown in light gray.

Tightly Coupled

Distributed

1 [Alc]R]

Accumulate

| Check | Recovery

(d) Higher cost of rollback recovery. If the checking stage fails, rollback recovery (R) is initiated.

FIGURE 2. Performance impediments for distributed, asynchronous redundancy.

3 Mechanisms to Support Distributed,
Asynchronous Redundancy

In this section, we present the REDAC mechanisms that
enable distributed, asynchronous redundancy in shared-
memory systems with little performance loss.

3.1 Scalable Result Buffering

We require a mechanism to buffer the results of a large
number of instructions until a fingerprint check is per-
formed. Several potential mechanisms have been proposed
recently in the literature [2,8,12,18,25,43]. In essence, these
mechanisms provide checkpoints of the register file at the
beginning of a speculative window (our fingerprint interval)
and then buffer store values either in a scalable
structure [2,25], or obtain the effect of a scalable store

buffer by leveraging capacity in the cache
hierarchy [8,18,43].

Two constraints arise when designing a checkpoint and
buffering scheme: the number of register checkpoints
required and the total number of stores that need buffering.
While one checkpoint is always required for the interval
currently being accumulated, additional checkpoints are
necessary to overlap the checking latency. Prior
work [2,13,18] has developed mechanisms with support for
a small number of register checkpoints (e.g., 4 simulta-
neous). Because of the long-latency speculation we require,
checkpoints must include common instruction and floating-
point registers as well as control and special-purpose regis-
ters. As in [43], we also record changes made to the TLB/
MMU state to support speculation in supervisor code.

Memory Order Violation

Vocal | Accumulate | Check [Roll back
Mute| Accumulate | Check ((a?ios?ar?ét)

Vocal |

Mute |

Memory Order Violation

Accumulate | Check Roll back

Accumulate Roll back

FIGURE 3. Fingerprint checking protocols. The left figure shows the fingerprint swap protocol proposed in [37], while the
right shows the two-phase fingerprint check proposed in this work. If a memory order violation is detected during checking, the
swap protocol may result in lost updates on the mute. The two-phase protocol synchronizes the rollback operation.

The store buffer serves a dual-purpose role by provid-
ing the most-recent value to the local processor and main-
taining the specified memory order as stores are committed.
A scalable buffering scheme decouples these two functions
into a CAM structure for providing most-recent values to
the processor and a FIFO for maintaining memory order.
This is the approach taken in [43], which reuses the L1
cache as the CAM structure and constructs a separate FIFO
on the side. The L1 cache tags are extended with per-word
valid bits that permit the processor to read private values
even though store permission has not been granted (the rest
of the block is invalid); the per-word valid bits allow the
block to be merged with new, local store values.

While mechanisms exist that enable large fingerprint
intervals, we also require logic to decide when to end the
current interval that the processor is accumulating. Because
the DMR pair is asynchronous, the decision to end an inter-
val cannot be based on external, timing-dependent events;
rather, the only common reference is the instruction stream.
Our design creates new fingerprint intervals under the fol-
lowing conditions:

® After an interval reaches a fixed, maximum number of
instructions

® Before retiring an instruction with side-effects (e.g., pro-
grammed I/O)

® Memory operation following rollback

® Before and after retiring memory ordering instructions
(e.g., atomics and FENCE/MEMBARSs)

In Section 3.2, we show that creating a new interval on
memory-ordering instructions is not strictly required if the
hardware supports speculation on the memory model; how-
ever, synchronization code benefits substantially from
shorter intervals (Section 3.3).

3.2 Speculative Serializing Instructions

We observe that mechanisms such as atomic sequence
ordering (ASO) [43] that enable speculation beyond the
retirement of the most-common serializing instructions—
atomic memory accesses and memory ordering instruc-
tions—can also hide the long checking latency of distrib-
uted redundancy. Speculatively relaxing the memory model
leads to possible rollbacks beyond conventional instruction

retirement. Figure 3 illustrates the problem these post-retire-
ment rollbacks pose for the fingerprint checking protocol of
Reunion [37].

If the vocal sends a fingerprint, but later discovers an
ordering violation (misspeculation), the mute may have
already compared the vocal’s fingerprint and advanced
beyond the point of recovery. Although the vocal’s check-
point state could be copied to the mute to provide correct
forward progress, this operation is costly and would cause
significant performance degradation with frequent misspec-
ulations.

Our approach, shown in Figure 3(right), converts the
swap protocol from [37] into a two-phase checking process
where the mute first sends its fingerprint, the vocal does a
comparison after ensuring the sequence can commit, and
then the vocal replies to the mute with its fingerprint.
Although the checking latency for the mute is effectively
doubled—placing additional pressure on the mute’s buffer-
ing resources—the two-phase checking protocol permits the
vocal to synchronously notify the mute when rollback is
required due to ordering violations.

