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Big Data Analysis
with Signal Processing on Graphs
Aliaksei Sandryhaila,Member, IEEEand José M. F. Moura,Fellow, IEEE

Analysis and processing of very large datasets, or Big Data,
poses a significant challenge. Massive datasets are collected
and studied in numerous domains, from engineering sciencesto
social networks, biomolecular research, commerce and security.
Extracting valuable information from Big Data requires innova-
tive approaches that efficiently process large amounts of data
as well as handle and, moreover, utilize their structure. This
article discusses a paradigm for large-scale data analysisbased
on the discrete signal processing on graphs(DSPG). DSPG

extends signal processing concepts and methodologies fromthe
classical signal processing theory to data indexed by general
graphs. Big Data analysis presents several challenges to DSPG,
in particular, in filtering and frequency analysis of very large
datasets. We review fundamental concepts of DSPG, including
graph signals and graph filters, graph Fourier transform, graph
frequency and spectrum ordering, and compare them with their
counterparts from the classical signal processing theory.We
then consider product graphs as a graph model that helps
extend the application of DSPG methods to large datasets
through efficient implementation based on parallelizationand
vectorization. We relate the presented framework to existing
methods for large-scale data processing and illustrate it with
an application to data compression.

I. I NTRODUCTION

Data analysts in scientific, government, industrial, and com-
mercial domains face the challenge of coping with rapidly
growing volumes of data that are collected in numerous appli-
cations. Examples include biochemical and genetics research,
fundamental physical experiments and astronomical observa-
tions, social networks, consumer behavior studies, and many
others. In these applications, large amounts of raw data canbe
used for decision making and action planning, but their volume
and increasingly complex structure limit the applicability of
many well-known approaches widely used with small datasets,
such as principal component analysis, singular value decom-
position, spectral analysis, and others. This problem—theBig
Data problem [1]—requires new paradigms, techniques, and
algorithms.

Several approaches have been proposed for representation
and processing of large datasets with complex structure. Multi-
dimensional data, described by multiple parameters, can be
expressed and analyzed using multi-way arrays [2], [3], [4].
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Multi-way arrays have been used in biomedical signal pro-
cessing [5], [6], telecommunications and sensor array process-
ing [7], [8], [9], and other domains.

Low-dimensional representations of high-dimensional data
have been extensively studied in [10], [11], [12], [13]. In these
approaches, datasets are viewed as graphs in high-dimensional
spaces and data are projected on low-dimensional subspaces
generated by small subsets of the graph Laplacian eigenbasis.

Signal processing on graphs extends classical signal pro-
cessing theory to general graphs. Some techniques, such as
in [14], [15], [16], are motivated in part by the works on
graph Laplacian-based low-dimensional data representations.
Discrete signal processing on graphs(DSPG) [17], [18] builds
upon the algebraic signal processing theory [19], [20].

This article considers the use of DSPG as a methodology for
Big Data analysis. We discuss how, for appropriate graph mod-
els, fundamental signal processing techniques, such as filtering
and frequency analysis, can be implemented efficiently for large
data sizes. The discussed framework addresses some of the
key challenges of Big Data through arithmetic cost reduction
of associated algorithms and use of parallel and distributed
computations. The presented methodology introduces elements
of high-performance computing to DSPG and offers a structured
approach to the development of data analysis tools for large
data volumes.

II. SIGNAL PROCESSING ONGRAPHS

We begin by reviewing notation and main concepts of DSPG.
For a detailed introduction to the theory we refer the readers
to [17], [18]. Definitions and constructs presented here apply
to general graphs. In the special case of undirected graphs
with non-negative real edge weights, similar definitions can
be formulated using the graph Laplacian matrix, as discussed
in [14], [15], [16] and references therein.

Graph Signals

DSPG studies the analysis and processing of datasets in
which data elements are related by dependency, similar-
ity, physical proximity, or other properties. This relation
is expressed though a graphG = (V ,A), where V =
{v0, . . . , vN−1} is the set ofN nodes andA is the weighted
adjacency matrix of the graph. Each data element corresponds
to a nodevn (we also say the data element isindexedby vn). A
non-zero weightAn,m ∈ C indicates the presence of a directed
edge fromvm to vn that reflects the appropriate dependency
or similarity relation between thenth andmth data elements.
The set of neighbors ofvn forms itsneighborhooddenoted as
Nn = {m | An,m 6= 0}.
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Fig. 1. Examples of graph signals. Signal values are represented with different
colors. a) The periodic time seriescos 2πn

6
resides on a directed line graph

with six nodes; the edge from the last node to the first captures the periodicity
of the series. b) Temperature measurements across the United States resides on
the graph that represents the network of weather sensors. c)Website topics are
encoded as a signal that resides on the graph formed by hyperlinks between
the websites. d) Average numbers of tweets for Tweeter usersare encoded as
a signal that resides on the graph representing who follows whom.

Given the graph, the dataset forms agraph signal, defined
as a map

s : V → C,

vn 7→ sn,

whereC is the set of complex numbers. It is convenient to
write graph signals as vectors

s =
[
s0 s1 . . . sN−1

]T ∈ C
N . (1)

One should view the vector (1) not just as a list, but as a graph
with each valuesn residing at nodevn.

