
I-SPY: Context-Driven Conditional Instruction
Prefetching with Coalescing

Tanvir Ahmed Khan∗ Akshitha Sriraman∗ Joseph Devietti† Gilles Pokam‡ Heiner Litz§ Baris Kasikci∗
∗University of Michigan †University of Pennsylvania ‡Intel Corporation §University of California, Santa Cruz
∗{takh, akshitha, barisk}@umich.edu †devietti@cis.upenn.edu ‡gilles.a.pokam@intel.com §hlitz@ucsc.edu

Abstract—Modern data center applications have rapidly
expanding instruction footprints that lead to frequent instruction
cache misses, increasing cost and degrading data center perfor-
mance and energy efficiency. Mitigating instruction cache misses
is challenging since existing techniques (1) require significant
hardware modifications, (2) expect impractical on-chip storage,
or (3) prefetch instructions based on inaccurate understanding
of program miss behavior.

To overcome these limitations, we first investigate the chal-
lenges of effective instruction prefetching. We then use insights
derived from our investigation to develop I-SPY, a novel profile-
driven prefetching technique. I-SPY uses dynamic miss profiles
to drive an offline analysis of I-cache miss behavior, which it uses
to inform prefetching decisions. Two key techniques underlie I-
SPY’s design: (1) conditional prefetching, which only prefetches
instructions if the program context is known to lead to misses, and
(2) prefetch coalescing, which merges multiple prefetches of non-
contiguous cache lines into a single prefetch instruction. I-SPY
exposes these techniques via a family of light-weight hardware
code prefetch instructions.

We study I-SPY in the context of nine data center applications
and show that it provides an average of 15.5% (up to 45.9%)
speedup and 95.9% (and up to 98.4%) reduction in instruc-
tion cache misses, outperforming the state-of-the-art prefetching
technique by 22.5%. We show that I-SPY achieves performance
improvements that are on average 90.5% of the performance of
an ideal cache with no misses.

Index Terms—Prefetching, frontend stalls, memory systems.

I. INTRODUCTION

The expanding user base and feature portfolio of modern
data center applications is driving a precipitous growth in
their complexity [1]. Data center applications are increasingly
composed of deep and complex software stacks with several
layers of kernel networking and storage modules, data retrieval,
processing elements, and logging components [2–4]. As a result,
code footprints are often a hundred times larger than a typical
L1 instruction cache (I-cache) [5], and further increase rapidly
every year [1].

I-cache misses are becoming a critical performance bot-
tleneck due to increasing instruction footprints [1, 2, 6]. Even
modern out-of-order mechanisms do not hide instruction misses
that show up as glaring stalls in the critical path of execution.
Hence, reducing I-cache misses can significantly improve data
center application performance, leading to millions of dollars
in cost and energy savings [2, 7].

The importance of mechanisms that reduce I-cache misses
(e.g., instruction prefetching) has long been recognized. Prior
works have proposed next-line or history-based hardware

instruction prefetchers [3, 4, 8–14] and several software mecha-
nisms have been proposed to perform code layout optimizations
for improving instruction locality [15–19]. While these tech-
niques are promising, they (1) demand impractical on-chip
storage [10, 12, 13], (2) require significant hardware modifi-
cations [3, 4], or (3) face inaccuracies due to approximations
used in computing a cache-optimal code layout [18, 20].

A recent profile-guided prefetching proposal, AsmDB [2],
was able to reduce I-cache misses in Google workloads.
However, we find that even AsmDB can fall short of an ideal
prefetcher by 25.5% on average. To completely eliminate I-
cache misses, it is important to first understand: why do existing
state-of-the-art prefetching mechanisms achieve sub-optimal
performance? What are the challenges in building a prefetcher
that achieves near-ideal application speedup?

To this end, we perform a comprehensive characterization
of the challenges in developing an ideal instruction prefetcher.
We find that an ideal instruction prefetcher must make careful
decisions about (1) what information is needed to efficiently
predict an I-cache miss, (2) when to prefetch an instruction,
(3) where to introduce a prefetch operation in the application
code, and (4) how to sparingly prefetch instructions. Each of
these design decisions introduces non-trivial trade-offs affecting
performance and increasing the burden of developing an ideal
prefetcher. For example, the state-of-the-art prefetcher, AsmDB,
injects prefetches at link time based on application’s miss
profiles. However, control flow may not be predicted at link
time or may diverge from the profile at run time (e.g., due to
input dependencies), resulting in many prefetched cache lines
that never get used and pollute the cache. Moreover, AsmDB
suffers from static and dynamic code bloat due to additional
prefetch instructions injected into the code.

In this work, we aim to reduce I-cache misses with I-
SPY—a prefetching technique that carefully identifies I-cache
misses, sparingly injects “code prefetch” instructions in suitable
program locations at link time, and selectively executes injected
prefetch instructions at run time. I-SPY proposes two novel
mechanisms that enable on average 90.4% of ideal speedup:
conditional prefetching and prefetch coalescing.
Conditional prefetching. Prior techniques [2, 21] either
prefetch excessively to hide more I-cache misses, or prefetch
conservatively to prevent unnecessary prefetch operations that
pollute the I-cache. To hide more I-cache misses as well
as to reduce unnecessary prefetches, we propose conditional
prefetching, wherein we use profiled execution context to inject

code prefetch instructions that cover each miss, at link time.
At run-time, we reduce unnecessary prefetches by executing
an injected prefetch instruction only when the miss-inducing
context is observed again.

To implement conditional prefetching with I-SPY , we
propose two new hardware modifications. First, we propose
simple CPU modifications that use Intel’s Last Branch Record
(LBR) [22] to enable a server to selectively execute an injected
prefetch instruction based on the likelihood of the prefetch
being successful. We also propose a “code prefetch” instruction
called Cprefetch that holds miss-inducing context infor-
mation in its operands, to enable an I-SPY-aware CPU to
conditionally execute the prefetch instruction.
Prefetch coalescing. Whereas conditional prefetching facil-
itates eliminating more I-cache misses without prefetching
unnecessarily at run time, it can still inject too many prefetch
instructions that might further increase the static code foot-
print. Since data center applications face significant I-cache
misses [1, 7], injecting even a single prefetch instruction for
each I-cache miss can significantly increase an already-large
static code footprint. To avoid a significant code footprint
increase, we propose prefetch coalescing, wherein we prefetch
multiple cache lines with a single instruction. We find that
several applications face I-cache misses from non-contiguous
cache lines, i.e., in a window of N lines after a miss, only
a subset of the N lines will incur a miss. We propose a
new instruction called Lprefetch to prefetch these non-
contiguous cache lines using a single instruction.

We study I-SPY in the context of nine popular data center
applications that face frequent I-cache misses. Across all appli-
cations, we demonstrate an average performance improvement
of 15.5% (up to 45.9%) due to a mean 95.9% (up to 98.4%)
L1 I-cache miss reduction. We also show that I-SPY improves
application performance by 22.4% compared to the state-of-the-
art instruction prefetcher [2]. I-SPY increases the dynamically-
executed instruction count by 5.1% on average and incurs an
8.2% mean static code footprint increase.

In summary, we make the following contributions:
• A detailed analysis of the challenges involved in building a

prefetcher that provides close-to-ideal speedups.
• Conditional prefetching: A novel profile-guided prefetching

technique that accurately identifies miss-inducing program
contexts to prefetch I-cache lines only when needed.

• Prefetch coalescing: A technique that coalesces multiple
non-contiguous cache line prefetches based on run-time
information obtained from execution profiles.

• I-SPY: An end-to-end system that combines conditional
prefetching with prefetch coalescing using a new family
of instructions to achieve near-ideal speedup.

II. UNDERSTANDING THE CHALLENGES OF INSTRUCTION
PREFETCHING

In this section, we present a detailed characterization of
the challenges in developing an ideal instruction prefetching
technique. We define an ideal prefetcher as one that achieves
the performance of an I-cache with no misses, i.e., where every

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpress
0

20

40

60

80

St
al

le
d

Sl
ot

s
(%

) Frontend-bound

Fig. 1: Several widely-used data center applications spend a
significant fraction of their pipeline slots on “Frontend-bound”
stalls, waiting for I-cache misses to return (measured using the
Top-down methodology [23]).

access hits in the L1 I-cache (a theoretical upper bound). We
characterize prefetching challenges by exploring four important
questions: (1) What information is needed to efficiently predict
an I-cache miss?, (2) When must an instruction be prefetched
to avoid an I-cache miss? (3) Where should a prefetcher inject
a code prefetch instruction in the program?, and (4) How can a
prefetcher sparingly prefetch instructions while still eliminating
most I-cache misses?