Implementation. As in ASO, we use a table of finger-
print intervals (atomic sequences in [43]) to track the status
of blocks written speculatively by each interval. Each entry
in the table has a count of the number of unique cache
blocks written by the interval, as well as the number of
cache blocks with writable permission. At vocal processors,
intervals may commit when these two counts are equal and
the fingerprint comparison has succeeded. Mute processors
require only a fingerprint comparison before commit, as
they are not required to be coherent or maintain memory
consistency in the Reunion execution model.

To detect memory order violations, the L1 and L2
cache tags are augmented with a speculatively read bit for
each pending sequence. Any read that follows a memory
ordering instruction must mark its cache line with the specu-
lative bit. If another processor invalidates a speculatively
read line, the processor is notified of the ordering violation
and must roll back.

Implementing rollback for memory ordering violations
is challenging because the vocal detects memory order vio-
lations independent of fingerprint comparisons, so the mute

Accumulate

Check

Mute Cores
[]
S inval. 4
Ack™>>) 7 Inval.

Directory Hint

I
A C —I Acquire

A I Critical Section
A C I Release

| Accumulate

(@)

Check I

FIGURE 4. Limiting Input Incoherence. The left figure shows mute invalidation hints, and the right illustrates reduced

fingerprint intervals around synchronization code.

may not have caught up to the recovery point. Our imple-
mentation stalls instruction retirement until the mute catches
up—identified by fingerprint sequence numbers—then the
vocal informs its mute of rollback by sending a poisoned
fingerprint that causes the mute to roll back. In an aggres-
sive implementation, the intervals older than the ordering
violation can be kept; thus, while the vocal is stalled waiting
for the mute to catch up, it must continue performing finger-
print comparisons for older intervals that will not be dis-
carded.

Non-Speculative Serializing Events. Although mem-
ory ordering instructions constitute the vast majority of seri-
alizing operations and can thus be speculatively overlapped,
other instructions and events cannot be speculated past.
These include: handling external interrupts, non-idempotent
operations such as device accesses, and reading from timer
or performance counter registers.

When an interrupt arrives at the vocal, we delay its
delivery until the vocal completes another fingerprint inter-
val, at which point the fingerprint is tagged with the inter-
rupt data and sent to the mute. The vocal now enters the
interrupt handler. Because we use the two-phase checking
protocol, the mute is guaranteed to have run ahead of the
vocal at this point and must be rolled back before entering
the interrupt handler.

For serializing instructions, no rollback is required
because both vocal and mute can end the previous finger-
print interval immediately before the serializing instruction.
The vocal then stalls until all prior intervals are checked and
committed, and then sends the mute a fingerprint for the
serializing instruction. In the case of non-renamed registers,
the fingerprint packet must also include the register value to
be used. We assume that these registers are hardened cells
that mitigate the likelihood of a transient fault.

3.3 Limiting Impact of Input Incoherence

Frequency of Recovery. With the mute cache hierar-
chy including large L2 or L3 caches, deadblock times in our
system will be much larger than in tightly coupled designs
where the mute cache hierarchy is just the L1 cache [37]. In
a directory-based coherence protocol, only sharers of a
cache block get invalidated when a new value is written.

Because the mute caches are not kept in the coherence-pro-
tocol state, the mute caches do not get invalidated and input
incoherence may result on a later load instruction.

To limit the frequency of input incoherence due to
these stale blocks, we add mute invalidation hints to the
coherence protocol. As Figure 4(left) illustrates, when a
vocal is invalidated during normal coherence protocol tran-
sitions, a hint is sent to its corresponding mute. These hints
do not affect protocol transitions, nor do they require
replies. These hints do not eliminate the possibility of input
incoherence on real data races; rather, they eliminate non-
races as a source of input incoherence.

Cost of Recovery. A distributed redundancy system
has less bandwidth available for output comparison than a
tightly coupled design, and hence the fingerprint intervals
must include more instructions to amortize the cost of fin-
gerprint traffic. As a result, the cost of recovery on input
incoherence goes up considerably, as more instructions
must be discarded upon rollback. We observe that, because
input incoherence is now limited to data races, rollback will
occur in and around synchronization code (e.g., critical sec-
tions protected by locks).

Modern processors provide hardware support for fast
synchronization code with atomic memory operations and
memory ordering instructions. As shown in Figure 4(right),
by creating new fingerprint intervals before and after syn-
chronization instructions, REDAC limits the window of vul-
nerability for input incoherence to actual races for shared
variables. Because we support unmodified application and
system code, REDAC must create new sequences around
every atomic memory operation and ordering instruction.
This handles complex synchronization where multiple locks
are acquired before entering a critical section, a common
pattern in system code.

