
•  Comprehensive	
 characteriza1on	
 of	
 Facebook’s	
 microservices	

q  System-­‐level	
 &	
 architectural	
 bo=lenecks	

	
 	
 	
 	
 	
 Reveals	
 enormous	
 bo=leneck	
 diversity	
 across	
 microservices	

•  Concept	
 of	
 “soA”	
 server	
 SKUs	
 	

q  Tuning	
 coarse-­‐grained	
 OS	
 &	
 hardware	
 configura1on	
 knobs	

•  µSKU	

q  Automates	
 soA-­‐SKU	
 search	
 &	
 configura1on	
 via	
 produc1on	
 A/B	
 tests	

q  Deploys	
 soA	
 SKUs	
 on	
 produc1on	
 microservices	

	

So#SKU:	
 Op*mizing	
 Server	
 Architectures	
 for	
 Microservice	

Diversity	
 @Scale	

Akshitha Sriraman✣▴, Abhishek Dhano2a▴, Thomas F. Wenisch✣

University of Michigan✣, Facebook ▴

Rapid Increase in Modern Web Services

Are Custom Platforms Always Needed?

Contributions

Facebook µServices’ Characterization

µSKU: Soft SKU Design & Deployment

Performance of Commodity Servers

Client	

Web	

Feed	

Ads	

Cache	
 ?	

Stringent	
 SLOs	
 +	
 	

Moore’s	
 law	
 decline	

Rapid	
 increase	
 in	
 µservices	
 -­‐>	
 greater	
 need	
 for	
 custom	
 hardware	

Web	
 services	
 Microservices	

Customized	
 hardware	

Customized	
 plaTorms	
 -­‐>	
 expensive	

Data	
 centers	
 prefer	
 hardware	
 	

resource	
 fungibility	
 	

Low	
 tes1ng	
 	

overhead	

Procurement	

@scale	
 ?	

Dire	
 need	
 for	
 limited	
 CPU	
 SKUs	
 that	
 support	
 a	
 variety	
 of	
 µservices	

Web	
 Feed	

Ads	
 Cache	

How performant is commodity

hardware for these µservices?

Use	
 commodity	
 hardware	
 for	

	
 procurement	
 efficiency	
 &	
 scalability?	

Are there common boElenecks

that can inspire future SKUs?

Key	
 FB	
 µservices	
 occupy	
 a	
 	

large	
 por1on	
 of	
 the	
 data	
 center	

~7.2%	
 perf. boost on produc*on µservices + no	
 extra	
 hardware	

μService	
 Throughput	

(QPS)	

Response	

latency	
 Pathlength	

Web	
 O(100)	
 O(ms)	
 O(106)	

Feed1	
 O(1000)	
 O(ms)	
 O(109)	

Feed2	
 O(10)	
 O(s)	
 O(109)	

Ads1	
 O(10)	
 O(ms)	
 O(109)	

Ads2	
 O(100)	
 O(ms)	
 O(109)	

Cache1	
 O(100K)	
 O(μs)	
 O(103)	

Cache2	
 O(100K)	
 O(μs)	
 O(103)	

Great	
 diversity	
 in	
 bo=lenecks	

?	

Use	
 custom	
 SKUs?	
 Prohibi1vely	
 expensive	

“Soft” SKUs: Best of Both Worlds
Can	
 we	
 achieve	
 perf.	
 efficiency	
 without	
 building	
 custom	
 SKUs?	

Tune	
 coarse	
 HW	
 &	
 OS	
 knobs	

on	
 commodity	
 HW	

Performance	
 	

efficiency	

Procurement	
 efficiency	

&	
 scalability	

Core	
 	

freq.	

Uncore	
 	

freq.	

Core	
 	

count	

CDP	
 Prefetcher	
 THP	
 SHP	

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Web

Cache2 Feed1

Feed2

Ads1
Cache1

Ads2

0

100

200

300

400

0 50 100 150

M
em

or
y l

at
en

cy
 (n

s)

Memory bandwidth (GB/s)

Skylake18 stress test latency Skylake20 stress test latency

Figure 12: Memory bandwidth vs. latency: microservices under-
utilize memory bandwidth to avoid latency penalties.

traffic burstiness. The curves also reveal why it is necessary
to run Cache1 and Ads2 on the higher-peak-bandwidth Sky-

lake20 platform to keep memory latency low. Nevertheless,
several microservices under-utilize available bandwidth, and
hence might benefit from optimizations that trade bandwidth
to improve latency, such as hardware prefetching [77].

We summarize our findings in Table 3.

3 “Soft” SKUs
Our microservices exhibit profound diversity in system-level
and architectural traits. For example, we demonstrated di-
verse OS and I/O interaction, code/data cache miss ratios,
memory bandwidth utilization, instruction mix ratios, and
CPU stall behavior. One way to address such distinct bottle-
necks is to specialize CPU architectures by building custom
hardware server SKUs to suit each service’s needs. However,
such hardware SKU diversity is impractical, as it requires
testing and qualifying each distinct SKU and careful capacity
planning to provision each to match projected load. Given
the uncertainties inherent in projecting customer demand,
investing in diverse hardware SKUs is not effective at scale.