We characterize challenges using nine popular real-world
applications that exhibit significant I-cache misses. In Fig. 1,
we show the “frontend” pipeline stalls that the nine applications
exhibit when waiting for I-cache misses to return. We observe
that these data center applications can spend 23% - 80% of
their pipeline slots in waiting for I-cache misses to return.
Hence, we include these applications in our study.

From Facebook’s HHVM OSS-performance [24] benchmark
suite, we analyze (1) Drupal: a PHP content management
system, (2) Mediawiki: an open-source Wiki engine, and (3)
Wordpress: a PHP-based content management system used
by services such as Bloomberg Professional and Microsoft
News. From the Java DaCapo [25] benchmark suite, we
analyze (a) Cassandra [26]: a NoSQL database management
system used by companies such as Instagram and Netflix, (b)
Kafka: Apache’s stream-processing software platform used by
companies such as Uber and Linkedin, and (c) Tomcat [27]:
Apache’s implementation of the Java Servlet and WebSocket.
From the Java Renaissance [28] benchmark suite, we analyze
Finagle-Chirper and Finagle-HTTP [29]: Twitter Finagle’s
micro-blogging service and HTTP server, respectively. We
also study Verilator [30], a tool used by cloud companies to
simulate custom hardware designs. We describe our complete
experimental setup and simulation parameters in Sec. V.

A. What Information is Needed to Efficiently Predict an I-Cache
Miss?

An ideal prefetcher must predict all I-cache misses before
they occur, to prefetch them into the I-cache in time. To this
end, prior work [2, 8–10] (e.g., next-in-line prefetching) has
shown that an I-cache miss can be predicted using the program
instructions executed before the miss. Since any arbitrary
instruction (e.g., direct/indirect branches or function returns)

J
H

I

G

E

FD

C

B

A
Injection

Site

L

K

M

Too early Too late

Miss

Prefetch
window

Fig. 2: A partial example of a miss-annotated dynamic control
flow graph. Dashed edges represent execution paths that do
not lead to a miss.

could execute before a miss, the application’s dynamic control
flow must be tracked to predict a miss using the program paths
that lead to it. An application’s execution can be represented by
a dynamic Control Flow Graph (CFG). In a dynamic CFG, the
nodes represent basic blocks (sequence of instructions without
a branch) and the edges represent branches. Fig. 2 shows a
dynamic CFG, where the cache miss at basic block K can
be reached via various paths. The CFG’s edges are typically
weighted by a branch’s execution count. For brevity, we assume
all the weights are equal to one in this example.

Software-driven prefetchers [2, 17, 19] construct an applica-
tion’s dynamic CFG and identify miss locations that can be
eliminated using a suitable prefetch instruction. For example,
AsmDB [2] uses DynamoRIO’s [31] memory trace client to
capture an application’s dynamic CFG for locating I-cache
misses in the captured trace. Unfortunately, DynamoRIO [31]
incurs undue overhead [32], making it costly to deploy in
production. To efficiently generate miss-annotated dynamic
CFGs, we propose augmenting dynamic CFG traces from
Intel’s LBR [22] with L1 I-cache miss profiles collected with
Intel’s Precise Event Based Sampling (PEBS) [33] performance
counters. Generating dynamic CFGs using such lightweight
monitoring enables profiling applications in production.

Observation: Representing a program’s execution using
a dynamic CFG and augmenting it with L1 I-cache miss
profiles enables determining prefetch candidates.
Insight: Generating a lightweight miss-annotated
dynamic CFG using Intel’s LBR and PEBS incurs low
run-time performance overhead and enables predicting
miss locations in production systems.

B. When To Prefetch an Instruction?

A prefetch is successful only if it is timely. In the dynamic
CFG in Fig. 2, a prefetch instruction injected at predecessor
basic blocks H or I is too late: the prefetcher will not be
able to bring the line into the I-cache in time and a miss will
occur at K. In contrast, if a prefetch instruction is injected at
predecessors E or F , the prefetched line may not be needed
soon enough, and it may (1) either evict other lines that will
be accessed sooner, or (2) itself get prematurely evicted before
it is accessed. Instead, the prefetch must be injected in an

appropriate prefetch window. In our example, we assume block
G is a timely injection candidate in the prefetch window.

Prior work [2] empirically determines an ideal prefetch
window using average application-specific IPC to inject a
prefetch instruction that hides a cache miss. I-SPY relies on
this approach and injects prefetch instructions 27 - 200 cycles
before a miss, a window we determine in our evaluation.

Observation: An instruction must be prefetched in a
timely manner to avoid a miss.
Insight: Empirically determining the prefetch window
such that a prefetch is not too early or too late, can
effectively eliminate a miss.

C. Where to Inject a Prefetch?

An ideal prefetcher would eliminate all I-cache misses,
achieving full miss coverage. To achieve full miss coverage, a
prefetcher such as the one proposed by Luk and Mowry [21],
might inject a “code prefetch” instruction into every basic
block preceding an I-cache miss. However, the problem of this
approach is that due to dynamic control flow changes, naively
injecting a prefetch into a predecessor basic block causes a
high number of inaccurate prefetches whenever the predecessor
does not lead to the miss. Prefetching irrelevant lines hurts
prefetch accuracy (the fraction of useful prefetches) and leads
to I-cache pollution, degrading application performance.

Prefetch accuracy can be improved by assessing the useful-
ness of a prefetch and by restricting the injection of prefetches
to those that are likely to improve performance. To determine
the likelihood of a prefetch being useful, we can analyze the
fan-out of the prefetch’s injection site. We define fan-out as
the percentage of paths that do not lead to a target miss from
a given injection site. For example, in Fig. 2, the candidate
injection site G has a fan-out of 75% as only one out of four
paths leads to the miss K.

By limiting prefetch injection to nodes whose fan-out is
below a certain threshold, accuracy can be improved, however,
coverage is also reduced. The fan-out threshold that decides
whether to inject a prefetch represents a control knob to trade-
off coverage vs. accuracy. To determine this threshold, Fig. 3
analyzes the impact of fan-out on accuracy and coverage for the
wordpress application. As it can be seen, for real applications
with large CFGs, a high fan-out of 99% is required to achieve
the best performance, although accuracy starts to drop sharply
at this point. Hence, prior works (including AsmDB) that rely
on static analysis for injecting prefetches fall short of achieving
close to ideal performance (65% in the case of wordpress).

With I-SPY , we aim to break this trade-off by optimizing
for prefetch accuracy and miss coverage simultaneously. To
this end, we propose context sensitive conditional prefetching,
a technique that statically injects prefetches to cover each miss
(i.e., high miss coverage), but dynamically executes injected
prefetches only when the prefetch is likely to be successful,
minimizing unused prefetches (i.e., high prefetch accuracy).
In Section III-A, we describe our conditional prefetching

20 40 60 80
Maximum fan-out threshold (%)

0

25

50

75

100
Pr

ef
et

ch
-a

cc
ur

ac
y

(%
)

65% of ideal cache performance at 99% fan-out

% of ideal cache performance

20 40 60 80
0

25

50

75

100

M
is

s-
co

ve
ra

ge
(%

)

Fig. 3: Prefetch accuracy vs. miss coverage tradeoff in AsmDB
and its relation to ideal cache performance: Miss-coverage
increases with an increase in fan-out threshold, but prefetch
accuracy starts to reduce. Only 65% of ideal cache performance
can be reached at 99% fan-out due to low prefetch accuracy.

20 40 60 80
Maximum fan-out threshold (%)

0

5

10

In
st

ru
ct

io
n

in
cr

ea
se

(%
)

Static
Dynamic

Fig. 4: AsmDB’s static and dynamic code footprint increase:
Injecting prefetches in high fan-out predecessors significantly
increases static and dynamic code footprints.

technique and our approach that leverages dynamic context
information to decide whether to execute a prefetch or not.

Observation: It is challenging to achieve both high miss
coverage and prefetch accuracy if we determine prefetch
injection candidate blocks based on a static CFG analysis
alone.
Insight: Leveraging dynamic run-time information to
conditionally execute statically-injected prefetch instruc-
tions can help improve both miss coverage and prefetch
accuracy.