Creating a new interval before the ordering operation
reduces the cost of rollback by not discarding useful work
prior to the ordering instruction, while a new interval imme-
diately after the ordering operation reduces the frequency of
rollback by limiting the time window where other proces-
sors to attempt to access the synchronization variable(s).

=
a
°
]

ﬂ nEE DAE

‘_“ — =

: I i I
™
o
c
)
E

. =|n|e =(n|e =|n|e S(n| e

0|2 |® n|2|® n|-|S n|a|®

al |8l [18] & |8 1ol |8

v v o o

Apache Zeus DB2 Oracle

Web Web OLTP OLTP

[[

DSM

Checkpoints

i i i = g0
= B L - ! | E Failed Spec
I I I @ Other
= B L E Atomic
Him
O Reads
0wl S|0n|e = S|n|e
| ® nl=|® %) 0|2 |<| mBusy
3l 12l [8] |2 al 3
v'd h'd v’
Qry2 Qry16 Qry17 Avg
DSS DSS DSS

FIGURE 5. Baseline Performance Comparison. Each bar shows an execution-time breakdown for a non-redundant DSM,
lockstep design, and REDAC, normalized to the non-redundant system. Error bars show 95% confidence intervals, and time is
accounted as follows. ‘Checkpoints’ occurs when buffering resources are exhausted. ‘I/O’ is all interrupts and memory-mapped
I/O instructions. ‘Failed Spec’ includes input incoherence (REDAC only) and memory model mis-speculation (all designs).
‘Other’ is primarily non-forward-progress instructions, such as lock spinning and the idle loop. ‘Atomic’ and ‘Reads’ are the
read portion of the respective memory operations. ‘Busy’ is instruction retirement (non-stall cycles).

4 Evaluation

We evaluate REDAC using cycle-accurate full-system
simulation in Flexus [44]. Flexus models the SPARC v9
ISA and can execute unmodified commercial applications
and operating systems. Flexus extends the Virtutech Simics
functional simulator with models of an out-of-order proces-
sor core, cache hierarchy, protocol controllers and intercon-
nect. Our baseline processor includes support for memory
model speculation using atomic sequence ordering (ASO)
[43]. We simulate a 32-node system with 16 processor pairs
in a directory-based shared-memory multiprocessor system
running Solaris 8. We implement a directory-based NACK-
free cache-coherence protocol, including added support for
phantom memory requests and synchronizing requests. We
list other relevant parameters in Table 1.

Table 2 enumerates our commercial application suite.
We include the TPC-C v3.0 OLTP workload on IBM DB2
v8 ESE and Oracle 10g Enterprise Database Server. We run
three queries from the TPC-H DSS workload on DB2,
selected according to the categorization of Shao et al. [33].
We evaluate web server performance with the SPECweb99
benchmark on Apache HTTP Server v2.0 and Zeus Web
Server v4.3. We drive the web servers using a separate cli-
ent system (client activity is not included in results).

We measure performance using the SimFlex multipro-
cessor sampling methodology [44]. The SimFlex methodol-
ogy extends the Smarts [45] statistical sampling framework
to multiprocessor simulation. Our samples are drawn over
an interval of from 10s to 30s of simulated time for OLTP
and web server applications and over the complete query
execution for DSS. We launch measurements from check-
points with warmed caches and branch predictors, then

warm queue and interconnect state for 100,000 cycles prior
to measuring 50,000 cycles. We use the aggregate number
of user instructions committed per cycle (i.e., committed
user instructions summed over the 16 processor pairs
divided by total elapsed cycles) as our performance metric,
which is proportional to overall system throughput [44]. We
do not include error events in our evaluation; however,
input incoherence events, output comparison, and recovery
are modeled in detail.

4.1 REDAC Overview

We evaluate the performance of REDAC by comparing
with a non-redundant architecture (“DSM”) and a redundant
design that uses lockstep replication (“LS”). The lockstep

TABLE 1. System parameters.

