Enhancing Server Efficiency in the Face of
Killer Microseconds

Amirhossein Mirhosseini, Akshitha Sriraman, Thomas F. Wenisch

University of Michigan

HPCA 2019
02 /18/2019



Killer Microseconds

[Barroso’17]

e Frequent microsecond-scale pauses in datacenter applications

— Stalls for accessing emerging memory & 1/O devices

— Mid-tier servers synchronously waiting for leaf nodes
— Brief idle periods in high-throughput microservices

e Modern computing systems not effective in hiding microseconds
— Micro-architectural techniques are insufficient

— OS/software context switches are too coarse grain

2§ MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds



Our proposal: Duplexity

e (Cost-effective highly multithreaded server design
e Heterogeneous design --- Dyads of cores:

— Master core for latency-sensitive microservices
— Lender core for latency-insensitive applications

e Keyidea 1: master core may “borrow” threads p
from the lender core to fill utilization holes ‘)

e Key idea 2: cores protect threads’ cache statesto
avoid excessive tail latencies and QoS violations

Duplexity improves core utilization by 4.8x in presence of killer microseconds

MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds




MichiganEngineering

Outline

Killer microseconds

Why (scaling) SMT is not an option

Duplexity server architecture

Evaluation methodology and results

Enhancing Server Efficiency in the Face of Killer Microseconds



Modern HW is great at hiding
nanosecond scale stalls...

Caches! 000!
MLP! Spec!

Prefetching!
50 nanoseconds

Micro-architectural techniques are at best able to hide 100s of nanoseconds

MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds




Modern OS is great at hiding
millisecond scale stalls...

5 milliseconds

OS context switching typically has an average overhead of at least 5-20us

Py MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds



But, today’s devices and microservices
inflict us-scale stalls

e Emerging memory and I/O technologies:
— NVM, disaggregated memory, ... : O(1 us)

— High-end flash, accelerators, ... : O(10 ps

e Brief idle periods: |
— With ps-scale microservices, idle periods also shrink to us scales
e 200K QPS service at 50% load has average idle periods of only 10 us

Need HW/SW mechanisms to hide ps-scale latencies

Py MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds



Multithreading is the obvious solution

e (OS context switches are too coarse-grain for us-scale periods
— User-level cooperative multithreading (cho1s)

— Hardware (Simultaneous) multith reading [Yamamoto’95][[Tullsen’95][Tullsen’96] ...

d Dl

But, we need a lot of (10+) threads to fill ps-scale stall/idle periods

Py MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds




d

e Complicates fetch/dispatch/issue logic

e Requires a larger register file
e Pressure/thrashing in L1 caches

Simply adding more threads is not enough

— Prolonging its critical path

e Higher tail latency due to interference among threads

— Up to 5.7x higher tail latency
— 1.5x higher tail at low load and low IPC co-runner

Need complexity management and performance isolation mechanisms

MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds



Duplexity

e Two main objectives:

— Maximize performance density and energy efficiency

e Fill utilization “holes” arising from killer microseconds

Borrow latency-insensitive batch threads to fill microservices’ utilization holes

— Minimize disruption of latency-sensitive threads
e Avoid excessive tail latency due to interference

Latency

Isolate stateful uarch structures (e.g., caches) to avoid QoS violations

MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds

10



Duplexity : a server made of “Dyads”

e Master core

— Designed for latency-sensitive microservices

— “Borrows” threads from lender core to fill util holes

e |ender core

— Designed for latency-insensitive batch applications

e Shared backlog of batch threads

MichiganEngineering

Shared thread backlogs

Lender

core
Master

core

Lender

core
Master

core

Lender
core

Master
core

core

Lender |

Master

core

Enhancing Server Efficiency in the Face of Killer Microseconds

11



Lender Core

O35
e Latency-insensitive batch threads P
— In-order execution £ O Fow
E In-Order
0.5
| 2 3 4 5 6 7 8
Number of SMT threads
e \Variable number of virtual contexts needed &

— FIFO run-queue of virtual contexts in memory

—=90% utilization
==50% utilization

o N X o8 0 —

P (ready threads>
©o o o o

(oo}

12 16 20 24 28
Total number of threads

MichiganEngineering

by Enhancing Server Efficiency in the Face of Killer Microseconds

12



Lender Core

e Hierarchical Simultaneous Multithreading (HSMT)

— Backlog of virtual contexts
— Inspired by Balanced Multithreading [Tune’04]

8-way In-order SMT Datapath

MichiganEngineering

Frontend

V-contexts
PTR

| E

-
0
— || o

PC2

PC 3]