D. How to Sparingly Prefetch Instructions?

Several profile-guided prefetchers [2, 21] require at least
one code prefetch instruction to mitigate an I-cache miss. For
example, the state-of-the-art prefetcher, AsmDB [2], covers
each miss by injecting a prefetch instruction into a high fan-out
(≤99%) predecessor. However, statically injecting numerous
prefetch instructions and executing them at run time, increases
the static and dynamic application code footprint by 13.7%
and 7.3% respectively, as portrayed in Fig. 4. An increase
in static and dynamic code footprints can pollute the I-cache
and cause unnecessary cache line evictions, further degrading
application performance. Hence, it is critical to sparingly
prefetch instructions to minimize code footprints.
Prefetch coalescing. Our conditional prefetching proposal
allows statically injecting more prefetch instructions to elim-
inate more I-cache misses, without having to dynamically

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpressAvg
0

10

20

30

40

Sp
ee

du
p

(%
)

Contiguous-8 Non-contiguous-8

Fig. 5: Speedup of Contiguous-8 (prefetches all 8 contiguous
lines after a miss) vs. Non-contiguous-8 (prefetches only the
misses in an 8-line window after a miss): Prefetching non-
contiguous cache lines offers a greater speedup opportunity.

perform inaccurate prefetches. However, a large number of
statically-injected code prefetch instructions can still increase
an application’s static code footprint.

A naı̈ve approach to statically inject fewer instructions is
to leverage the spatial locality of I-cache misses to prefetch
multiple contiguous cache lines with a single prefetch instruc-
tion rather than a single line at a time [8, 9]. In contrast,
another approach [3] finds value in prefetching multiple non-
contiguous cache lines together. Similarly, we posit that it is
unlikely that all the contiguous cache lines in a window of n
lines after a given miss will incur misses. It is more likely that
a subset of the next-n lines will incur misses, whereas others
will not. To validate this hypothesis, we consider a window of
eight cache lines immediately following a miss to implement
two prefetchers: (1) Contiguous-8, that prefetches all eight
contiguous cache lines after a miss and (2) Non-contiguous-8,
that prefetches only the missed cache lines in the eight cache
line window.

We profile all our benchmarks to detect I-cache misses and
measure the speedup achieved by both prefetchers in Fig. 5. We
find that Non-contiguous-8 provides an average 7.6% speedup
over Contiguous-8. We conclude that prefetch coalescing of
non-contiguous, but spatially nearby I-cache misses, via a single
prefetch instruction can improve performance while minimizing
the number of static and dynamic prefetch instructions. We note
that our conclusion holds for larger windows of cache lines (e.g.,
16 and 32). We find that a window of eight lines offers a good
trade-off between speedup and circuit complexity required to
support a larger window size. We provide a sensitivity analysis
for window sizes in §VI-B.

Observation: Injecting too many prefetch instructions
can increase static and dynamic code footprints, inducing
additional cache line evictions.
Insight: Conditional prefetching can minimize dynamic
code footprints; coalescing spatially-near non-contiguous
I-cache miss lines into a single prefetch instruction can
minimize both static and dynamic code footprints.

III. I-SPY
I-SPY proposes two novel techniques to improve profile-

guided instruction prefetching. I-SPY introduces conditional
prefetching to address the dichotomy between high coverage
and accuracy discussed in §II-C. Furthermore, I-SPY proposes
prefetch coalescing to reduce the static code footprint increase
due to injected prefetch instructions explored in §II-D. I-SPY
relies on profile-guided analysis at link-time to determine
frequently missing blocks and prefetch injection sites using Intel
LBR [22] and PEBS [33]. We provide a detailed description
of I-SPY’s usage model in §IV. I-SPY also introduces minor
hardware modifications to improve prefetch efficiency at run
time. As a result, our proposed techniques close the gap
between static and dynamic prefetching by combining the
performance of dynamic hardware-based mechanisms with the
low complexity of static software prefetching schemes.

A. Conditional Prefetching

Conditionally executing prefetches has a two-fold benefit:
I-SPY can liberally inject conditional prefetch instructions
to cover each miss (i.e., achieve high miss coverage) while
simultaneously minimizing unused prefetches (i.e., achieve
high accuracy). I-SPY uses the execution context to decide
whether to conditionally execute a prefetch or not. We first
discuss how I-SPY computes contexts leading to misses. We
then explain how I-SPY ’s conditional prefetching instruction
is implemented, and finally discuss micro-architectural details.
Miss context discovery. Similar to many other branch pre-
diction schemes [3, 4, 34, 35], I-SPY uses the basic block
execution history to compute the execution context. Initially,
we attempted to use the exact basic block sequence to predict
a miss. However, we found this approach intractable since
the number of block sequences (i.e., the number of execution
paths) leading to a miss grows exponentially with the increase
in sequence length. As a result, I-SPY only considers the
presence of certain important basic blocks in the recent context
history to inform its prefetching decisions. This approach is in
line with prior work [36] that observes that prediction accuracy
is largely insensitive to the basic block order sequence.

We use the dynamic CFG in Fig. 2 to describe the miss
context discovery process. Recall that in this example, the miss
occurs in basic block K and block G is the injection site in the
prefetch window. As shown in Fig. 6a, there are six execution
paths including the candidate injection site G and two of these
paths lead to the basic block K, where the miss occurs.

I-SPY starts miss context discovery by identifying predictor
basic blocks—blocks with the highest frequency of occurrence
in the execution paths leading to each miss. In our example,
B and E are predictor blocks. Since I-SPY only relies on the
presence of blocks to identify the context (as opposed to relying
on the order of blocks), it computes combinations of predictor
blocks as potential contexts for a given miss. Then, I-SPY
calculates the conditional probability of each context leading
to a miss in a block B, i.e., P(Miss in Block “B”|context) as
per the Bayes theorem. As shown in Fig. 6b, I-SPY computes
P(Miss K|B), P(Miss K|E), and P(Miss K|B∩ E), i.e., the

B C E G

B C F G

B D E G

B D F G

A C E G

A D E G

Prefetch
window Miss K?

(a) All executions of basic block G including executions that lead to
a miss

Context

Selected
context

P(Miss K |context → G)
0.5

0.5

1

B
E

B E

(b) Probability calculation for a context leading to a miss

Fig. 6: An example of I-SPY’s context discovery process

probability of leading to the miss in block K, given an execution
context of either (B), or (E), or both (B and E).

I-SPY then selects the combination with the highest probabil-
ity as the context for a given miss. In our example, this context,
namely (B and E) will be encoded into the conditional prefetch
instruction injected at G. At run time, the conditional prefetch
will be executed if the run-time branch history contains the
recorded context. We now detail I-SPY’s conditional prefetch
instruction.
Conditional prefetch instruction. We propose a new prefetch
instruction, Cprefetch that requires an extra operand to
specify the execution context. Each basic block in the context is
identified by its address, i.e., the address of the first instruction
in the basic block. I-SPY computes the basic block address
using the LBR data.

To reduce the code size of Cprefetch, I-SPY hashes
the individual basic block addresses in the context into an
n-byte immediate operand (context-hash) using hash
functions, FNV-1 [37] and MurmurHash3 [38]. When a
Cprefetch is executed at run time, the processor recomputes
a hash value (runtime-hash) using the last 32 predecessor
basic blocks (Intel LBR [22] provides the addresses of 32 most
recently executed basic blocks), and compares it against the
context-hash. The prefetch operation is performed only if
the set-bits in context-hash are a subset of the set-bits in
the runtime-hash.

Both runtime-hash and context-hash are com-
pressed representations of multiple basic block addresses.
While compressing multiple 64 bit basic block addresses into
fewer bits reduces the code bloat, it might also introduce

Push
entry

Pop
entry

16-Bit Counting
Bloomfilter

(6 bits per counter)

32
-e

nt
ry

 L
BR

(p

re
se

nt
 in

 x
86

_6
4)

16
 g

re
at

er
 th

an
 0

co

m
pa

ra
to

rs

is
 c
o
n
t
e
x
t
-
h
a
s
h

a
su

bs
et

?

Context hash decoded from the instruction

Pr
ef

et
ch

 d
ec

is
io

n

Fig. 7: Micro-architectural changes needed to execute the
context-sensitive conditional prefetch instruction, Cprefetch

false positives. A false positive might occur when the set-
bits in context-hash are a subset of the set-bits in
runtime-hash, however, not all the basic blocks represented
by context-hash are present among the 32 most recently-
executed basic blocks represented by runtime-hash. We
analyze a range of values for the context-hash size in
Fig. 21 and determine that a 16 bit immediate offers a good
tradeoff between code bloat and false positive rates.