UltraSPARC III ISA

4 GHz 8-stage pipeline; out-of-order
4-wide dispatch / retirement
128-entry ROB, LSQ

32-entry store buffer

Split I/D, 64KB 2-way, 2-cycle load-to-use
4 ports, 32 MSHRs, 16-entry victim cache

Unified, 8MB 8-way, 25-cycle hit latency
1 port, 32 MSHRs

3 GB total memory

60 ns access latency
64 banks per node
64-byte coherence unit

Processing Nodes

L1 Caches

L2 Cache

Main Memory

1 GHz microcoded controller
64 transaction contexts

Protocol Controller

4x4x2 torus
25 ns latency per hop
256 GB/s peak bisection bandwidth

Interconnect

@100 b500

12000
80% -
70%
60% - ;
%
50% - g
40% 4 g
30% g
20%)
%
%
%

10% - I
0% A4

Performance Overhead

e o2 O4 & Inf

80% -
70% -
60% -
50% -
40%
30%
20%
10%
0%

Performance Overhead

FIGURE 6. Buffering Requirements. The left figure shows sensitivity to the nominal fingerprint interval. The right figure
shows sensitivity to the number of available register checkpoints, where ‘Inf’ allows an unbounded number. All results are
normalized to the non-redundant DSM, which has four register checkpoints.

architecture is configured identically to the REDAC system,
except instead of using asynchronous redundancy, our lock-
step model replicates all chip-external inputs as in the
TRUSS [15] design. Our lockstep approach differs from
TRUSS in how we handle ‘dirty read’ operations, which
occur when a processor reads a value modified previously
by a remote processor. Rather than delay the reader to check
that the updated cache line is free of errors, we leverage the
scalable store buffering provided by our baseline microar-
chitecture to hide unchecked stores. As in the REDAC sys-
tem, writebacks from the mute cache are discarded under
the lockstep design.

Figure 5 shows the execution-time breakdown for these
models, normalized to the non-redundant DSM. The redun-
dant designs both use nominal fingerprint intervals of 2000
instructions, and all three systems support up to four register
checkpoints. REDAC achieves similar overheads (10%) as
the lockstep design, without requiring determinism or full-
state initialization. Despite the similar overall performance,
REDAC and lockstep spend the additional stalls differently.

TABLE 2. Application parameters.

Online Transaction Processing (TPC-C)
DB2 100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA
Web Server
Apache 16K connections, fastCGI, worker threading model
Zeus 16K connections, fastCGI
Decision Support (TPC-H on DB2)
Qry 2 Join-dominated, 450 MB buffer pool
Qry 16 Join-dominated, 450 MB buffer pool
Qry 17 Scan/join-balanced, 450 MB buffer pool

The lockstep design has a fixed slip—the absolute time dif-
ference between vocal and mute—that corresponds to the
worst-case, single-hop network latency. For our intercon-
nect this is 140 ns (560 processor clock cycles). The relaxed
input replication of REDAC permits a variable slip that aver-
ages 25 ns (the minimum network-hop latency). This differ-
ence manifests in the higher ‘Checkpoints’ and ‘I/0O’-related
stalls for the lockstep design, as both expose the slip on the
critical path of execution. From the REDAC perspective,
these improvements are offset by a higher rate and cost of
failed speculation, primarily from input incoherence.

4.2 Buffering Requirements

Our baseline performance analysis shows that on aver-
age REDAC performs within 10% of a non-redundant system.
In Figure 6, we examine the sensitivity of REDAC to key
design choices that affect buffering requirements: nominal
fingerprint interval and the maximum number of register
checkpoints. Unlike the number of checkpoints, the finger-
print interval size has no associated hardware cost. How-
ever, as Figure 6(left) shows, there is substantial
performance sensitivity to this parameter choice. With
shorter intervals, fingerprints are exchanged more fre-
quently, and network bandwidth constraints limit perfor-
mance. Because we found little sensitivity beyond 1000
instructions, we chose 2000 as the baseline parameter.

In Figure 6(right), we show the sensitivity to the num-
ber of register checkpoints available for speculation. We
observe that execution time with four register checkpoints is
within 5% of the unbounded case across all the applications
we studied, while having just two checkpoints loses an addi-
tional 10% in the worst case (Oracle OLTP). Having a sin-
gle checkpoint exposes a portion of the fingerprint
comparison latency any time the checking latency is larger

Time normalized to DSM

Checkpoints

/10
Failed Spec

||
2 3|9
= < I~
Apache Zeus DB2 Oracle
Web Web OLTP OLTP

== = [@ Other
E Atomic
s [1Reads
9|9 9|9 99 9o W Busy
<2 <2 <2 <2
Qry2 Qry16 Qry17 Avg
DSS DSS DSS

FIGURE 7. Impact of Memory Model Speculation. A distributed redundancy scheme benefits substantially from speculation
on the memory order (ASO). Abiding by the SPARC TSO model means even uncontended locks that hit in cache must stall for

cross-chip fingerprint comparisons.

than the time until the processor’s instruction window is
exhausted. In our model, checking latencies average
between 100 and 200 processor clock cycles (25 to 50 ns),
and our 128 entry ROB will fill in 64 to 256 cycles for the
applications we studied, on average. Thus, as
Figure 6(right) shows, significant stalls should be expected.