Fig. 1 shows examples of graph signals. Finite periodic
time series, studied by finite-time discrete signal processing
(DSP) [21], [19], are indexed by directed cyclic graphs, such as
the graph in Fig. 1(a). Each node corresponds to a time sample;
all edges are directed and have the same weight1, reflecting
the causality of time series; and the edge from the last to the
first node reflects the periodicity assumption. Data collected by
sensor networks is another example of graph signals: sensor
measurements form a graph signal indexed by the sensor
network graph, such as the graph in Fig. 1(b). Each graph
node is a sensor, and edges connect closely located sensors.
Graph signals also arise in the World Wide Web: for instance,
website features (topic, view count, relevance) are graph signals
indexed by graphs formed by hyperlink references, such as the
graph in Fig. 1(c). Each node represents a website, and directed
edges correspond to hyperlinks. Finally, graph signals arecol-
lected in social networks, where characteristics of individuals
(opinions, preferences, demographics) form graph signalson

social graphs, such as the graph in Fig. 1(d). Nodes of the
social graph represent individuals, and edges connect people
based on their friendship, collaboration, or other relations.
Edges can be directed (such as follower relations on Twitter)
or undirected (such as friendship on Facebook or collaboration
ties in publication databases).

Graph Shift

In DSP, a signal shift, implemented as a time delay, is a
basic non-trivial operation performed on a signal. A delayed
finite periodic time series of lengthN is s̃n = sn−1 mod N .
Using the vector notation (1), the shifted signal is writtenas

s̃ =
[
s̃0 . . . s̃N−1

]T
= Cs, (2)

whereC is theN×N cyclic shift matrix (only non-zero entries
are shown)

C =




1
1

. . .
1


 . (3)

Note that (3) is precisely the adjacency matrix of the periodic
time series graph in Fig. 1(a).

DSPG extends the concept of shift to general graphs by
defining thegraph shift as a local operation that replaces a
signal valuesn at nodevn by a linear combination of the
values at the neighbors ofvn weighted by their edge weights:

s̃n =
∑

m∈Nn

An,msm. (4)

It can be interpreted as a first-order interpolation, weighted
averaging, or regression on graphs, which is a widely-used
operation in graph regression, distributed consensus, telecom-
munications, Markov processes and other approaches. Using
the vector notation (1), the graph shift (4) is written as

s̃ =
[
s̃0 . . . s̃N−1

]T
= As. (5)

The graph shift (5) naturally generalizes the time shift (2).
Since in DSPG the graph shift is defined axiomatically, other

choices for the operation of a graph shift are possible. The
advantage of the definition (4) is that it leads to a signal
processing framework for linear and commutative graph filters.
Other choices, such as selective averaging over a subset of
neighbors for each graph vertex, do not lead to linear commu-
tative filters and hence to well-defined concepts of frequency,
Fourier transform, and others.

Graph Filters andz-transform

In signal processing, afilter is a systemH(·) that takes a
signal (1) as an input and outputs a signal

s̃ =
[
s̃0 . . . s̃N−1

]T
= H(s). (6)

Among the most widely used filters are linear shift-invariant
(LSI) ones. A filter is linear, if for a linear combination of
inputs it produces the same combination of outputs:H(αs1 +
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βs2) = αH(s1) + βH(s2). FiltersH1(·) andH2(·) arecom-
mutative, or shift-invariant, if the order of their application to a
signal does not change the output:H1(H2(s)) = H2(H1(s)).

Thez-transformprovides a convenient representation for sig-
nals and filters in DSP. By denoting the time delay (2) asz−1,
all LSI filters in finite-time DSP are written as polynomials in
z−1

h(z−1) =

N−1∑

n=0

hnz
−n, (7)

where the coefficientsh0, h1, . . . , hN−1 are calledfilter taps.
Similarly, finite time signals are written as

s(z−1) =
N−1∑

n=0

snz
−n. (8)

The filter output is calculated by multiplying itsz-transform (7)
with the z-transform of the input signal (8) modulo the poly-
nomial z−N − 1, [19]:

s̃(z−1) =
N−1∑

n=0

s̃nz
−n

= h(z−1)s(z−1) mod (z−N − 1). (9)

Equivalently, the output signal is given by the product [21]

s̃ = h(C)s, (10)

of the input signal (1) and the matrix

h(C) =

N−1∑

n=0

hnC
n

=




h0 hN−1 . . . h1

h1
. . .

. . .
...

...
. . .

. . . hN−1

hN−1 . . . h1 h0



. (11)

Observe that the circulant matrixh(C) in (11) is obtained by
substituting the time shift matrix (3) forz−1 in the filter z-
transform (7). In finite-time DSP, this substitution establishes
a surjective (onto) mapping from the space of LSI filters and
the space ofN ×N circulant matrices.

DSPG extends the concept of filters to general graphs. Simi-
larly to the extension of the time shift (2) to the graph shift(5),
filters (11) are generalized tograph filtersas polynomials in
the graph shift [17], and all LSI graph filters have the form

h(A) =

L−1∑

ℓ=0

hℓA
ℓ. (12)

In analogy with (10), the graph filter output is given by

s̃ = h(A)s. (13)

The output can also be computed using thegraphz-transform
that represents graph filters (12) as

h(z−1) =

L−1∑

ℓ=0

hℓz
−ℓ, (14)

and graph signals (1) as polynomialss(z−1) =∑N−1
n=0 snbn(z

−1), where bn(z
−1), 0 ≤ n < N , are

appropriately constructed, linearly independent polynomials
of degree smaller thanN (see [17] for details). Analogously
to (9), the output of the graph filter (14) is obtained as the
product of z-transforms modulo the minimal polynomial
mA(z−1) of the shift matrixA:

s̃(z−1) =
N−1∑

n=0

s̃nbn(z
−1)

= h(z−1)s(z−1) mod mA(z−1). (15)

Recall that the minimal polynomial ofA is the unique monic
polynomial of the smallest degree that annihilatesA, i.e.,
mA(A) = 0 [22].