Micro-architectural modifications Cprefetch requires
minor micro-architectural modifications. Intel’s Xeon data
center processors support an LBR [22] control flow tracing
facility, which tracks the program counter and target address
of the 32 most recently executed branches.

I-SPY extends the LBR to maintain a rolling
runtime-hash of its contents. Fig. 7 shows the micro-
architectural requirements of I-SPY’s context-sensitive prefetch
instruction for 32 predecessor basic blocks and a 16 bit
context-hash. Since the LBR is a FIFO, we maintain
the runtime-hash incrementally. Using a counting Bloom
filter [39, 40], we assign a 6-bit counter to each of the 16
bits of the runtime-hash (96 bits in total). Whenever a
new entry is added into the LBR, we hash the corresponding
block address and increment the corresponding counters
in the runtime-hash; the counters for the hash of the
evicted LBR entry are decremented. The counters never
overflow and the runtime-hash precisely tracks the LBR
contents since there are only ever 32 branches recorded in
the runtime-hash. We also add a small amount of logic
to reduce each counter to a single “is-zero” bit; in those 16
bits, we check if the context-hash bits are a subset of
the runtime-hash. If they are, the prefetch fires, otherwise
it is disabled.

To clarify how Bloom filters help I-SPY match
runtime-hash to context-hash, let’s consider the same
example in Fig. 6. Let’s assume the 16-bit hashes of B and E are
0x2 and 0x10, respectively. Therefore, the context-hash
would be 0x12, where the Least Significant Bits (LSB) 1
and 4 are set. To enable prefetching, runtime-hash must
also have these bits set. At run time, if B is present in the
last 32 predecessors, the bloom filter counter corresponding
to LSB-1 must be greater than 0. Similarly for E, the counter
corresponding to LSB-4 must be greater than 0. Hence, the

add %eax, %ecx
Cprefetch 0xA, C0
Cprefetch 0xD, C0
Cprefetch 0x4, C1
Cprefetch 0x2, C1
Cprefetch 0x7, C1
cmp $4, %eax
jle 0x4F3B

0 0 0 0 0 1 0 00xA
07 2

0 0 0 1 0 0 1 00x2
07 14

add %eax, %ecx
CLprefetch 0xA, C0, 0x4
CLprefetch 0x2, C1, 0x12
cmp $4, %eax
jle 0x4F3B

Fig. 8: An example of I-SPY’s prefetch coalescing process

result of subset comparison between context-hash and
runtime-hash will be true and a prefetch will be triggered.

B. Prefetching Coalescing

Conditional prefetching enables high-accuracy prefetching.
Nevertheless, it leads to static code bloat as every prefetch
instruction increases the size of the application’s text segment.
Prefetch coalescing reduces the static code bloat as well as
the number of dynamically-executed prefetch instructions by
combining multiple prefetches into a single instruction. We first
describe how I-SPY decides which lines should be coalesced,
followed by details of I-SPY’s coalesced prefetching instruction.
We then detail the micro-architectural modifications required
to support prefetch coalescing.

To perform coalescing, I-SPY analyzes all prefetch instruc-
tions injected into a basic block and groups them by context.
As shown in Fig. 8, prefetches for addresses 0xA and 0xD are
grouped together since they are conditional on the same context,
C0. Similarly, 0x4, 0x2, and 0x7 are grouped together since
they share the same context C1.

Next, I-SPY attempts to merge a group of prefetch instruc-
tions into a single prefetch instruction. I-SPY uses an n-bit
bitmap to select a subset of cache lines within a window of
n consecutive cache lines. In the example shown in Fig. 8,
the coalesced prefetch for context C1 has two bits set in the
bitmask to encode lines 0x4 and 0x7 where the base address
of the prefetch is 0x2. While a larger bitmask allows coalescing
more prefetches, it also increases hardware complexity. We
study the effect of bitmask size in Fig. 17.
Coalesced prefetch instruction. Our proposed coalesced
prefetch instruction, Lprefetch, requires an additional
operand for specifying the coalescing bit-vector. Prefetch
instructions in current hardware (e.g., prefetcht* on
x86 and pli on ARM) follow the format, (prefetch,
address), which takes address as an operand and
prefetches the cache line corresponding to address.
Lprefetch takes an extra operand, bit-vector. The
prefetcht* instruction on x86 has a size of 7 bytes, hence,
with the addition of an n = 8 bits bitmask, Lprefetch has
a size of 8 bytes.

I-SPY combines prefetch coalescing and conditional prefetch-
ing via another instruction, CLprefetch, with the format
(prefetch, address, context-hash, bit-vector)
as shown in Fig. 8. CLprefetch prefetches all the prefetch
targets specified by bit-vector only if the current context
matches with the context encoded in the context-hash.

101100
010110
100101

Release binary
B→C→E→G
→H→Miss K
........................
B→D→E→G
→H→Miss K

Dynamic CFG
+ Miss data

101011
010110
010101

Updated binary

Offline

Miss
analysis

1

23

Online

Prefetch
injection

Data center

I-SPY
aware

Cprefetch

Lprefetch

CLprefetch
prefetch

Runtime
Profiling

Fig. 9: Usage model of I-SPY

This new instruction has a size of 10 bytes (2 extra bytes to
specify context-hash).
Micro-architectural modifications. Coalesced prefetch
instructions require minor micro-architectural modifications
that mainly consists of a series of simple incrementers. These
incrementers decode the 8-bit coalescing vector and enable
prefetching up to 9 cache lines (the initial prefetch target, plus
up to 8 bit-vector-dependent targets). The resultant cache line
addresses are then forwarded to the prefetch engine.
Replacement policy for prefetched lines. I-SPY’s prefetch
instructions also update the replacement policy priority of the
prefetched cache line. Instead of assigning the highest priority
to the prefetched cache line (as done for demand-loads), I-
SPY’s prefetch instructions assign the prefetched cache line a
priority equal to the half of the highest priority. I-SPY’s goal
with this policy is to reduce the adverse effects of a potentially
inaccurate prefetch operation.

IV. USAGE MODEL

We provide an overview of the high-level usage model of
I-SPY in Fig. 9. I-SPY profiles an application’s execution at
run time, and uses these profiles to perform an offline analysis
of I-cache misses to suitably inject code prefetch instructions.
Online profiling. I-SPY first profiles an application’s execution
at run time (step 1). It uses Intel’s LBR [22] to construct a
dynamic CFG (such as the one shown in Fig. 2), and augments
the dynamic CFG with L1 I-cache miss profiles collected with
Intel’s PEBS [33] hardware performance counters. At every I-
cache miss, I-SPY records the program counters of the previous
32 branches that the program executed (on x86 64, LBR has
a 32-entry limit). Run-time profiling using Intel LBR’s and
Intel PEBS’s lightweight monitoring [22, 41] enables profiling
applications online, in production.
Offline analysis. Next, I-SPY performs an offline analysis (2)
of the miss-annotated dynamic CFG that it generates at run
time. For each miss, I-SPY considers all predecessor basic
blocks within the prefetch window. Unlike prior work [2], I-
SPY does not require the per-application IPC metric to find

predecessors within the prefetch window as the LBR profile
already includes dynamic cycle information for each basic
block. Apart from this, the algorithm to find the best prefetch
injection site is similar to prior work [2] and has a worst-case
complexity of O(n logn).

After finding the best prefetch injection site to cover each
miss, I-SPY runs two extra analyses, context discovery and
prefetch coalescing. First, if the prefetch injection site has
a non-zero fan-out, I-SPY analyzes the predecessors of the
injection site to reduce its fan-out (Fig. 6). Next, if the same
injection site is selected for prefetching multiple cache lines,
I-SPY applies prefetch coalescing to reduce the number of
prefetch instructions (Fig. 8).

Once I-SPY finishes identifying opportunities for conditional
prefetching and prefetch coalescing, it injects appropriate
prefetch instructions to cover all misses. Specifically, I-SPY
injects four kinds of prefetch instructions (3).

If the context of a given prefetch instruction differs from the
contexts of all other prefetch instructions, then this prefetch
instruction cannot be coalesced with others. In that case, I-SPY
injects a Cprefetch instruction.