For comparison, we examined a variant of REDAC that
used no register checkpoints, but instead relied only on
speculation within the out-of-order instruction window. On
average, execution time more than doubles, as the instruc-
tion window lacks sufficient buffering to overlap the check-
ing latency.

4.3 Speculating on Ordering Instructions

Figure 7 shows the impact of ordering instructions—
atomic memory operations and memory barriers—if,
despite having the necessary hardware for memory order
speculation, REDAC was limited to implementing the Total
Store Order (TSO) model specified by the SPARC architec-
ture. In such a scenario, the processor must stall while all
older store operations are committed, including all prior
checkpoints still pending fingerprint comparisons. This is
particularly problematic for atomic operations that hit in the
cache, because rather than complete in a few cycles, they
must stall for a significantly longer fingerprint operation.

4.4 Limiting Input Incoherence

Because of the latencies involved in distributed redun-
dancy, rollback has a high performance cost. Our experi-
ments show that, on average, rollback takes approximately
the same amount of time as one to two off-chip memory
accesses (800 processor cycles in our model). Thus, it is of
critical importance to minimize the number of input inco-
herence events. Figure 8 illustrates two approaches to meet-
ing this goal: mute invalidation hints and generating new
intervals on ordering instructions.

Because the mute is not required to be a coherent part
of the memory system, it is permitted to hold stale cache
blocks even though another DMR pair has updated the
value. Allowing the mute nodes to be stale is particularly
problematic in REDAC because the large L2 cache in the
mute nodes often holds cache blocks for millions of cycles
or longer. If the mute is not informed of invalidations by
other DMR pairs, it will very likely read stale values and
require rollback due to the input incoherence. Figure 8(left)
confirms this hypothesis, indicating an average performance
overhead of 30%. In DB2 OLTP, the overhead is nearly
75% because of migratory data patterns.

Table 3 quantifies the frequency of input incoherence
both in our baseline design for REDAC and when mute inval-
idation hints are omitted. Compared to the values reported
from Reunion [37], REDAC shows a 10-100X increase in
input incoherence frequency. Omitting the mute invalida-
tion hints increases the rollbacks by another order of magni-
tude. We observe two potential reasons for why input
incoherence is more frequent in REDAC than in a tightly cou-
pled design like Reunion. First, the applications we study in
this paper are scaled to 16 logical processors, and lock con-
tention increases accordingly. Our investigations suggest

Table 3. Input incoherence rates,
per 1M instructions.

With Mute No Mute

Workload Invalidations Invalidations

Apache 11.2 86.5
Zeus 9.4 83.2
DB2 OLTP 46.7 491.5
Oracle OLTP 18.7 140.2
DB2 DSS Q2 31.0 152.0
DB2 DSS Q16 28.8 139.6
DB2 DSS Q17 30.0 214.7

O Mute Invalidation Hints

80% O No Mute Invalidation Hints
b A

70% -
60% -
50% A
40% -
30% -
20% A

10% -

o, 1 11
2 g
SN
<

Performance Overhead

Q
=
a

% © N~
=) fay >
g g

Oracle

Web OLTP DSS

O FP-on-Ordering
O No FP-on-Ordering

170% 280% 100%
80% - o 3 J;L o
- 70% 4
©
@ 609
[
S 50% -
© 40% |
o
% 30% A
€ 20% -
o
£ 10% - ’7 |’
o gy [[]
elelalelelels
SIN|®18]1°|&]|6
<
Web OLTP DSS

FIGURE 8. Limiting Input Incoherence. The left figure shows the necessity of providing mute nodes invalidation hints as part
of the coherence protocol. The right figure shows the impact of creating short fingerprint intervals around memory ordering and

atomic operations.

that lock contention accounts for nearly all input incoher-
ence in these applications, with some additional rollbacks
attributable to false sharing, particularly in the TCP stack in
Solaris 8. Second, we note that the slip between vocal and
mute is likely to be more variable in REDAC than in
Reunion, as the cross-chip interconnect and memory-system
components have far more sources of variable queuing
delays than a shared on-chip cache. Although the median
slip is a single network hop—25 ns in our design—we
observed slips as large as a few microseconds. A slip of this
magnitude corresponds to a large window of vulnerability
for input incoherence.

Additionally, we note the importance of isolating mem-
ory ordering instructions into short fingerprint intervals with
Figure 8(right). In this experiment, we do not generate new
fingerprint intervals before or after retiring a memory order-
ing instruction. We serialize these instructions at significant
cost; however, they are rare. The large performance over-
heads are due to memory order violations, which require
rollback with cost similar to input incoherence. The increase
in memory order violations results from holding locks—
they are privately released but publicly still held—well
beyond when the critical section ends, thus increasing con-
tention for shared data. It is vital to commit lock releases as
soon as possible.

