
Enhancing Server Efficiency in the Face of
Killer Microseconds

Amirhossein Mirhosseini, Akshitha Sriraman, Thomas F. Wenisch
University of Michigan

HPCA 2019
02 /18/2019



Enhancing Server Efficiency in the Face of Killer Microseconds

Killer Microseconds
[Barroso’17]

2

• Frequent microsecond-scale pauses in datacenter applications
– Stalls for accessing emerging memory & I/O devices

– Mid-tier servers synchronously waiting for leaf nodes 

– Brief idle periods in high-throughput microservices

• Modern computing systems not effective in hiding microseconds
– Micro-architectural techniques are insufficient

– OS/software context switches are too coarse grain



Enhancing Server Efficiency in the Face of Killer Microseconds

Our proposal: Duplexity
• Cost-effective highly multithreaded server design
• Heterogeneous design --- Dyads of cores:

– Master core for latency-sensitive microservices
– Lender core for latency-insensitive applications

• Key idea 1: master core may “borrow” threads 
from the lender core to fill utilization holes

• Key idea 2: cores protect threads’ cache states to 
avoid excessive tail latencies and QoS violations

3

Duplexity improves core utilization by 4.8x in presence of killer microseconds



Enhancing Server Efficiency in the Face of Killer Microseconds

Outline
• Killer microseconds

• Why (scaling) SMT is not an option

• Duplexity server architecture

• Evaluation methodology and results

4



Enhancing Server Efficiency in the Face of Killer Microseconds

Modern HW is great at hiding 
nanosecond scale stalls… 

5

50 nanoseconds

Caches! OoO!
MLP! Spec! 
Prefetching!

Micro-architectural techniques are at best able to hide 100s of nanoseconds



Enhancing Server Efficiency in the Face of Killer Microseconds

Modern OS is great at hiding 
millisecond scale stalls… 

6

5 millisecondsyawn

Context 
Switch!

OS context switching typically has an average overhead of at least 5-20us 



Enhancing Server Efficiency in the Face of Killer Microseconds

• Emerging memory and I/O technologies:
– NVM, disaggregated memory, … : O(1 μs)

– High-end flash, accelerators, … : O(10 μs)

• Brief idle periods:
– With μs-scale microservices, idle periods also shrink to μs scales 

• 200K QPS service at 50% load has average idle periods of only 10 μs

7

But, today’s devices and microservices
inflict μs-scale stalls 

Need HW/SW mechanisms to hide μs-scale latencies



Enhancing Server Efficiency in the Face of Killer Microseconds

Multithreading is the obvious solution
• OS context switches are too coarse-grain for μs-scale periods

– User-level cooperative multithreading [Cho’18]

– Hardware (simultaneous) multithreading [Yamamoto’95][[Tullsen’95][Tullsen’96] …

8

But, we need a lot of (10+) threads to fill μs-scale stall/idle periods



Enhancing Server Efficiency in the Face of Killer Microseconds

Simply adding more threads is not enough
• Complicates fetch/dispatch/issue logic

– Prolonging its critical path

• Requires a larger register file

• Pressure/thrashing in L1 caches

• Higher tail latency due to interference among threads
– Up to 5.7x higher tail latency

– 1.5x higher tail at low load and low IPC co-runner

9

Need complexity management and performance isolation mechanisms



Enhancing Server Efficiency in the Face of Killer Microseconds

Duplexity
• Two main objectives:

– Maximize performance density and energy efficiency
• Fill utilization “holes” arising from killer microseconds

– Minimize disruption of latency-sensitive threads 
• Avoid excessive tail latency due to interference

10

Latency

Borrow latency-insensitive batch threads to fill microservices’ utilization holes

Isolate stateful uarch structures (e.g., caches) to avoid QoS violations



Enhancing Server Efficiency in the Face of Killer Microseconds

Duplexity : a server made of “Dyads”
• Master core

– Designed for latency-sensitive microservices
– “Borrows” threads from lender core to fill util holes

• Lender core
– Designed for latency-insensitive batch applications

• Shared backlog of batch threads

11

Lender
core

Master
core

Lender
core

Master
core

LLC

Memory, I/O 
controllers, etc

...

...

Lender
core

Master
core

Lender
core

Master
core

...

...