Conditionally prefetching a line based on the execution
context may not improve the prefetch accuracy. In this case,
I-SPY will try to inject an Lprefetch instruction. If multiple
cache lines are within a range of n lines (where n is the size of
bit-vector used to perform coalescing as in §III-B) from
the nearest prefetch target, I-SPY will inject an Lprefetch.
Otherwise, I-SPY will inject multiple AsmDB-style prefetch
instructions that simply prefetch a single target cache line.

If conditional prefetching improves prefetching accuracy
and multiple cache lines can be coalesced, I-SPY injects
CLprefetch instructions.

The new binary updated with code prefetch instructions
is deployed on I-SPY-aware data center servers that can
conditionally execute and (or) coalesce the injected prefetches.

V. EVALUATION METHODOLOGY

We envision an end-to-end I-SPY system that uses application
profile information and our proposed family of hardware code
prefetch instructions. We evaluate I-SPY using simulation since
existing server-class processors do not support our proposed
hardware modifications for conditional prefetching and prefetch
coalescing. Additionally, simulation enables replaying memory
traces to conduct limit studies and compare I-SPY’s perfor-
mance against an ideal prefetch mechanism. We prototype the
state-of-the-art prefetcher, AsmDB [2], and compare I-SPY
against it. We now describe (1) the experimental setup that
we use to collect an application’s execution profile, (2) our
simulation infrastructure, (3) I-SPY’s system parameters, and
(4) the data center applications we study.
Data collection. During I-SPY’s offline phase, we use
Intel’s LBR [22] and PEBS counters [42] (more specifically
(frontend_retired.l1i_miss)) to collect an applica-
tion’s execution profile and L1 I-cache miss information. We
record up to 100 million instructions executed in steady-state.

TABLE I: Simulated System

Parameter Value
CPU Intel Xeon Haswell
Number of cores per socket 20
L1 instruction cache 32 KiB, 8-way
L1 data cache 32 KiB, 8-way
L2 unified cache 1 MB, 16-way
L3 unified cache Shared 10 MiB/core, 20-way
All-core turbo frequency 2.5 GHz
L1 I-cache latency 3 cycles
L1 D-cache latency 4 cycles
L2 cache latency 12 cycles
L3 cache latency 36 cycles
Memory latency 260 cycles
Memory bandwidth 6.25 GB/s

We combine our captured miss profiles and instruction traces
to construct an application’s miss-annotated dynamic CFG.

Simulation. We use the ZSim simulator [43] to evaluate I-SPY .
We modify ZSim [43] to support conditional prefetching and
prefetch coalescing. We use ZSim in a trace-driven execution
mode, modeling an out-of-order processor. The detailed system
parameters are summarized in Table I. Additionally, we
extend ZSim to support our family of hardware code prefetch
instructions. Our implemented code prefetch instructions insert
prefetched cache lines with a lower replacement policy priority
than any demand load requests.

System parameters. Based on the sensitivity analysis (see
Fig. 18), we use 27 cycles as minimum prefetch distance,
and 200 cycles as maximum prefetch distance. Additionally,
we empirically determine that coalescing non-contiguous
prefetches that occur within a cache line window of 8 cache
lines yields the best performance.

Data center applications. We evaluate nine popular data center
applications described in Sec. II. We allow an application’s
binary to be built with classic compiler code layout optimiza-
tions such as in-lining [44], hot/cold splitting [45], or profile-
guided code alignment [19]. We study these applications with
different input parameters offered to the client’s load generator
(e.g., number of requests per second or the number of threads).

Evaluation metrics. We use six evaluation metrics to evaluate
I-SPY’s effectiveness. First, we compare I-SPY’s performance
improvement against an ideal cache and AsmDB. Second, we
study how well I-SPY reduces L1 I-cache MPKI compared
to the state-of-the-art prefetcher, AsmDB [2]. Third, we
analyze how much performance improvement stems from
conditional prefetching and prefetch coalescing, individually.
Fourth, we compare I-SPY’s prefetch accuracy with AsmDB.
Fifth, we analyze the static and dynamic code footprint increase
induced by I-SPY . Sixth, we determine whether I-SPY achieves
high performance across various application inputs. Since,
data center applications often run continuously, application
inputs can drastically vary (e.g., diurnal load trends or load
transients [46, 47]). Hence, a profile-guided optimization for
data center applications must be able to improve performance
across diverse inputs.

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpressAvg
0

10

20

30

40

50

Sp
ee

du
p

(%
)

AsmDB I-SPY Ideal

Fig. 10: I-SPY’s speedup compared to an ideal cache and
AsmDB: I-SPY achieves an average speedup that is 90.4% of
ideal.

We also perform a sensitivity analysis of I-SPY’s system
parameters by evaluating the effect of varying the (1) number of
predecessors in context-hash, (2) minimum and maximum
prefetch distances, (3) coalescing size, and (4) context size
used to conditionally prefetch.

VI. EVALUATION

In this section, we evaluate how I-SPY improves application
performance compared to an ideal cache implementation and
the state-of-the-art prefetcher [2], AsmDB, using the evaluation
metrics defined in §V. We then perform sensitivity studies to
determine the effect of varying I-SPY’s configurations.

A. I-SPY: Performance Analysis

Speedup. We first evaluate the speedup achieved by I-SPY
across all applications. In Fig. 10, we show I-SPY’s speedup
(green bars) compared against an ideal cache that faces no
misses (brown bars) and AsmDB [2] (blue bars).

We find that I-SPY attains a near-ideal speedup, achieving an
average speedup that is 90.4% (up to 96.4%) of an ideal cache
that always hits in the L1 I-cache. I-SPY falls slightly short of
an ideal cache since (1) it executes more instructions due to the
injected prefetch instructions and (2) a previously unobserved
execution context might not trigger a prefetch, precipitating a
miss. Additionally, I-SPY outperforms AsmDB by 22.4% on
average (up to 41.2%), since it eliminates more I-cache misses
than AsmDB as we show next.
L1 I-cache MPKI reduction. We next evaluate how well I-
SPY reduces L1 I-cache misses compared to AsmDB [2] in
Fig. 11. We evaluate across all nine applications.

We observe that I-SPY achieves a high miss coverage,
reducing L1 I-cache MPKI by an average of 95.8% across
all applications. Furthermore, I-SPY reduces MPKI compared
to AsmDB by an average of 15.7% across all applications
(the greatest improvement is 28.4% for verilator). The MPKI
reduction is due to conditionally executing prefetches and
coalescing them, thereby eliminating more I-cache misses. In
contrast, AsmDB executes a large number of unused prefetches
that evict useful data from the cache.

Performance of conditional prefetching and prefetch coa-
lescing. In Fig. 12, we quantify how much I-SPY’s conditional

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpressAvg
60

70

80

90

100

L1
i-

M
PK

Ir
ed

uc
ti

on
(%

)
AsmDB I-SPY

Fig. 11: I-SPY’s L1 I-cache MPKI reduction compared with
AsmDB: I-SPY removes 15.7% more misses than AsmDB.

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpress Avg
0

10

20

30

40

50

Im
pr

ov
em

en
to

ve
r

A
sm

D
B

(%
)

Prefetch-coalescing Conditional-prefetching Both

Fig. 12: Speedup achieved by conditional prefetching and
prefetch coalescing over AsmDB: Conditional prefetching
often offers better speedup than coalescing, but their combined
speedup is significantly better.

prefetching and prefetch coalescing mechanisms contribute to
net application speedup. We show the performance improve-
ment achieved by these novel mechanisms over AsmDB, across
all nine applications. We make two observations.

First, we note that both conditional prefetching and prefetch
coalescing provide gains over AsmDB across all applications.
Conditional prefetching improves performance more than
coalescing for eight of our applications, since it covers more I-
cache misses with better accuracy. In verilator, we observe that
coalescing offers a better performance since 75% of verilator’s
misses have a high spatial locality even within a cache line
window of 8 lines.

Second, we find that the performance gains achieved by
conditional prefetching and prefetch coalescing are not strictly
additive. As I-SPY only coalesces prefetches that have the same
condition, many prefetch instructions that depend on different
conditions are not coalesced. Yet, combining both techniques
offers better speedup than their individual counterparts.
Prefetch accuracy. We portray the prefetch accuracy achieved
by I-SPY across all nine applications in Fig. 13. We also
compare I-SPY’s prefetch accuracy against AsmDB.