4.5 Slipstream Effects

To minimize the slip between vocal and mute, we pro-
posed that REDAC distribute physical memory and accompa-
nying directory entries across all the nodes. And while we
observed a substantial increase in slip for the worst case, the
median slip was largely unchanged if we placed the memory
and directory entries only on vocal nodes. As Figure 9

10

shows, the performance is very similar to the baseline. We
include this result because it showed an interesting phenom-
enon: slipstreaming [29]. On average, vocal requests for
remote cache blocks will arrive at the directory controller
first in this scenario, with the mute request arriving 25 to 50
ns later on average. The directory state is stored in DRAM,
along with the actual data, and both take 60ns to access. The
mute’s request will hit in the cache in the directory, eliding
nearly all of the DRAM latency. Thus, although the mute
nodes have an additional network hop to traverse for every
memory access, performance does not suffer.

5 Related Work

The conventional approach to redundant computation
uses clock-for-clock lockstep [34], where replicas are tied to
the same physical clock, and inputs (e.g., cache line fills and
interrupts) and outputs (e.g., cache writebacks and pro-
grammed I/O operations) are synchronized to the common
clock. Implementing any lockstep redundancy scheme
requires initialization of all state-holding elements—includ-
ing those that do not affect architecturally correct execution
(e.g., branch predictors [24])—and completely deterministic
execution.

Because of these challenges, current mainframes from
HP [5] and IBM [42] have moved away from synchronous
redundancy. Instead, HP’s NonStop Advanced Architecture
(NSAA) synchronizes inputs and outputs at software-
defined boundaries. Aggarwal et al. [1] extend the NSAA
architecture to address common-mode failures within com-
modity CMPs; however, the NSAA approach requires cus-
tom system and application software. After several
generations of tightly coupled DMR pipelines [35], IBM

O Fully Distributed [All-on-Vocal

80% -

'870%—

2 60% -

gso%-

o 40% -

(%]

€ 30% -

E 20%

€ 10% m

5 00

o oy FI—||_|—| |_|_|
Sl 2|al|e > | 2
3 | N S1°1&|6
<
Web OLTP DSS

FIGURE 9. Memory Placement. Although slip increases
slightly, unbalancing the system by placing memory only
on vocal nodes does not hurt performance because the
mute nodes can slipstream vocal memory requests.

has moved away from DMR altogether, instead opting to
embed over 20,000 fine-grained checkers into their custom
z-Series chips [42]. As in previous-generation designs,
IBM’s mainframes rely on extensive software support for
high availability.

Our approach to checkpointing differs from recent
work in that we advocate fine-grained checkpointing at the
granularity of cache coherence interactions. In ReVive [28]
and SafetyNet [39], checkpoints are created on the order of
milli- and micro-seconds. Coarse-grained checkpointing
improves system availability, but requires kernel extensions
and specific network protocol features to tolerate I/O inten-
sive workloads [26].

Recent work has also addressed the emergence of hard
errors in future processor designs. Srinivasan et al. [40]
applies device failure models to predict future hard errors
and proposes techniques to extend the operational lifetime,
but cannot detect in-field faults when they occur. Bower et
al. [7] use a checker core to detect hard- and soft-errors at
runtime, but requires a custom checker core to do so. The
BulletProof design [10] integrates custom built-in self test
(BIST) hardware into the processor pipeline, sending test
vectors through periodically to detect recent hard faults.

Montesinos [21] observes that breaking instructions
into intervals (referred to as chunks in [21]) and leveraging
memory order speculation can aid logging and deterministic
replay of multiprocessor programs. Although deterministic
replay shares many commonalities with redundant execu-
tion, the key difference is that redundant processors in
REDAC must wait for the checking operation to complete
before intervals commit, whereas deterministic replay need
only log the order of interval commits.

11

6 Conclusion

We proposed REDAC, a set of lightweight mechanisms
for distributed, asynchronous redundancy within a scalable
shared-memory multiprocessor. REDAC provides scalable
buffering for unchecked state updates and overcomes com-
mon performance bottlenecks from previous designs, per-
mitting the distribution of redundant execution across
multiple nodes of the DSM server. With asynchronous
redundancy, REDAC obviates the extensive initialization and
determinism requirements of prior lockstep-based designs.
We evaluated REDAC using cycle-accurate full-system simu-
lation of common enterprise workloads and showed that
performance overheads average just 10% when compared to
a non-redundant system. These results are comparable to the
performance of a similarly configured lockstep design, but
offer the substantial benefits of asynchronous redundancy.