Graph filters have a number of important properties. An
inverse of a graph filter, if it exists, is also a graph filter that can
be found by solving a system of at mostN linear equations.
Also, the number of taps in a graph filter is not larger than
the degree of the minimal polynomial ofA, which provides
an upper bound on the complexity of their computation. In
particular, since the graph filter (12) can be factored as

h(A) = hL−1

L−1∏

ℓ=0

(A− gℓ I) , (16)

the computation of the output (13) requires, in general,L ≤
degmA(x) multiplications byA.

Graph Fourier Transform

Mathematically, a Fourier transform with respect to a set
of operators is the expansion of a signal into a basis of
the operators’ eigenfunctions. Since in signal processingthe
operators of interest are filters, DSPG defines the Fourier
transform with respect to the graph filters.

For simplicity of the discussion, assume thatA is diagonal-
izable and its eigendecomposition is

A = VΛV
−1, (17)

where the columnsvn of the matrixV =
[
v0 . . . vN−1

]
∈

CN×N are the eigenvectors ofA, and Λ ∈ CN×N is the
diagonal matrix of corresponding eigenvaluesλ0, . . . , λN−1

of A. If A is not diagonalizable, Jordan decomposition into
generalized eignevectors is used [17].

The eigenfunctions of graph filtersh(A) are given by the
eigenvectors of the graph shift matrixA [17]. Since the
expansion into the eigenbasis is given by the multiplication
with the inverse eigenvector matrix [22], which always exists,
the graph Fourier transformof a graph signal (1) is well-
defined and computed as

ŝ =
[
ŝ0 . . . ŝN−1

]T
= V

−1
s

= Fs (18)

whereF = V
−1 is the graph Fourier transform matrix.

The valuesŝn in (18) are the signal’s expansion in the
eigenvector basis and represent thegraph frequency content
of the signals. The eigenvaluesλn of the shift matrixA
representgraph frequencies, and the eigenvectorsvn represent
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the correspondinggraph frequency components. Observe that
each frequency componentvn is a graph signal, too, with its
mth entry indexed by the nodevm.

The inverse graph Fourier transformreconstructs the graph
signal from its frequency content by combining graph fre-
quency components weighted by the coefficients of the signal’s
graph Fourier transform:

s = ŝ0v0 + ŝ1v1 + . . .+ ŝN−1vN−1

= F
−1

ŝ = V ŝ. (19)

Analogously to other DSPG concepts, the graph Fourier
transform is a generalization of the discrete Fourier transform
from DSP. Recall that themth Fourier coefficient of a finite
time series of lengthN is

ŝm =
1√
N

N−1∑

n=0

sne
−j 2π

N
mn,

and the time signal’s discrete Fourier transform is writtenin
vector form aŝs = DFTN s, whereDFTN is the N × N
discrete Fourier transform matrix with the(n,m)th entry
1/

√
N exp(−j2πnm/N). It is well-known that the eigende-

composition of the time shift matrix (3) is

C = DFT
−1
N



e−j 2π·0

N

. . .

e−j 2π·(N−1)
N


DFTN .

Hence, the discrete Fourier transform is the graph Fourier
transform for cyclic line graphs, such as the graph in Fig. 1(a),
andλn = exp(−j2πn/N), 0 ≤ n < N , are the corresponding
frequencies. In DSP, the ratio2πn/N in the exponentλn =
exp(−j2πn/N) is also sometimes called (angular) frequency.

Alternative Choices of Graph Fourier Basis:In some cases,
for example, when eigenvector computation is not stable, it
may be advantageous to use other vectors as the graph Fourier
basis, such as singular vectors or eigenvectors of the Laplacian
matrix. These choices are consistent with DSPG, since singular
vectors form the graph Fourier basis when the graph shift
matrix is defined asAA

∗, and Laplacian eigenvectors form
the graph Fourier basis when the shift matrix is defined by the
Laplacian. However, the former implicitly turns the original
graph into an undirected graph, and the latter explicitly requires
that the original graph is undirected. As a result, in both cases
the framework does not use the information about the direction
of graph edges that is useful in various applications [17], [23],
[18]. Examples, where relations are directed and not always
reciprocal, are Twitter (if user A follows user B, user B doesnot
necessarily follows user A), and world wide web (if document
A links to document B, document B does not necessarily link
to document A).

Frequency Response of Graph Filters

In addition to expressing the frequency content of graph
signals, the graph Fourier transform also characterizes the
effect of filters on the frequency content of signals. The filtering
operation (13) can be written using (12) and (18) as

s̃ = h(A)s = h(F−1
ΛF)s = F

−1 h(Λ)Fs, (20)

where h(Λ) is a diagonal matrix with valuesh(λn) =∑L−1
ℓ=0 hℓλ

ℓ
n on the diagonal. As follows from (20),

s̃ = h(A)s ⇔ F s̃ = h(Λ)ŝ. (21)

That is, the frequency content of a filtered signal is modified
by multiplying its frequency content elementwise byh(λn).
These values represent thegraph frequency responseof the
graph filter (12).