We find that I-SPY achieves an average of 80.3% prefetch
accuracy. Furthermore, I-SPY’s accuracy is 8.2% (average)
better than AsmDB’s accuracy, since I-SPY’s conditional
prefetching avoids trading off prefetch accuracy for miss
coverage, unlike AsmDB.
Static and dynamic code footprint increase. We next eval-
uate by how much I-SPY increases applications’ static and

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpressAvg
60

70

80

90

100

Pr
ef

et
ch

ac
cu

ra
cy

(%
)

AsmDB I-SPY

Fig. 13: I-SPY’s prefetch accuracy compared with AsmDB: I-
SPY achieves an average of 8.2% better accuracy than AsmDB.

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpress Avg
0

5

10

15

St
at

ic
in

st
ru

ct
io

n
in

cr
ea

se
(%

)

AsmDB I-SPY

Fig. 14: I-SPY’s static code footprint increase compared
to AsmDB: I-SPY statically injects 37% (average) fewer
instructions than AsmDB.

dynamic code footprints. First, we illustrate the static code
footprint increase induced by I-SPY in Fig. 14. We also compare
against AsmDB’s static code footprint.

We observe that I-SPY increases the static code footprint by
5.1% - 9.5% across all applications. By coalescing multiple
prefetches into a single prefetch instruction, I-SPY introduces
fewer prefetch instructions into the application’s binary. In
contrast, we find that AsmDB increases the static code footprint
much more starkly—7.6% - 15.1%.

Next, we study by how much I-SPY increases the dynamic
application footprint in Fig. 15 across all nine applications.
We note that I-SPY executes 3.7% - 7.2% additional dynamic
instructions since it covers I-cache misses by executing injected
code prefetch instructions. We observe that AsmDB has a higher
dynamic instruction footprint across eight applications (ranging
from 5.5% - 11.6%), since it does not coalesce prefetches like
I-SPY . For verilator, I-SPY’s dynamic footprint is higher than
AsmDB since I-SPY covers 28.4% more misses than AsmDB
by executing more prefetch instructions, while also providing
35.9% performance improvement over AsmDB.
Generalization across application inputs. To determine
whether I-SPY achieves a performance improvement with an
application input that is different from the profiled input, we
characterize I-SPY’s performance for five different inputs fed
to three of our applications—drupal, mediawiki, wordpress
(Fig. 16). We choose these three applications, because they
have the greatest variety of readily-available test inputs that
we can run. We compare I-SPY against AsmDB in terms of
ideal cache performance.

cassandra
drupal

finagle-chirper

finagle-httpkafka

mediawiki
tomcat

verilator

wordpress Avg
0

2

4

6

8

10

12
D

yn
am

ic
in

st
ru

ct
io

n
in

cr
ea

se
(%

)

AsmDB I-SPY

Fig. 15: I-SPY’s dynamic code footprint increase compared
to AsmDB: On average, I-SPY executes 36% fewer prefetch
instructions than AsmDB.

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5 #1 #2 #3 #4 #5
40

50

60

70

80

90

100

%
of

id
ea

lc
ac

he
pe

rf
or

m
an

ce AsmDB I-SPY

drupal mediawiki wordpress

Fig. 16: I-SPY’s performance compared against AsmDB for
different application test inputs: I-SPY outperforms AsmDB
when the application input differs from the profiled input.

We observe that I-SPY achieves a speedup that is closer to
the ideal speedup than the speedup provided by AsmDB across
all test inputs. I-SPY is more resilient to the input changes than
AsmDB because of conditional prefetching. I-SPY achieves
at least 70% (up to 86.84%) of ideal cache performance on
inputs that are different from the profiled input.

B. I-SPY: Sensitivity Analysis

We next evaluate how I-SPY’s performance varies in response
to variations of the different system parameters.
Number of predecessors comprising the context. In Fig. 17,
we observe how the I-SPY conditional prefetching’s perfor-
mance varies in response to a variation in the number of
predecessors comprising the context condition (see Sec III-A).
We vary predecessor counts from 1 to 32 (with a geometric
progression of 2) and show the I-SPY conditional prefetching’s
average performance improvement across all nine applications.

We find that the I-SPY conditional prefetching’s performance
improves with an increase in the number of predecessors
composing the context condition. Using more predecessors
enables a more complete context description, and slightly
improves performance by predicting I-cache misses more
accurately. However, a large number of predecessors impose
a significant context-discovery computation overhead. Specifi-
cally, the search space of possible predecessor candidates grows
exponentially with the number of predecessors comprising
the context condition. Consequently, the context discovery

1 2 4 8 16 32
Number of predecessors

70

75

80

85

90

%
of

id
ea

lc
ac

he
pe

rf
or

m
an

ce

Fig. 17: I-SPY’s conditional prefetching achieves better per-
formance with an increase in the number of predecessors
comprising the context.

0 20 40 60
Minimum prefetch distance (cycles)

86

88

90

92

%
of

id
ea

lc
ac

he
pe

rf
or

m
an

ce
0 200 400 600 800

Maximum prefetch distance (cycles)

70

75

80

85

90

95

%
of

id
ea

lc
ac

he
pe

rf
or

m
an

ce

Fig. 18: I-SPY’s average performance variation in response
to changes in the minimum (left) and the maximum (right)
prefetch distance.

process takes tens of minutes to complete with more than 4
predecessors, which can be a bottleneck in the build process.
Since I-SPY’s conditional prefetching achieves more than 85%
of ideal cache performance even with four predecessors, I-
SPY’s design uses four predecessors to define context and
keeps the computational overhead of context discovery low.
Minimum and maximum prefetch distance. We next analyze
how I-SPY’s performance varies with an increase in the
minimum and maximum prefetch distances, in Fig. 18. We
observe that I-SPY achieves maximum performance for a
minimum prefetch distance of 20-30 cycles (which is greater
than typical L2 access latency but less than L3 access latency).
On the other hand, an increase in the maximum prefetch
distance always improves I-SPY’s performance. However, the
increase is very slow after 200 cycles. Based on these results,
we use 27 cycles as the minimum prefetch distance, and 200
cycles as the maximum prefetch distance for I-SPY .
Coalescing size. We next study the sensitivity of I-SPY’s
prefetch coalescing to the coalesce bitmask size (see §III-B)
in Fig. 19. We vary the coalesce bitmask size from 1 bit to
64 bits, prefetching up to 2 and 65 cache lines using a single
instruction, respectively. We then measure the percentage of
ideal speedup achieved by I-SPY’s prefetch coalescing as an
average across all applications.

We note that I-SPY’s performance improves slightly with a
larger bitmask, since larger bitmasks enable coalescing more
cache lines, reducing spurious evictions. However, a large

1 2 4 8 16 32 64
Coalesce bitmask size

70

75

80

85

90
%

of
id

ea
lc

ac
he

pe
rf

or
m

an
ce

Fig. 19: I-SPY’s average performance variation in response to
increasing the coalescing size: Larger coalescing sizes achieve
higher gains.

1 2 3 4 5 6 7 8
Coalesce bit (cache line

distance from the first line)

0

20

40

60

80

100

Pr
ef

et
ch

pr
ob

ab
ili

ty
(%

)

2 3 4 5 6 7 8 9
of cache lines prefetched by

a coalesced prefetch instruction

0

20

40

60

80

100

C
D

F
(%

)

Fig. 20: (left) The probability of coalesced prefetching reduces
with an increase in cache line distance. (right) Coalesced
prefetch instructions usually bring in less than 4 cache lines.

bitmask will introduce hardware design complexities since
the microarchitecture must now support additional in-flight
prefetch operations. Similar to prior work [3], to minimize
hardware complexity, we design I-SPY with an 8-bit coalescing
bitmask, since it can be implemented with minor hardware
modifications (as described in §III-B).

Additionally, we examine which and how many nearby cache
lines a coalesced prefetch instruction typically prefetches for
all nine applications. As shown in Fig. 20, the probability
of coalesced prefetching reduces with an increase in cache
line distance. Moreover, most coalesced prefetch instructions
(82.4% averaged across nine applications) prefetch less than
four cache lines.
Context hash size. We next analyze how I-SPY’s false positive
rate varies with an increase in the context hash size, in Fig. 21.
We study the wordpress benchmark since its speedup is heavily
impacted by prefetch accuracy (see Fig. 3).