Acknowledgements

The authors would like to thank the members of the
TRUSS and Impetus research groups at CMU for their feed-
back on this paper. This work is supported by NSF
CAREER award CCF-0347568, NSF award ACI-0325802,
Sloan and DoD/NDSEG fellowships, the Center for Circuit
and System Solutions (C2S2), MARCO, CyLab, and by
grants and equipment from Intel Corporation.

References

[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith.
Configurable isolation: Building high availability systems with
commodity multi-core processors. In Proc. 34th Intl. Symp.
Computer Architecture, 2007.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint
processing and recovery: Towards scalable large instruction
window processors. In Proc. 36th Intl. Symp. on
Microarchitecture, 2003.

[3] T. M. Austin. DIVA: A reliable substrate for deep submicron
microarchitecture design. In Proc. of the 32nd Intl. Symp. on
Microarchitecture, 1999.

[4] W. Bartlett and B. Ball. Tandem’s approach to fault tolerance.
Tandem Systems Rev., 8:84-95, Feb 1988.

[S] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine,

J. Klecka, and J. Smullen. Nonstop advanced architecture. In
Proc. Intl. Conf. Dependable Systems and Networks, 2005.

[6] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. /[EEE Micro, 25(6):10-17, Nov-Dec 2005.

[7] E. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for online
diagnosis of hard faults in microprocessors. In Proc 38th Intl.
Symp. on Microarchitecture (MICRO 38), Dec 2005.

[8] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau. CAVA:
Using checkpoint-assisted value prediction to hide L2 misses.
ACM Transactions on Architecture and Code Optimization,
3(2):182-208, 2006.

[9] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk enforcement of sequential consistency. In Proc. 34th Intl.
Symp. Computer Architecture, 2007.

[10] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco,
S. Mahlke, T. Austin, and M. Orshansky. Bulletproof: A
defect-tolerant CMP switch architecture. In Proc. 12th Intl.
Symp. on High-Performance Computer Architecture, 2006.

[11] Intel Corporation. Intel QuickPath architecture. Intel
Whitepaper, 2008.

[12] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-order
commit processors. In Intl Symp on High Performance
Computer Architecture, 2004.

[13] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose. Increasing
processor performance through early register release. In Proc.
of ICCD, 2004.

[14] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP =
RC? In Proc. of the 26th Intl. Symp. on Computer Architecture,
May 1999.

[15] B. T. Gold, J. Kim, J. C. Smolens, E. S. Chung, V. Liaskovitis,
E. Nuvitadhi, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk.
TRUSS: a reliable, scalable server architecture. IEEE Micro,
25:51-59, Nov-Dec 2005.

[16] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz.
Transient-fault recovery for chip multiprocessors. In Proc. Int’l
Symp. on Computer Architecture, 2003.

[17] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway.
The AMD opteron processor for multiprocessor servers. [EEE
Micro, March-April 2003.

[18] J. F. Martinez, J. Renau, M. . C. Huang, and M. Prvulovic.
Cherry: Checkpointed early resource recycling in out-of-order
microprocessors. In Proc. of the 35th IEEE/ACM Intl. Symp. on
Microarchitecture, Nov 2002.

[19] P. J. Meaney, S. B. Swaney, P. N. Sanda, and L. Spainhower.
IBM 2990 soft error detection and recovery. I[EEE Trans.
device and materials reliability, 5(3):419-427, Sept 2005.

[20] A. Mendelson and N. Suri. Designing high-performance and
reliable superscalar architectures: The Out of Order Reliable
Superscalar O3RS approach. In Proc. of the Intl. Conference on
Dependable Systems and Networks, June 2000.

[21] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean:
Recording and deterministically replaying shared-memory
multiprocessor execution efficiently. In Proc. 35th Intl. Symp.
Computer Architecture, 2008.

[22] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error
problem: an architectural perspective. In Proc. Intl. Symp. on
High-Performance Computer Architecture, 2005.

[23] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading alternatives.
In Proc. Int’l Symp. Computer Architecture, May 2002.

[24] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor. In Proc. 36th IEEE/ACM Intl. Symp. on
Microarchitecture, 2003.

[25] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
execution: an effective alternative to large instruction windows.
IEEE Micro, 23(6):20-25, November/December 2003.

[26] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas.
ReVivel/O: Efficient handling of I/O in highly-available
rollback-recovery servers. In Int’l Symp. High-Performance
Computer Architecture (HPCA), Feb 2006.

[27] D. Patterson, G. Gibson, and R. Katz. A case for redundant
arrays of inexpensive disks (raid). In Proc. 7th ACM Intl.

12

Conference on Management of Data, 1988.

[28] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: cost-
effective architectural support for rollback recovery in shared
memory multiprocessors. In Proc. 29th Intl. Symp. on
Computer Architecture, 2002.