—| Fetch

PC 4

PC5

PC 6

PC7

LHHEE

Jayng uonon.isu|

Instruction
Cache

Dispatch

Backend

In-Order

Issue

Queues

Register
File

s)UN) |eUOIIdUNY

Data
Cache

Enhancing Server Efficiency in the Face of Killer Microseconds

13



Master Core

e Single latency-sensitive master thread

e Borrows threads from the lender core to fill us-scale holes
— Single-threaded out-of-order mode for master thread
— Multi-threaded in-order mode for filler threads

e |nspired by Morphcore [khubaib'12]

——Qut-of-Order
In-Order

Throughput (IPC)
— M W
M

V

N

>

©
w

2 3 4 5 6 7 8
Number of SMT threads

Filler threads thrash the cache, TLB, and branch predictor state of the master thread
=>» Increase tail latency

¥ MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds

14



Segregating State

e Naive solution: replicate all stateful uarch structures

— Register files, caches, branch predictor, TLBs, etc.

p4
. Branch predictey | Rs
cachg %

yo |, Master Thread ]
Ting// Master core only replicates

chﬁ’g Filler % inexpensive structures
(e.g., TLBs and predictors)

Threads

/D
? TV Branch predicv | Rg

Caches and register files are large and power-hungry
=>» Full replication undermines performance density and energy efficiency objectives

Yy Vicigansngineering Enhancing Server Efficiency in the Face of Killer Microseconds

15



Segregating Register Files

e Repurpose physical RF as architectural RF for filler threads

e Retain master thread architectural registers

— Facilitates fast restart when the stall resolves

Master Thread

Arch+Phys Registers

Master Thread
Arch Regs

Filler Threads
Arch Regs

MichiganEngineering

What about caches?

Enhancing Server Efficiency in the Face of Killer Microseconds

16



Master-Lender Dyads

e Master core remotely accesses the L1 |/D caches of the lender core
— Protects the master thread’s state

— Allows filler threads to hit on their own cache state
e LO /D caches as effective bandwidth filters

Master-thread mode Filler-thread mode
L1 I$nst Lender %g%%%%% L1 Isnst Lender %ggg%%%
L1 Data core L1 Data core
$ ‘ $
L1 Inst . X
$ Master : e Master
L1 I;ata core core

Master thread can almost immediately resume execution as stall resolves

Py MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds



Evaluation Methodology

e Master thread:

— Open source us-scale microservices
e Locality sensitive hashing, protocol routing, remote caching, word stemming

e Filler threads:

— Data-parallel distributed graph algorithms
e Page Rank, single-source shortest path

e Design Alternatives:

— Baseline single-threaded 000, SMT, Duplexity+Replication,
more alternatives in the paper

2§ MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds



Core

Evaluation

Utilization (%)

80
70
%9 34%
50
40
30
20
10
0

Baseline 000

MichiganEngineering

?

SMT

Duplexity+Replication

Duplexity achieves 34% higher average
core utilization compared to SMT
Within 4% of the utilization achieved by
Duplexity + replication

Duplexity

Enhancing Server Efficiency in the Face of Killer Microseconds

19



Evaluation

Core Performance
Utilization (%) Density
80 1.6
70 1.4
60 1.2
50 1 . .
20 0.8 Duplexity improves performance density
30 0.6 by 49%, 28%, and 10% compared to
20 0.4 : i .
o 0 baseline, SMT, and Duplexity+Replication
0 0
Ok & > Ok c >
o X o =
S5§%  $5§3
s $8 5 58
§ % g %
3 3
Q. Q.
a a
MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds

g

20



Evaluation

Core Performance Tail Latency
Utilization (%) Density (99th percentile)
80 1.6 3 2.7x
70 14 25
60 1.2 MT n b
50 ) 2 SMT worsens tail latency by
40 0.8 1.5 2.7x on average (up to 5.7x)
30 0.6 1
20 0.4 . o :
10 02 0.5 Duplexity maintains tail
0 0 0 o o o
o - £ > o £ > o - c = latency within 19%
o 2 98 £ °©o S o =& S o &
O w ¥ 3 oOw & 3 o w % 3
@ S 3 e S = e S =
§ % § % § %
3 3 3
Q. Q. Q.
a a a
g3 Jehiganknpinesring Enhancing Server Efficiency in the Face of Killer Microseconds 21



Conclusions

e Killer Microseconds: Frequent us-scale pauses in microservices
e Modern computing systems not effective in hiding microseconds

e Qur proposal: Duplexity
— Cost-effective highly multithreaded server architecture
— Heterogeneous design:

e Master cores for latency-sensitive microservices

e Lender cores for latency-insensitive batch application
— Master core may “borrow” threads from the lender core to fill utilization holes
— Cores protect their threads’ cache states to avoid QoS violations

Duplexity improves utilization by 4.8x while maintaining tail latency within 19%

e

MichiganEngineering Enhancing Server Efficiency in the Face of Killer Microseconds

22



MichiganEngineering

Questions?

Enhancing Server Efficiency in the Face of Killer Microseconds

23