We observe that increasing the number of bits in the context
hash reduces the false positive rate. However, an increase in
the context hash size increases the static code footprint, as
shown in Fig. 21. To minimize the static code footprint while
still achieving a low false positive rate, I-SPY’s design uses a
16-bit context hash—13% false positive rate and 4.6% static
code increase.

VII. DISCUSSION

In this section we discuss some limitations of I-SPY and
offer potential solutions.

8 16 24 32 40
Context size (in bits)

0

10

20

30

40

Fa
ls

e
po

si
ti

ve
ra

te
(%

)

8 16 24 32 40
Context size (in bits)

0.0

2.5

5.0

7.5

10.0

St
at

ic
co

de
in

cr
ea

se
(%

)

Fig. 21: (left) I-SPY’s false positive rate variation in response
to an increase in context size: False positives are reduced
with a larger context; (right) I-SPY’s static code footprint size
variation in response to context size: Static code footprint
increases with an increase in context size.

Prefetching already resident cache lines. Although our
process of discovering high-probability contexts that lead to
cache misses is effective, we also found that many times,
the target cache line of a Cprefetch is already resident in
the cache. However, the overhead of such resident prefetch
operations is low since they do not poison the cache by bringing
in new unnecessary cache lines. To make this overhead even
lower, we design our proposed prefetch instructions such that
they are always inserted with a lower priority as demand loads
in regards to the replacement policy.
Prefetching within JITted code. Most instruction cache
misses in code generated at run time are out of I-SPY’s scope.
While I-SPY is able to prefetch for some of these misses via
Cprefetch instructions inserted into non-JITted code, there
are still up to 10% of code misses in JITted code (mostly
for the three HHVM applications, wordpress, drupal, and
mediawiki) that are not covered. To handle these additional
misses, I-SPY could be integrated with a JIT compiler since
all of I-SPY’s offline machinery (which leverages hardware
performance monitoring mechanisms) can, in principle, be used
online by the runtime instead.

VIII. RELATED WORK

The performance criticality of instruction cache misses has
resulted in a rich body of prior literature. We discuss three
categories of related work.
Software prefetching. Several software techniques [17, 21, 48–
53] improve instruction locality by relocating infrequently exe-
cuted code via Profile-Guided Optimizations (PGO) at compile
time [17], link time [16, 18], or post link time [15, 19]. However,
finding the optimal cache-conscious layout is intractable in
practice [2], since it requires meandering through a vast number
of control-flow combinations. Hence, existing techniques
must oftentimes make inaccurate control-flow approximations.
Whereas PGO-based techniques have been shown to improve
data center application performance [17, 19], they still eliminate
only a small subset of all instruction cache misses [2].
Hardware prefetching. Hardware instruction prefetching tech-
niques began with next-line instruction prefetchers that exploit
the common case of fetching sequential instructions [54].

These next-line prefetchers soon evolved into next-N-line and
instruction stream prefetchers [8–14] that use trigger events
and control mechanisms to prefetch by adaptively looking a
few instructions ahead. Next-line and stream prefetchers have
been widely deployed in industrial designs because of their
implementation simplicity. However, such next-line prefetchers
are often inaccurate for complex data center applications that
implement frequent branching and function calls.

Branch predictor based prefetchers [3, 4, 10, 34, 35, 55, 56]
improve prefetch accuracy in branch- and call-heavy code. Run-
ahead execution [57], wrong path instruction prefetching [58],
and speculative prefetching mechanisms [59, 60] can also
explore ahead of the instruction fetch unit. However, such
prefetchers are susceptible to interference precipitated by wrong
path execution and insufficient look ahead when the branch
predictor traverses loop branches [12].

TIFS [12] and PIF [10] record the instruction fetch miss and
instruction commit sequences to overcome the limitations of
branch predictor based prefetching. Whereas these mechanisms
have improved accuracy and miss coverage, they require consid-
erable on-chip storage to maintain an ordered log of instruction
block addresses. Increasing on-chip storage is impractical at
data center scale due to strict energy requirements.

More sophisticated hardware instruction prefetchers proposed
by prior works (e.g., trace caches and special hardware
replacement policies) [14, 61–63] are too complex to be
deployed. We conclude that hardware prefetching mechanisms
either provide low accuracy and coverage or they require
significant on-chip storage and are too complex to implement
in real hardware.

In comparison, I-SPY covers most instruction cache misses
with minor micro-architectural modifications. I-SPY requires
only 96-bits of extra storage while state-of-the-art hardware
prefetchers (e.g., SHIFT [13], Confluence [64], and Shot-
gun [3]) require kilobytes to megabytes of extra storage.
Hybrid hardware-software prefetching. Hybrid hardware-
software techniques [2, 21] attempt to overcome the limitations
of hardware-only and software-only prefetching mechanisms.
These mechanisms propose hardware code prefetch instruc-
tions [65] that are similar to existing data prefetch instruc-
tions [66]. They use software-based control flow analyses to
inject hardware code prefetch instructions.

Although existing hybrid instruction prefetching mechanisms
have been the most effective in reducing I-cache misses in data-
center applications [2], they suffer from key limitations that hurt
prefetch accuracy. First, such hybrid techniques rely on a single
predecessor basic block as the execution context to predict a
future cache miss. However, as we show in Section II, we find
that miss patterns are more complex and multiple predecessor
basic blocks are needed to construct the execution context
to accurately predict a future cache miss. Second, existing
hybrid prefetching techniques often execute far too many
dynamic prefetch instructions, further increasing application
code footprints. In contrast, I-SPY achieves near-ideal prefetch
accuracy via conditional prefetching, while allowing only a
small increase in application footprint.

IX. CONCLUSION

Large instruction working sets in modern data center applica-
tions have resulted in frequent I-cache misses that significantly
degrade data center performance. We investigated instruction
prefetching to address this problem and analyze the challenges
of designing an ideal instruction prefetcher. We then used
insights derived from our investigation to develop I-SPY , a
novel profile-driven prefetching technique. I-SPY exposes two
new instruction prefetching techniques: conditional prefetching
and prefetch coalescing via a family of light-weight hardware
code prefetch instructions. We evaluated I-SPY on nine widely-
used data center applications to demonstrate an average of
15.5% (up to 45.9%) speedup and 95.9% (and up to 98.4%)
reduction in instruction cache misses, outperforming the state-
of-the-art prefetching technique by 22.5%.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their insightful feedback
and suggestions. This work was supported by the Intel Corpo-
ration, the NSF FoMR grants #1823559 and #2011168, and the
Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA. We thank
Gagan Gupta and Rathijit Sen from Microsoft Corporation for
insightful suggestions on the characterization of data center
applications. We thank Grant Ayers from Google for excellent
discussions and helpful feedback.

REFERENCES

[1] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 158–169.

[2] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and P. Ranganathan,
“Asmdb: understanding and mitigating front-end stalls in warehouse-scale
computers,” in Proceedings of the 46th International Symposium on
Computer Architecture, 2019, pp. 462–473.

[3] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end
bottleneck with shotgun,” ACM SIGPLAN Notices, vol. 53, no. 2, pp.
30–42, 2018.

[4] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A
metadata-free architecture for control flow delivery,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 493–504.

[5] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
643–656.

[6] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
Acm sigplan notices, vol. 47, no. 4, pp. 37–48, 2012.

[7] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing
server architectures for microservice diversity@ scale,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 513–526.

[8] A. J. Smith, “Sequential program prefetching in memory hierarchies,”
Computer, no. 12, pp. 7–21, 1978.

[9] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. IEEE, 1999, pp. 16–27.

[10] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in International Symposium on
Microarchitecture, 2008.

[11] R. Panda, P. V. Gratz, and D. A. Jiménez, “B-fetch: Branch prediction
directed prefetching for in-order processors,” IEEE Computer Architecture
Letters, vol. 11, no. 2, pp. 41–44, 2011.

[12] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in
International Symposium on Microarchitecture, 2011.

[13] C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction
fetch for lean-core server processors,” in International Symposium on
Microarchitecture, 2013.

[14] A. Kolli, A. Saidi, and T. F. Wenisch, “Rdip: return-address-stack directed
instruction prefetching,” in 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2013, pp. 260–271.

[15] C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney, “Ispike: a
post-link optimizer for the intel/spl reg/itanium/spl reg/architecture,” in
International Symposium on Code Generation and Optimization, 2004.
CGO 2004. IEEE, 2004, pp. 15–26.