The relation (21) is a generalization of the classicalconvolu-
tion theorem[21] to graphs: filtering a graph signal in the graph
domain is equivalent in the frequency domain to multiplying
the signal’s spectrum by the frequency response of the graph
filter.

Low and High Frequencies on Graphs

In DSP, frequency contents of time series and digital images
are described by complex or real sinusoids that oscillate at
different rates [24]. These rates provide an intuitive, physical
interpretation of “low” and “high” frequencies: low-frequency
components oscillate less and high-frequency ones oscillate
more.

In analogy to DSP, frequency components on graphs can also
be characterized as “low” and “high” frequencies. In particular,
this is achieved by ordering the graph frequency components
according to how much they change across the graph; that is,
how much the signal coefficients of a frequency component
differ at connected nodes. The amount of “change” is calculated
using the graph total variation [18]. For graphs with real
spectra, the ordering from lowest to highest frequencies is
λ0 ≥ λ1 ≥ . . . ≥ λN−1. For graphs with complex spectra,
frequencies are ordered by their distance from the point|λmax|
on the complex plane, whereλmax is the eigenvalue with the
largest magnitude. The graph frequency order naturally leads
to the definition of low-, high-, and band-pass graph filters,
analogously to their counterparts in DSP (see [18] for details).

In the special case of undirected graphs with real non-
negative edge weights, the graph Fourier transform (18) can
also be expressed using the eigenvectors of the graph Laplacian
matrix [16]. In general, the eigenvectors of the adjacency
and Laplacian matrices do not coincide, which can lead to a
different Fourier transform matrix. However, when graphs are
regular, both definitions yield the same graph Fourier transform
matrix, and the same frequency ordering [18].

Applications

DSPG is particularly motivated by the need to extend tra-
ditional signal processing methods to datasets with complex
and irregular structure. Problems in different domains canbe
formulated and solved as standard signal processing problems.
Applications include data compression through Fourier trans-
form or through wavelet expansions; recovery, denoising, and
classification of data by signal regularization, by smoothing,
or by adaptive filter design; anomaly detection via high-pass
filtering; and many others (see [17], [18], [15], [16] and
references therein).

For instance, a graph signal can be compressed by computing
its graph Fourier transform and storing only a small fraction of
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its spectral coefficients, the ones with largest magnitudes. The
compressed signal is reconstructed by computing the inverse
graph Fourier transform with the preserved coefficients. When
the signal is sparse in the Fourier domain, that is, when most
energy is concentrated in a few frequencies, the compressed
signal is reconstructed with a small error [17], [25].

Another example application is detection of corrupted data.
In traditional DSP, a corrupted value in a slowly changing
time signal introduces additional high-frequency components
that can be detected by high-pass filtering of the corrupted
signal. Similarly, a corrupted value in a graph signal can
be detected through a high-pass graph filter, which can be
used, for instance, to detect malfunctioning sensors in sensor
networks [18].

III. C HALLENGES OFBIG DATA

While there is no single, universally agreed upon set of prop-
erties that define Big Data, some of the commonly mentioned
ones arevolume, velocity, and variety of data [1]. Each of
these characteristics poses a separate challenge to the design
and implementation of analysis systems and algorithms for Big
Data. First of all, the sheer volume of data to be processed
requires efficient distributed and scalable storage, access, and
processing. Next, in many applications new data is obtained
continuously. High velocity of new data arrival demands fast
algorithms to prevent bottlenecks and explosion of the data
volume and to extract valuable information from the data and
incorporate it into the decision-making process in real time.
Finally, collected datasets contain information in all varieties
and forms, including numerical, textual, and visual data. To
generalize data analysis techniques to diverse datasets, we need
a common representation framework for datasets and their
structure.

The latter challenge of data diversity is addressed in DSPG by
representing dataset structure with graphs and quantifying data
into graph signals. Graphs provide a versatile data abstraction
for multiple types of data, including sensor network mea-
surements, text documents, image and video databases, social
networks, and others. Using this abstraction, data analysis
methods and tools can be developed and applied to datasets
of different nature.

For efficient Big Data analysis, the challenges of data
volume and velocity must be addressed as well. In particular,
the fundamental signal processing operations of filtering and
spectral decomposition may be prohibitively expensive for
large datasets both in the amount of required computations and
memory demands.

Recall that processing a graph signal (1) with a graph
filter (16) requiresL multiplications by aN × N graph
shift matrix A. For a general matrix, this computation re-
quiresO(LN2) arithmetic operations (additions and multipli-
cations) [26]. WhenA is sparse and has on averageK non-
zero entries in every row, graph filtering requiresO(LNK)
operations. In addition, graph filtering also requires access to
the entire graph signal in memory. Similarly, computation of
the graph Fourier transform (18) requiresO(N2) operations
and access to the entire signal in memory. Moreover, the
eigendecomposition of the matrixA requires additionalO(N3)

operations and memory access to the entireN ×N matrix A.
Note that graph filtering can also be performed in the spectral
domain withO(N2) operations using the graph convolution
theorem (21), but it also requires the initial eigendecomposition
of A.

Degree heterogeneity in graphs with heavily skewed degree
distributions, such as scale-free graphs, presents an additional
challenge. Graph filtering (16) requires iterative weighted av-
eraging over each vertex’s neighbors, and for vertices with
large degrees this process takes significantly longer than for
vertices with small degrees. In this case, load balancing through
smart distribution of vertices between computational nodes is
required to avoid a computation bottleneck.