[29] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study of
slipstream processors. In Proc. of the 33rd Intl. Symp. on
Microarchitecture, 2000.

[30] J. Ray, J. C. Hoe, and B. Falsafi. Dual use of superscalar
datapath for transient-fault detection and recovery. In Proc. of’
the 34th Intl. Symp. on Microarchitecture, 2001.

[31] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection
via simultaneous multithreading. In Proc. Int’l Symp.
Computer Architecture, 2000.

[32] E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. In Proc. 29th Intl. Symp. on
Fault-Tolerant Computing, June 1999.

[33] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: Fast and
accurate database workload representation on modern
microarchitecture. In Proc. 15th IBM Center for Advanced
Studies Conference, 2005.

[34] D. P. Sieworek and R. S. Swarz. (Eds.). Reliable Computer
Systems: Design and Evaluation. A K Peters, 3rd edition, 1998.

[35] T. Slegel, R. A. III, M. Check, B. Giamei, B. Krumm,

C. Krygowski, W. Li, J. Liptay, J. MacDougall, T. McPherson,
J. Navarro, E. Schwarz, K. Shum, and C. Webb. IBM’s S/390
G5 microprocessor design. IEEE Micro, 19(2):12-23, 1999.

[36] J. C. Smolens. Fingerprinting: Hash-Based Error Detection in
Microprocessors. PhD thesis, Carnegie Mellon University,
Department of Electrical and Computer Engineering, Jan. 2008.

[37]J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-effective multicore redundancy. In Proc 39th Intl
Symp. on Microarchitecture, 2006.

[38] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and
A. G. Nowatzyk. Fingerprinting: Bounding soft-error detection
latency and bandwidth. In Proc.11th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, 2004.

[39] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: improving the availability of shared memory
multiprocessors with global checkpoint/recovery. In Proc. 29th
Intl. Symp. on Computer Architecture, 2002.

[40] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case
for lifetime reliability-aware microprocessors. In Proc. 3Ist
Intl. Symp. Computer Architecture, 2004.

[41] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The
impact of technology scaling on lifetime reliability. In Proc.
Intl. Conf. on Dependable Systems and Networks, 2004.

[42] C. Webb. IBM z6 - the next-generation mainframe
microprocessor. In HotChips 19, 2007.

[43] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Mechanisms for store-wait-free multiprocessors. In Proc. 34th
Intl. Symp. Computer Architecture, 2007.

[44] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: statistical sampling of
computer system simulation. /EEE Micro, 26(4):18-31, 2006.

[45] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. SMARTS:
Accelerating microarchitecture simulation through rigorous
statistical sampling. In Proc. 30th Intl. Symp. on Computer
Architecture, June 2003.

	Abstract
	1 Introduction
	FIGURE 1. Example 8-node Redac system. Each node consists of an identical CMP and a portion of the physical memory. All of the cores in Vocali are paired with the cores in Mutei.

	2 Background: Redundant Computation
	2.1 System and Fault Models
	2.2 Challenges of Distributed, Asynchronous Redundancy
	FIGURE 2. Performance impediments for distributed, asynchronous redundancy.

	3 Mechanisms to Support Distributed, Asynchronous Redundancy
	3.1 Scalable Result Buffering
	3.2 Speculative Serializing Instructions
	FIGURE 3. Fingerprint checking protocols. The left figure shows the fingerprint swap protocol proposed in [37], while the right ...

	3.3 Limiting Impact of Input Incoherence
	FIGURE 4. Limiting Input Incoherence. The left figure shows mute invalidation hints, and the right illustrates reduced fingerprint intervals around synchronization code.

	4 Evaluation
	TABLE 1. System parameters.
	TABLE 2. Application parameters.
	4.1 Redac Overview
	FIGURE 5. Baseline Performance Comparison. Each bar shows an execution-time breakdown for a non-redundant DSM, lockstep design, ...

	4.2 Buffering Requirements
	FIGURE 6. Buffering Requirements. The left figure shows sensitivity to the nominal fingerprint interval. The right figure shows ...

	4.3 Speculating on Ordering Instructions
	FIGURE 7. Impact of Memory Model Speculation. A distributed redundancy scheme benefits substantially from speculation on the mem...

	4.4 Limiting Input Incoherence
	Table 3. Input incoherence rates, per 1M instructions.
	FIGURE 8. Limiting Input Incoherence. The left figure shows the necessity of providing mute nodes invalidation hints as part of ...

	4.5 Slipstream Effects

	5 Related Work
	FIGURE 9. Memory Placement. Although slip increases slightly, unbalancing the system by placing memory only on vocal nodes does not hurt performance because the mute nodes can slipstream vocal memory requests.

	6 Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