Sh
ar

ed
 t

hr
ea

d 
ba

ck
lo

gs



Enhancing Server Efficiency in the Face of Killer Microseconds

Lender Core
• Latency-insensitive batch threads

– In-order execution

• Variable number of virtual contexts needed
– FIFO run-queue of virtual contexts in memory

12



Enhancing Server Efficiency in the Face of Killer Microseconds

Lender Core
• Hierarchical Simultaneous Multithreading (HSMT)

– Backlog of virtual contexts
– Inspired by Balanced Multithreading [Tune’04]

13

8-way In-order SMT Datapath

In-Order
Issue 

Queues
PC 0

PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

PC 7

V-contexts 
PTR

Fetch

Instruction
Cache

Instruction Buffer

Data
Cache

Register
File

Select

Functional U
nits

Frontend Backend
FIFO 0

FIFO 1

FIFO 2

FIFO 3

FIFO 4

FIFO 5

FIFO 6

FIFO 7



Enhancing Server Efficiency in the Face of Killer Microseconds

Master Core

• Single latency-sensitive master thread

• Borrows threads from the lender core to fill μs-scale holes

– Single-threaded out-of-order mode for master thread

– Multi-threaded in-order mode for filler threads

• Inspired by Morphcore [Khubaib’12]

14

Filler threads thrash the cache, TLB, and branch predictor state of the master thread

è Increase tail latency

>2x



Enhancing Server Efficiency in the Face of Killer Microseconds

Master Thread

Filler
Threads

RF

RFI/D 
caches 

Branch predictor

Branch predictor

...

I/D 
TLBs 

I/D 
caches 

I/D 
TLBs 

Segregating State
• Naive solution: replicate all stateful uarch structures 

– Register files, caches, branch predictor, TLBs, etc.

15

Caches and register files are large and power-hungry 
è Full replication undermines performance density and energy efficiency objectives

ü
û

ü

ü
û

û

ûü

Master core only replicates 
inexpensive structures 

(e.g., TLBs and predictors)



Enhancing Server Efficiency in the Face of Killer Microseconds

Segregating Register Files
• Repurpose physical RF as architectural RF for filler threads
• Retain master thread architectural registers 

– Facilitates fast restart when the stall resolves

16

RFMaster Thread
Arch+Phys Registers

Master Thread
Arch Regs

Filler Threads
Arch Regs

What about caches?



Enhancing Server Efficiency in the Face of Killer Microseconds

Master-Lender Dyads
• Master core remotely accesses the L1 I/D caches of the lender core

– Protects the master thread’s state
– Allows filler threads to hit on their own cache state

• L0 I/D caches as effective bandwidth filters

17

Lender
core

Master
core

L1 Inst 
$

L1 Data 
$

L1 Inst 
$

L1 Data 
$

Master-thread mode Filler-thread mode

Lender
core

Master
core

L1 Inst 
$

L1 Data 
$

L1 Inst 
$

L1 Data 
$

L0

L0

Master thread can almost immediately resume execution as stall resolves



Enhancing Server Efficiency in the Face of Killer Microseconds

Evaluation Methodology
• Master thread:

– Open source μs-scale microservices
• Locality sensitive hashing, protocol routing, remote caching, word stemming

• Filler threads:
– Data-parallel distributed graph algorithms

• Page Rank, single-source shortest path

• Design Alternatives:
– Baseline single-threaded OoO, SMT, Duplexity+Replication,

more alternatives in the paper

18



Enhancing Server Efficiency in the Face of Killer Microseconds

Evaluation

19

34% Duplexity achieves 34% higher average 
core utilization compared to SMT

Within 4% of the utilization achieved by 
Duplexity + replication



Enhancing Server Efficiency in the Face of Killer Microseconds

Evaluation

20

Duplexity improves performance density 
by 49%, 28%, and 10% compared to 

baseline, SMT, and Duplexity+Replication



Enhancing Server Efficiency in the Face of Killer Microseconds

Evaluation

21

SMT worsens tail latency by 
2.7x on average (up to 5.7x)

Duplexity maintains tail 
latency within 19%

2.7x



Enhancing Server Efficiency in the Face of Killer Microseconds

Conclusions
• Killer Microseconds: Frequent μs-scale pauses in microservices

• Modern computing systems not effective in hiding microseconds

• Our proposal: Duplexity
– Cost-effective highly multithreaded server architecture

– Heterogeneous design:
• Master cores for latency-sensitive microservices

• Lender cores for latency-insensitive batch application

– Master core may “borrow” threads from the lender core to fill utilization holes

– Cores protect their threads’ cache states to avoid QoS violations

22

Duplexity improves utilization by 4.8x while maintaining tail latency within 19%



Enhancing Server Efficiency in the Face of Killer Microseconds

Questions?

23