For very large datasets, algorithms with quadratic and cubic
arithmetic cost are not acceptable. Moreover, computations that
require access to the entire datasets are ill-suited for large data
sizes and lead to performance bottlenecks, since memory access
is orders of magnitude slower than arithmetic computations.
This problem is exacerbated by the fact that large datasets often
do not fit into main memory or even local disk storage of a
single machine, and must be stored and accessed remotely and
processed with distributed systems.

Fifty years ago, the invention of the famous fast Fourier
transform algorithm by Cooley and Tukey [27], as well as many
other algorithms that followed (see [28], [29] and references
therein), dramatically reduced the computational cost of the
discrete Fourier transform by using suitable properties ofthe
structure of time signals, and made frequency analysis and
filtering of very large signals practical. Similarly, in this article,
we identify and discuss properties of certain data representation
graphs that lead to more efficient implementations of DSPG

operations for Big Data. A suitable graph model is provided
by product graphs discussed in the next Section.

IV. PRODUCT GRAPHS

Consider two graphsG1 = (V1,A1) and G2 = (V2,A2)
with |V1| = N1 and|V2| = N2 nodes, respectively. Theproduct
graph, denoted by⋄, of G1 andG2 is the graph

G = G1 ⋄G2 = (V ,A⋄), (22)

with |V| = N1N2 nodes and an appropriately definedN1N2×
N1N2 adjacency matrixA⋄ [30], [31]. In particular, three
commonly studied graph products are the Kronecker, Cartesian,
and strong products.

For the Kronecker graph product, denoted asG = G1 ⊗
G2, the adjacency matrix is obtained by the matrix Kronecker
product of adjacency matricesA1 andA2:

A⊗ = A1 ⊗A2. (23)

Recall that theKroneckerproduct of matricesB = [bmn] ∈
CM×N andC ∈ CK×L is a KM × LN matrix with block
structure

B⊗C =




b0,0 C . . . b0,N−1C

...
...

...
bM−1,0 C . . . bM−1,N−1 C


 . (24)
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For theCartesiangraph product, denoted asG = G1 ×G2,
the adjacency matrix is

A× = A1 ⊗ IN2 + IN1 ⊗A2. (25)

Finally, for thestrongproduct, denoted asG = G1 ⊠G2, the
adjacency matrix is

A⊠ = A1 ⊗A2 +A1 ⊗ IN2 + IN1 ⊗A2. (26)

The strong product can be seen as a combination of the Kro-
necker and Cartesian products. Since the products (23), (25),
and (26) are associative, Kronecker, Cartesian, and stronggraph
products can be defined for an arbitrary number of graphs.

Product graphs arise in different applications, including
signal and image processing [32], computational sciences
and data mining [33], and computational biology [34]. Their
probabilistic counterparts are used in network modeling and
generation [35], [36], [37]. Multiple approaches have been
proposed for the decomposition and approximation of graphs
with product graphs [38], [30], [31], [39].

Product graphs offer a versatile graph model for the represen-
tation of complex datasets in multi-level and multi-parameter
ways. In traditional DSP, multi-dimensional signals, suchas
digital images and video, reside on rectangular lattices that
are Cartesian products of line graphs. Fig. 2(a) shows a two-
dimensional lattice formed by the Cartesian product of two
one-dimensional lattices.

Another example of graph signals residing on product graphs
is data collected by a sensor network over a period of time.
In this case, the graph signal formed by measurements of all
sensors at all time steps resides on the product of the sensor
network graph with the time series graph. As the example in
Fig. 2(b) illustrates, thekth measurement of thenth sensor is
indexed by thenth node of thekth copy of the sensor graph
(or, equivalently, thekth node of thenth copy of the time series
graph). Depending on the choice of product, a measurement of
a sensor is related to the measurements collected by this sensor
and its neighbors at the same time and previous and following
time steps. For instance, the strong product in Fig. 2(b) relates
the measurement of thenth sensor at time stepk to its
measurements at time stepsk − 1 and k + 1, as well as to
measurements of its neighbors at timesk − 1, k, andk + 1.

A social network with multiple communities also may be
representable by a graph product. Fig. 2(c) shows an example
of a social network that has three communities with similar
structures, where individuals from different communitiesalso
interact with each other. This social graph may be seen as
an approximation of the Cartesian product of the graph that
captures the community structure and the graph that captures
the interaction between communities.

Other examples where product graphs are potentially useful
for data representation include multi-way data arrays that
contain elements described by multiple features, parameters,
or characteristics, such as publications in citation databases
described by their topics, authors, and venues; or internet
connections described by their time, location, IP address,port
accesses, and other parameters. In this case, the graph factors
in (22) represent similarities or dependencies between subsets
of characteristics.
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Fig. 2. Examples of product graphs indexing various data: a)Digital images
reside on rectangular lattices that are Cartesian productsof line graphs for rows
and columns; b) Measurements of a sensor network are indexedby the strong
product of the sensor network graph with the time series graph (edges of the
Cartesian product are shown in blue and green, and edges of the Kronecker
product are shown in grey; the strong product contains all edges); c) A social
network with three similar communities is approximated by aCartesian product
of the community structure graph with the intercommunity communication
graph.