Data center operators aim to maintain hardware resource
fungibility to preserve procurement advantages that arise
from economies of scale and limit the effort of qualifying
myriad hardware platforms. To preserve fungibility, we seek
strategies that enable a few server SKUs to provide perfor-
mance and energy efficiency over diverse microservices. To
this end, we propose exploiting coarse-grain (e.g., boot time)
parameters to create “soft SKUs”, tuning limited hardware
SKUs to better support their assigned microservice. However,
manually identifying microservice-specific soft-SKUs is im-
practical since the design space is large, code evolves quickly,
synthetic load tests do not necessarily capture production be-
havior, and the effects of tuning a single knob are often small
(a few percent performance change). Hence, we build an auto-
mated design tool—µSKU—that searches the configuration
design space to optimize for each microservice.

4 µSKU: System Design
µSKU is a design tool for quick discovery of performant and
efficient “soft” SKUs. µSKU automatically varies config-
urable server parameters, or “knobs,” by searching within a
predefined design space via A/B testing. A/B testing is the
process of comparing two identical systems that differ only
in a single variable. µSKU conducts A/B tests by comparing
the performance of two identical servers (i.e., same hardware
platform, same fleet, and facing the same load) that differ
only in their knob configuration. µSKU collects copious

Input file

Microservice)

Pla-orm)

Sweep)config.)

µSKU

))Input)file))
))parser)

))A/B)test)
configurator)

Knob
parameters

A/B Tester: production systems serving live traffic

Core)
frequency)

Uncore)
frequency)

Core))
count)

CDP:)
LLC) Prefetcher) THP) SHP)

Knob% Ideal%config%
Core)frequency) 2.2)GHz)

.)

.)
SHP) 300)

SoL)SKU))
generator)

Deployed on

servers

Figure 13: µSKU: system design

fine-grain performance measurements while conducting auto-
mated A/B tests on production systems serving live traffic to
search for statistically significant performance changes. We
aim to ensure that µSKU has a simple design so that it can
be applied across microservices and hardware SKU gener-
ations while avoiding operational complexity. Key design
challenges include: (1) identifying performance-efficient soft-
SKU configurations in a large design space, (2) dealing with
frequent code evolution, (3) capturing behavior in produc-
tion systems facing diurnal or transient load fluctuations, and
(4) differentiating actual performance variations from noise
through appropriate statistical tests. We discuss how µSKU’s
design meets these challenges.

We develop a µSKU prototype that explores a soft-SKU
design space comprising seven configurable server knobs.
µSKU accepts a few input parameters and then invokes its
components—A/B test configurator, A/B tester, and soft SKU
generator, as shown in Fig. 13. We describe each component
below.

Input file. The user provides an input file with the follow-
ing three input parameters.

(1) Target Microservice. Several aspects of µSKU’s behav-
ior must be tuned for the specific target microservice. µSKU
reboots the server while performing certain A/B tests (e.g.,
core count scaling). Some microservices may not tolerate
reboots on live traffic and hence µSKU disables these knobs
in such cases. Furthermore, µSKU disables knobs that do not
apply to a microservice. For example, Statically-allocated
Huge Pages (SHPs) are inapplicable to Ads1, since it does not
use the APIs to allocate them. Our current µSKU prototype
estimates performance by measuring the Millions of Instruc-
tions per Second (MIPS) rate via EMON [39], which we
have confirmed is proportional to several key microservices’
throughput (e.g., Web and Ads1). However, we anticipate
the performance metric that µSKU measures to determine
whether a particular soft SKU has improved performance
to be microservice specific. In particular, MIPS may be
insufficient to measure Cache’s throughput, since Cache’s
code is introspective of performance. (It executes exception
handlers when faced with knob configurations that engender
QoS violations, which make instructions-per-query vary with
performance.) µSKU can be extended to perform A/B tests
using microservice-specific performance metrics.

(2) Processor platform. The available settings in several
µSKU design space dimensions, such as specific core and
uncore frequencies, core counts, and hardware prefetcher
options, are hardware platform specific.

Soft SKU Performance

0	

1	

2	

3	

4	

5	

6	

7	

8	

Hand-­‐tuned	
 	
 SoA	
 SKU	

Pe
rf
.	
 i
m
pr
ov
em

en
t	
 (
%
)	
 o

ve
r	

st
oc
k	

se
rv
er
	
 c
on

fig
.	

Web	
 (Skylake)	
 Web	
 (Broadwell)	
 Ads1	

0%	

Up	
 to	
 7.2%	
 perf.	
 improvement	

SoD	
 SKU	
 can	
 achieve	
 ~7.2%	
 throughput	
 improvement	
 on	
 	

produc5on	
 systems	
 with	
 no	
 extra	
 hardware	
 requirement	

