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Killer Microseconds

[Barroso’17]

e Frequent microsecond-scale pauses in datacenter applications

— Stalls for accessing emerging memory & 1/O devices

— Mid-tier servers synchronously waiting for leaf nodes
— Brief idle periods in high-throughput microservices

e Modern computing systems not effective in hiding microseconds
— Micro-architectural techniques are insufficient

— OS/software context switches are too coarse grain
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Our proposal: Duplexity

e (Cost-effective highly multithreaded server design
e Heterogeneous design --- Dyads of cores:

— Master core for latency-sensitive microservices
— Lender core for latency-insensitive applications

e Keyidea 1: master core may “borrow” threads p
from the lender core to fill utilization holes ‘)

e Key idea 2: cores protect threads’ cache statesto
avoid excessive tail latencies and QoS violations

Duplexity improves core utilization by 4.8x in presence of killer microseconds
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Modern HW is great at hiding
nanosecond scale stalls...

Caches! 000!
MLP! Spec!

Prefetching!
50 nanoseconds

Micro-architectural techniques are at best able to hide 100s of nanoseconds
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Modern OS is great at hiding
millisecond scale stalls...

5 milliseconds

OS context switching typically has an average overhead of at least 5-20us
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But, today’s devices and microservices
inflict us-scale stalls

e Emerging memory and I/O technologies:
— NVM, disaggregated memory, ... : O(1 us)

— High-end flash, accelerators, ... : O(10 ps

e Brief idle periods: |
— With ps-scale microservices, idle periods also shrink to us scales
e 200K QPS service at 50% load has average idle periods of only 10 us

Need HW/SW mechanisms to hide ps-scale latencies
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Multithreading is the obvious solution

e (OS context switches are too coarse-grain for us-scale periods
— User-level cooperative multithreading (cho1s)

— Hardware (Simultaneous) multith reading [Yamamoto’95][[Tullsen’95][Tullsen’96] ...

d Dl

But, we need a lot of (10+) threads to fill ps-scale stall/idle periods
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d

e Complicates fetch/dispatch/issue logic

e Requires a larger register file
e Pressure/thrashing in L1 caches

Simply adding more threads is not enough

— Prolonging its critical path

e Higher tail latency due to interference among threads

— Up to 5.7x higher tail latency
— 1.5x higher tail at low load and low IPC co-runner

Need complexity management and performance isolation mechanisms
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Duplexity

e Two main objectives:

— Maximize performance density and energy efficiency

e Fill utilization “holes” arising from killer microseconds

Borrow latency-insensitive batch threads to fill microservices’ utilization holes

— Minimize disruption of latency-sensitive threads
e Avoid excessive tail latency due to interference

Latency

Isolate stateful uarch structures (e.g., caches) to avoid QoS violations
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Duplexity : a server made of “Dyads”

e Master core

— Designed for latency-sensitive microservices

— “Borrows” threads from lender core to fill util holes

e |ender core

— Designed for latency-insensitive batch applications

e Shared backlog of batch threads
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Lender Core

O35
e Latency-insensitive batch threads P
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Lender Core

e Hierarchical Simultaneous Multithreading (HSMT)

— Backlog of virtual contexts
— Inspired by Balanced Multithreading [Tune’04]

8-way In-order SMT Datapath
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Master Core

e Single latency-sensitive master thread

e Borrows threads from the lender core to fill us-scale holes
— Single-threaded out-of-order mode for master thread
— Multi-threaded in-order mode for filler threads

e |nspired by Morphcore [khubaib'12]
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Filler threads thrash the cache, TLB, and branch predictor state of the master thread
=>» Increase tail latency
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Segregating State

e Naive solution: replicate all stateful uarch structures

— Register files, caches, branch predictor, TLBs, etc.

p4
. Branch predictey | Rs
cachg %

yo |, Master Thread ]
Ting// Master core only replicates

chﬁ’g Filler % inexpensive structures
(e.g., TLBs and predictors)

Threads

/D
? TV Branch predicv | Rg

Caches and register files are large and power-hungry
=>» Full replication undermines performance density and energy efficiency objectives
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Segregating Register Files

e Repurpose physical RF as architectural RF for filler threads

e Retain master thread architectural registers

— Facilitates fast restart when the stall resolves

Master Thread

Arch+Phys Registers

Master Thread
Arch Regs

Filler Threads
Arch Regs
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What about caches?

Enhancing Server Efficiency in the Face of Killer Microseconds

16



Master-Lender Dyads

e Master core remotely accesses the L1 |/D caches of the lender core
— Protects the master thread’s state

— Allows filler threads to hit on their own cache state
e LO /D caches as effective bandwidth filters

Master-thread mode Filler-thread mode
L1 I$nst Lender %g%%%%% L1 Isnst Lender %ggg%%%
L1 Data core L1 Data core
$ ‘ $
L1 Inst . X
$ Master : e Master
L1 I;ata core core

Master thread can almost immediately resume execution as stall resolves
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Evaluation Methodology

e Master thread:

— Open source us-scale microservices
e Locality sensitive hashing, protocol routing, remote caching, word stemming

e Filler threads:

— Data-parallel distributed graph algorithms
e Page Rank, single-source shortest path

e Design Alternatives:

— Baseline single-threaded 000, SMT, Duplexity+Replication,
more alternatives in the paper
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Evaluation
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?

SMT

Duplexity+Replication

Duplexity achieves 34% higher average
core utilization compared to SMT
Within 4% of the utilization achieved by
Duplexity + replication

Duplexity
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Evaluation

Core Performance
Utilization (%) Density
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Evaluation

Core Performance Tail Latency
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Conclusions

e Killer Microseconds: Frequent us-scale pauses in microservices
e Modern computing systems not effective in hiding microseconds

e Qur proposal: Duplexity
— Cost-effective highly multithreaded server architecture
— Heterogeneous design:

e Master cores for latency-sensitive microservices

e Lender cores for latency-insensitive batch application
— Master core may “borrow” threads from the lender core to fill utilization holes
— Cores protect their threads’ cache states to avoid QoS violations

Duplexity improves utilization by 4.8x while maintaining tail latency within 19%

e
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Questions?
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