Graph products are also used for modeling entire graph
families. Kronecker products of scale-free graphs with the
same degree distribution are also scale-free and have the same
distribution [40], [35].K- andǫ-nearest neighbor graphs, which
are used in signal processing, communications and machine
learning to represent spatial and temporal location of data,
such as sensor networks and image pixels, or data similarity
structure, can be approximated with graph products, as the
examples in Figs. 2(a) and 2(b) suggest. Other graph families,
such as trees, are constructed using rooted graph products [41],
which are not discussed in this article.

V. SIGNAL PROCESSING ONPRODUCT GRAPHS

In this Section, we discuss how product graphs help “mod-
ularize” the computation of filtering and Fourier transformon
graphs and improve algorithms, data storage and memory ac-
cess for large datasets. They lead to graph filtering and Fourier
transform implementations suitable for multi-core and clustered
platforms with distributed storage by taking advantage of
such performance optimization techniques as parallelization
and vectorization. The presented results illustrate how product
graphs offer a suitable and practical model for constructing



7

and implementing signal processing methodologies for large
datasets. In this, product graphs are similar to other graph
families, such as scale-free and small-world graphs, that are
used to model properties of real-world graphs and datasets:
while models do not fit exactly to all real-world graphs, they
capture and abstract relevant representations of graphs and
facilitate their analysis and processing.

Filtering

Recall that graph filtering is computed as the multiplication
of a graph signal (1) by a filter (16). As we discussed in
Section III, computation of a filtered signal requires repeated
multiplications by the shift matrix, which is in general a
computation- and memory-expensive operation for very large
datasets.

Now, consider, for instance, a Cartesian product graph with
the shift matrix (25). A graph filter of the form (16) for this
graph is written as

h(A×) = hL

L−1∏

ℓ=0

(A1 ⊗ IN2 + IN1 ⊗A2 − gℓ IN1N2) . (27)

Hence, multiplication by the shift matrixA× is replaced with
multiplications by matricesA1 ⊗ IN2 andIN1 ⊗A2.

Multiplication by matrices of the formIN1 ⊗A2 andA1 ⊗
IN2 have multiple efficient implementations that take advan-
tage of modern optimization and high-performance techniques,
such as parallelization and vectorization [26], [42], [43]. In
particular, the product(IN1 ⊗A2)s is calculated by multiplying
N1 signal segmentssn,...,n+N2 , 0 ≤ n < N1, of length
N2 by the matrix A2. These products are computed with
independent parts of the input signal, which eliminates data
dependency and makes these operations highly suitable for a
parallel implementation on a multicore or cluster platform [42].
As an illustration, forN1 = 3, N2 = 2, matrix

A =

[
a00 a01
a10 a11

]
(28)

and a signals ∈ C6, we obtain

(
I3 ⊗A

)
s =



A

A

A


 s =




A

[
s0
s1

]

A

[
s2
s3

]

A

[
s4
s5

]




.

Here, all multiplications byA are independent from each other
both in data access and computations.

Similarly, the product(A1 ⊗ IN2)s is calculated by multi-
plying N2 segmentssn,n+N1,...,n+(N2−1)N1

, 0 ≤ n < N2, of
the input signal by the matrixA1. These products are highly
suitable for avectorizedimplementation, available on modern
computational platforms, that performs an operation on several
input values simultaneously [42]. For instance, forA in (28),

we obtain

(
A⊗ I3

)
s =




a00



s0
s1
s2


+ a01



s3
s4
s5




a10



s0
s1
s2


+ a11



s3
s4
s5






.

Here, three sequential signal values are multiplied by one
element of matrixA at the same time. These operations are
performed simultaneously by a processor with vectorization
capabilities, which respectively decreases the computation time
by a factor of three.

In addition to its suitability for parallelized and vectorized
implementations, computing the output of the filter (27) on
a Cartesian graph also requires significantly fewer operations,
since the multiplication by the shift matrix (25) requiresN1

multiplications by anN2×N2 matrix andN2 multiplications by
anN1×N1 matrix, which results inO(N1N

2
2 )+O(N2

1N2) =
O(N(N1 +N2)) operations rather thanO(N2). For example,
when N1, N2 ≈

√
N , this represents a reduction of the

computational cost of graph filtering by a factor
√
N . To put

this into the Big Data perspective, for a graph with a million
vertices, the cost of filtering is reduced by a factor of1000,
and for a graph with a billion vertices, the cost reduction factor
is more than30000.

We discuss here operation counts for general graphs with full
matrices. In practice, adjacency matrices are often sparse, and
their multiplication requires fewer operations. Computational
savings provided by product graphs are, likewise, significant
for sparse adjacency matrices.

Furthermore, the multiplication by a matrix of the formI⊗A

can be replaced by the multiplication with a matrixA⊗ I with
no additional arithmetic operations by suitable permutation of
signal values [22], [42], [43]. This interchangeability leads to a
selection between parallelized and vectorized implementations
and provides means to efficiently compute graph filtered signals
on platforms with arbitrary number of cores and vectorization
capabilities.

The advantages of filtering on Cartesian product graphs also
apply to Kronecker and strong product graphs. In particular,
using the property [22]

A1 ⊗A2 = (A1 ⊗ IN2)(IN1 ⊗A2), (29)

we write the graph filter (16) for the Kronecker product as

h(A⊗) = hL

L−1∏

ℓ=0

(
(A1 ⊗ IN2)(IN1 ⊗A2)− gℓ IN1N2

)
,

and for the strong product as

h(A⊠) = hL

L−1∏

ℓ=0

(
(A1 ⊗ IN2)(IN1 ⊗A2)

+A1 ⊗ IN2 + IN1 ⊗A2 − gℓ IN1N2

)
.