[16] D. X. Li, R. Ashok, and R. Hundt, “Lightweight feedback-directed
cross-module optimization,” in Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization, 2010, pp.
53–61.

[17] D. Chen, T. Moseley, and D. X. Li, “Autofdo: Automatic feedback-
directed optimization for warehouse-scale applications,” in 2016
IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO). IEEE, 2016, pp. 12–23.

[18] G. Ottoni and B. Maher, “Optimizing function placement for large-scale
data-center applications,” in 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 2017, pp. 233–244.

[19] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a practical binary
optimizer for data centers and beyond,” in 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 2019,
pp. 2–14.

[20] E. Petrank and D. Rawitz, “The hardness of cache conscious data
placement,” in Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’02.
New York, NY, USA: Association for Computing Machinery, 2002, p.
101–112. [Online]. Available: https://doi.org/10.1145/503272.503283

[21] C.-K. Luk and T. C. Mowry, “Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern
processors,” in International Symposium on Microarchitecture, 1998.

[22] “An introduction to last branch records,” https://lwn.net/Articles/680985/.
[23] A. Yasin, “A top-down method for performance analysis and counters

architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2014, pp. 35–44.

[24] “facebookarchive/oss-performance: Scripts for benchmarking various php
implementations when running open source software,” https://github.
com/facebookarchive/oss-performance, 2019, (Online; last accessed 15-
November-2019).

[25] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer et al.,
“The dacapo benchmarks: Java benchmarking development and analysis,”
in Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, 2006, pp.
169–190.

[26] “Apache cassandra,” http://cassandra.apache.org/.
[27] “Apache tomcat,” https://tomcat.apache.org/.
[28] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Stu-

dener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and
W. Binder, “Renaissance: Benchmarking suite for parallel applications
on the jvm,” in Programming Language Design and Implementation,
2019.

[29] “Twitter finagle,” https://twitter.github.io/finagle/.
[30] “Verilator,” https://www.veripool.org/wiki/verilator.
[31] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for

adaptive dynamic optimization,” in International Symposium on Code
Generation and Optimization, 2003.

[32] K. Hazelwood and J. E. Smith, “Exploring code cache eviction granular-
ities in dynamic optimization systems,” in International Symposium on
Code Generation and Optimization, 2004.

[33] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” IEEE Micro,
2017.

[34] J. Bonanno, A. Collura, D. Lipetz, U. Mayer, B. Prasky, and A. Saporito,
“Two level bulk preload branch prediction,” in 2013 IEEE 19th Interna-

tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2013, pp. 71–82.

[35] I. Burcea and A. Moshovos, “Phantom-btb: a virtualized branch target
buffer design,” Acm Sigplan Notices, vol. 44, no. 3, pp. 313–324, 2009.

[36] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
413–425.

[37] Wikipedia contributors, “Fowler–noll–vo hash function — Wikipedia, the
free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Fowler%
E2%80%93Noll%E2%80%93Vo hash function&oldid=931348563,
2019, [Online; accessed 17-April-2020].

[38] ——, “Murmurhash — Wikipedia, the free encyclopedia,” https://en.
wikipedia.org/w/index.php?title=MurmurHash&oldid=950347972, 2020,
[Online; accessed 17-April-2020].

[39] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281–293, 2000.

[40] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in European
Symposium on Algorithms. Springer, 2006, pp. 684–695.

[41] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using
intel processor trace,” ACM SIGPLAN Notices, 2017.

[42] I. Corparation, “Intel (r) 64 and ia-32 architectures software developer’s
manual,” Combined Volumes, Dec, 2016.

[43] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems,” in International Symposium on
Computer Architecture, 2013.

[44] A. Ayers, R. Schooler, and R. Gottlieb, “Aggressive inlining,” ACM
SIGPLAN Notices, 1997.

[45] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-conscious structure
definition,” in ACM SIGPLAN conference on Programming language
design and implementation, 1999.

[46] A. Sriraman and T. F. Wenisch, “utune: Auto-tuned threading for
OLDI microservices,” in Symposium on Operating Systems Design and
Implementation, 2018.

[47] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” arXiv preprint arXiv:2003.03423, 2020.

[48] S. Harizopoulos and A. Ailamaki, “Steps towards cache-resident transac-
tion processing,” in International conference on Very large data bases,
2004.

[49] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-Pey,
P. G. Lowney, and M. Valero, “Code layout optimizations for transaction
processing workloads,” ACM SIGARCH Computer Architecture News,
2001.

[50] J. Zhou and K. A. Ross, “Buffering databse operations for enhanced
instruction cache performance,” in International conference on Manage-
ment of data, 2004.

[51] L. L. Peterson, “Architectural and compiler support for effective
instruction prefetching: a cooperative approach,” ACM Transactions on
Computer Systems, 2001.

[52] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying
memory access patterns for prefetching,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 513–526.

[53] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
arXiv preprint arXiv:1803.02329, 2018.

[54] D. Anderson, F. Sparacio, and R. M. Tomasulo, “The ibm system/360
model 91: Machine philosophy and instruction-handling,” IBM Journal
of Research and Development, 1967.

[55] L. Spracklen, Y. Chou, and S. G. Abraham, “Effective instruction
prefetching in chip multiprocessors for modern commercial applications,”
in International Symposium on High-Performance Computer Architecture,
2005.

[56] V. Srinivasan, E. S. Davidson, G. S. Tyson, M. J. Charney, and T. R.
Puzak, “Branch history guided instruction prefetching,” in International
Symposium on High-Performance Computer Architecture, 2001.

[57] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution:
An effective alternative to large instruction windows,” IEEE Micro, 2003.

[58] J. Pierce and T. Mudge, “Wrong-path instruction prefetching,” in
International Symposium on Microarchitecture, 1996.

https://doi.org/10.1145/503272.503283
https://github.com/facebookarchive/oss-performance
https://github.com/facebookarchive/oss-performance
https://en.wikipedia.org/w/index.php?title=Fowler%E2%80%93Noll%E2%80%93Vo_hash_function&oldid=931348563
https://en.wikipedia.org/w/index.php?title=Fowler%E2%80%93Noll%E2%80%93Vo_hash_function&oldid=931348563
https://en.wikipedia.org/w/index.php?title=MurmurHash&oldid=950347972
https://en.wikipedia.org/w/index.php?title=MurmurHash&oldid=950347972

[59] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors:
Improving both performance and fault tolerance,” ACM SIGPLAN Notices,
2000.

[60] C. Zilles and G. Sohi, “Execution-based prediction using speculative
slices,” in International Symposium on Computer Architecture, 2001.

[61] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency
approach to high bandwidth instruction fetching,” in Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 29. IEEE, 1996, pp. 24–34.

[62] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-based next trace
prediction,” in Proceedings of 30th Annual International Symposium on
Microarchitecture. IEEE, 1997, pp. 14–23.

[63] S. M. Ajorpaz, E. Garza, S. Jindal, and D. A. Jiménez, “Exploring
predictive replacement policies for instruction cache and branch target

buffer,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018, pp. 519–532.

[64] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: unified instruction
supply for scale-out servers,” in Proceedings of the 48th International
Symposium on Microarchitecture, 2015, pp. 166–177.

[65] “Prfm (literal) — a64,” http://shell-storm.org/armv8-a/ISA v85A A64
xml 00bet8 OPT/xhtml/prfm reg.html, [Online; accessed 28-March-
2020].

[66] “Prefetchh: Prefetch data into caches (x86 instruction set reference),”
https://c9x.me/x86/html/file module x86 id 252.html, [Online; accessed
28-March-2020].

http://shell-storm.org/armv8-a/ISA_v85A_A64_xml_00bet8_OPT/xhtml/prfm_reg.html
http://shell-storm.org/armv8-a/ISA_v85A_A64_xml_00bet8_OPT/xhtml/prfm_reg.html
https://c9x.me/x86/html/file_module_x86_id_252.html

	Introduction
	Understanding the Challenges of Instruction Prefetching
	What Information is Needed to Efficiently Predict an I-Cache Miss?
	When To Prefetch an Instruction?
	Where to Inject a Prefetch?
	How to Sparingly Prefetch Instructions?

	I-SPY
	Conditional Prefetching
	Prefetching Coalescing

	Usage Model
	Evaluation Methodology
	Evaluation
	I-SPY: Performance Analysis
	I-SPY: Sensitivity Analysis

	Discussion
	Related Work
	Conclusion
	References