Similarly to (27), these filters multiply input signals by ma-
trices IN1 ⊗A2 and A1 ⊗ IN2 and are implementable using
parallelization and vectorization techniques. They also lead to
substantial reductions of the number of required computations.
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Fourier Transform

The frequency content of a graph signal is computed through
the graph Fourier transform (18). In general, this procedure
has the computational cost ofO(N2) operations and requires
access to the entire signal in memory. Moreover, it also
requires a preliminary calculation of the eigendecomposition
of the graph shift matrixA, which, in general, takesO(N3)
operation.

Let us consider a Cartesian product graph with the shift
matrix (25). Assume that the eigendecomposition (17) of the
matricesA1 and A2 is respectivelyAi = ViΛi V

−1
i , i ∈

{1, 2}, whereΛi has eigenvaluesλi,0, . . . , λi,N−1 on the main
diagonal. Similar results can be obtained for non-diagonalizable
matrices using Jordan decomposition. The derivation is more
involved, and we omit it for simplicity of discussion.

If we denoteV = V1 ⊗V2, then the eigendecomposition
of the shift matrix (25) is [22]

A× = V(Λ1 ⊗ IN2 + IN1 ⊗Λ2)V
−1 . (30)

Hence, the graph Fourier transform associated with a Cartesian
product graph is given by the matrix Kronecker product of the
graph Fourier transforms for its factor graphs:

F× = (V1 ⊗V2)
−1 = V

−1
1 ⊗V

−1
2 = F1 ⊗F2, (31)

and the spectrum is given by the element-wise summation of
the spectra of the smaller graphs:λ1,n + λ2,m, 0 ≤ n < N1

and0 ≤ m < N2.
Reusing the property (29), (31) can be written asF× =

F1 ⊗F2 = (F1 ⊗ IN2)(IN1 ⊗F2) and efficiently implemented
using parallelization and vectorization techniques. Moreover,
the computation of the eigendecomposition (30) is replaced
with finding the eigendecomposition of the shift matricesA1

and A2, which reduces the computation cost fromO(N3)
to O(N3

1 + N3
2 ). For instance, whenN1, N2 ≈

√
N , the

computational cost of the eigendecomposition is reduced by
a factorN

√
N . Hence, for a graph with a million vertices,

the cost of computing the eigendecomposition is reduced by
a factor of more than3 × 104, and for a graph with a billion
vertices, the cost reduction factor is over3× 1013.

The same improvements apply to the Kronecker and strong
matrix products, since the eigendecomposition of the corre-
sponding shift matrices is

A⊗ = V(Λ1 ⊗Λ2)V
−1,

A⊠ = V(Λ1 ⊗ IN2 + IN1 ⊗Λ2 +Λ1 ⊗Λ2)V
−1 .

Observe that all three graph products have the same graph
Fourier transform. However, the corresponding spectra aredif-
ferent: for Cartesian and strong products, they are, respectively,
λ1,nλ2,m and λ1,nλ2,m + λ1,n + λ2,m, where0 ≤ n < N1

and 0 ≤ m < N2. Thus, while all three graph products
have the same frequency components, the ordering of these
components from lowest to highest frequencies, as defined by
DSPG and discussed in Section II, can be different. As an
illustration, consider the example in Fig. 3. It shows the fre-
quencies (eigenvalues) of the three graph products in Fig. 2(b).
All product graphs have the same 16 frequency components
(eigenvectors), but the frequencies (eigenvalues) corresponding
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(c) Strong product

Fig. 3. Frequency values for the product graphs in Fig. 2(b).Frequencies are
shown as a color-coded 2D map, withx- andy-axis representing frequencies
of two factor graphs. Higher values correspond to lower frequencies, and vice
versa.

to these components are different and on each graph have a
different interpretation as low or high frequency. For example,
the values in the upper left corner of Figs. 3(a), 3(b), and 3(c)
correspond to the same frequency component. By comparing
these values, we observe that this component represents the
highest frequency in the Cartesian product graph, the lowest
frequency in the Kronecker product graph, and a mid-spectrum
component in the strong product graph.

Fast Graph Fourier Transforms:A major motivation behind
the use of product graphs in signal processing and DSPG

is derivation of fast computational algorithms for the graph
Fourier transform. A proper overview of this topic requires
an additional discussion of graph concepts and an algebraic
approach to fast algorithms [44], [29], [45] that are beyondthe
scope of this article.

As an intuitive example, consider a well-known and widely
used decimation-in-time fast Fourier transform for power-of-
two sizes [27]. It is derived using graph products as follows.
We view the DFTN as the graph Fourier transform of a
graph with adjacency matrixC2, whereC is the cyclic shift
matrix (3). This is a valid algebraic assumption, since the
DFTN is a graph Fourier transform not only for the graph
in Fig. 1(a), but for any graph with adjacency matrix given
by a polynomialh(C). This graph, after a permutation of its
vertices at stride two (which represents the decimation-in-time
step), becomes a product of a cyclic graph withN/2 vertices
with a graph of two disconnected vertices. As a result, its graph
Fourier transformDFTN becomes a productI2 ⊗DFTN/2

and additional, sparse matrices that capture the operations of
graph restructuring. By continuing this process recursively for
DFTN/2, DFTN/4, and so forth, we decomposeDFTN

into a product of sparse matrices with cumulative arithmetic
cost of O(N logN), thus obtaining a fast algorithm for the
computation ofDFTN .

VI. RELATION TO EXISTING APPROACHES

The instantiation of DSPG for product graphs relates to
existing approaches to complex data analysis that are not based
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on graphs but rather view data as multi-dimensional arrays [2],
[3], [4]. Given aK-dimensional datasetS ∈ CN1×N2×...×NK ,
the family of methods calledcanonical decompositionor
parallel factor analysissearches forK matricesMk ∈ CNk×R,
1 ≤ k ≤ K, that provide an optimal approximation of the
dataset

S =

R∑

r=1

m1,r ◦m2,r ◦ . . . ◦mK,r +E, (32)

that minimizes the error

||E || =

√√√√
N1∑

n1=1

. . .

NK∑

nk=1

|En1,n2,...,nK
|2.

Here, mk,r denotes therth column of matrixMk, and ◦
denotes the outer product of vectors.

A more general approach, calledTucker decomposition,
searches forK matricesMk ∈ C

Nk×Rk , 1 ≤ k ≤ K,
and a matrixC ∈ CR1×R2×...×RK that provide an optimal
approximation of the dataset as

S =

R1∑

r1=1

. . .

RK∑

rK=1

Cr1,...,rK m1,r1 ◦ . . . ◦mK,rK +E . (33)

Tucker decomposition is also called a higher-order PCA or
SVD, since it effectively extends these techniques from matri-
ces to higher-order arrays.

Decompositions (32) and (33) can be interpreted as signal
compression on product graphs. For simplicity of discussion,
assume thatK = 2 and consider a signals ∈ CN1N2 that lies
on a product graph (22) and corresponds to a2-dimensional
signalS ∈ CN1×N2 , so thatSn1,n2 = sn1N2+n2 , where0 ≤
ni < Ni for i = 1, 2. If matricesM1 and M2 contain as
columns, respectively,R1 andR2 eigenvectors ofA1 andA2,
then the decomposition (33) represents a lossy compression
of the graph signal in the frequency domain, a widely used
compression technique in signal processing [21], [24].

VII. E XAMPLE APPLICATION

As a motivational application example of DSPG on product
graphs, we consider data compression. For the testing dataset,
we use the set of daily temperature measurements collected by
150 weather stations across the United States [17] during the
year 2002. Fig. 1(b) shows the measurements from one day
(December 01, 2002), as well as the sensor network graph.
The graph is constructed by connecting each sensor to 8 of its
nearest neighbors with undirected edges with weights givenby
Eq. (29) in [17]. As illustrated by the example in Fig. 2(b), such
dataset can be described by a product of the sensor network
graph and the time series graphs. We use the sensor network
graph in Fig. 1(b) withN1 = 150 nodes and the time series
graph in Fig. 1(a) withN2 = 365 nodes.

The compression is performed in the frequency domain. We
compute the Fourier transform (31) of the dataset, keep only
C spectrum coefficients with largest magnitudes and replace
others with zeros, and perform the inverse graph Fourier trans-
form on the resulting coefficients. This is a lossy compression
scheme, with the compression error given by the norm of the

Fraction of coefficients used (C/N )

1/50 1/20 1/15 1/10 1/7 1/5 1/3

Error (%) 4.9 3.5 3.1 2.6 2.1 1.6 0.7

PSNR (dB) 71.2 74.1 75.1 76.7 78.5 80.9 87.1

TABLE I
ERRORS INTRODUCED BY COMPRESSION OF THE TEMPERATURE DATA.

difference between the original dataset and the reconstructed
one normalized by the norm of the original dataset. Note that,
while the approach is tested here on a relatively small dataset,
it is applicable in the same form to arbitrarily large datasets.

The compression errors for the considered temperature
dataset are shown in Table I. The results demonstrate that
even for high compression ratios, that is, when the number
C of stored coefficients is much smaller than the dataset size
N = N1N2, the compression introduces only a small error
and leads to insignificant loss of information. A comparisonof
this approach with schemes that compress the data only in one
dimension (they separately compress either time series from
each sensor or daily measurements from all sensors) [17], [25]
also reveals that compression based on the product graph is
significantly more efficient.

VIII. C ONCLUSIONS

In this article, we presented an approach to Big Data
analysis based on the discrete signal processing on graphs.
We reviewed fundamental concepts of the framework and
illustrated how it extends traditional signal processing theory to
datasets represented with general graphs. To address important
challenges in Big Data analysis and make implementations of
fundamental DSPG techniques suitable for very large datasets,
we considered a generalized graph model given by several
kinds of product graphs, including the Cartesian, Kronecker,
and strong product graphs. We showed that these product graph
structures significantly reduce arithmetic cost of associated
DSPG algorithms and make them suitable for parallel and
distributed implementation, as well as improve memory storage
and access of data. The discussed methodology bridges a
gap between signal processing, Big Data analysis, and high-
performance computing, as well as presents a framework for
the development of new methods and tools for analysis of
massive datasets.
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cessing theory: Cooley-Tukey type algorithms for polynomial transforms
based on induction,”SIAM J. Matrix Analysis and Appl., vol. 32, no. 2,
pp. 364–384, 2011.


