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Analysis and processing of very large datasets, or Big DaMulti-way arrays have been used in biomedical signal pro-
poses a significant challenge. Massive datasets are @alleatessing [5], [6], telecommunications and sensor array gs®c
and studied in numerous domains, from engineering scidncedng [7], [8], [9], and other domains.
social networks, biomolecular research, commerce andiggecu Low-dimensional representations of high-dimensionabdat
Extracting valuable information from Big Data requiresawa- have been extensively studied in [10], [11], [12], [13]. hese
tive approaches that efficiently process large amounts & dapproaches, datasets are viewed as graphs in high-dimahsio
as well as handle and, moreover, utilize their structuras Ttspaces and data are projected on low-dimensional subspaces
article discusses a paradigm for large-scale data anddgsisd generated by small subsets of the graph Laplacian eigenbasi
on the discrete signal processing on grapi®SRs). DSRs; Signal processing on graphs extends classical signal pro-
extends signal processing concepts and methodologiesfrmcessing theory to general graphs. Some techniques, such as
classical signal processing theory to data indexed by @éndn [14], [15], [16], are motivated in part by the works on
graphs. Big Data analysis presents several challengesfg,DSgraph Laplacian-based low-dimensional data representati
in particular, in filtering and frequency analysis of verygla Discrete signal processing on grapti3SRs) [17], [18] builds
datasets. We review fundamental concepts of BSicluding upon the algebraic signal processing theory [19], [20].
graph signals and graph filters, graph Fourier transforaplyr ~ This article considers the use of DSBs a methodology for
frequency and spectrum ordering, and compare them with thBig Data analysis. We discuss how, for appropriate graph-mod
counterparts from the classical signal processing thedg. els, fundamental signal processing techniques, such asrfgt
then consider product graphs as a graph model that hegsl frequency analysis, can be implemented efficientlydsiayd
extend the application of DSPmethods to large datasetsdata sizes. The discussed framework addresses some of the
through efficient implementation based on parallelizaéma key challenges of Big Data through arithmetic cost redunctio
vectorization. We relate the presented framework to exgstiof associated algorithms and use of parallel and distribute
methods for large-scale data processing and illustratetit wcomputations. The presented methodology introduces efsme
an application to data compression. of high-performance computing to DgRnNd offers a structured

approach to the development of data analysis tools for large
data volumes.
. INTRODUCTION

Data analysts in scientific, government, industrial, anch-co [1. SIGNAL PROCESSING ONGRAPHS

merc.ial domains face the challenge of C(_)ping with rapidly We begin by reviewing notation and main concepts of BSP
growing volumes of data that are collected in numerous appfior 5 detailed introduction to the theory we refer the remder

cations. Exampleg include b_iochemical and genet_ics resear, [17], [18]. Definitions and constructs presented herelyapp
fundamental physical experiments and astronomical obsery, general graphs. In the special case of undirected graphs

tions, social networks, consumer behavior studies, andymafih non-negative real edge weights, similar definitions ca

others. In these applications, large amounts of raw datdean,q formulated using the graph Laplacian matrix, as disclisse
used for decision making and action planning, but their n@u ;. [14], [15], [16] and references therein.

and increasingly complex structure limit the applicabildf

many well-known approaches widely used with small datasets ,

such as principal component analysis, singular value decof#r@ph Signals

position, spectral analysis, and others. This problem—Bige DSR; studies the analysis and processing of datasets in

Data problem [1]—requires new paradigms, techniques, an¢hich data elements are related by dependency, similar-

algorithms. ity, physical proximity, or other properties. This relatio
Several approaches have been proposed for representdfogxpressed though a grapi = (V,A), where V =

and processing of large datasets with complex structurdti-Mu{vo, - .., vn—1} is the set of N nodes andA is the weighted

dimensional data, described by multiple parameters, can aacency matrix of the graph. Each data element correspond

expressed and analyzed using multi-way arrays [2], [3], [4P @ nodev,, (we also say the data elementnslexedby v,,). A
non-zero weigh#A,, ,,, € C indicates the presence of a directed
This work was supported in part by AFOSR grant FA9550121008®dge fromu,, to v,, that reflects the appropriate dependency
A. Sandryhaila and J. M. F. Moura are with the Department ofr similarity relation between theth andmth data elements.
Electrical and Computer Engineering, Carnegie Mellon ©rsity, Pitts- The set of neighbors af. forms itsneiahborhooddenoted as
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— T~ social graphs, such as the graph in Fig. 1(d). Nodes of the

Qi In DSP, a signal shift, implemented as a time delay, is a
% 12 basic non-trivial operation performed on a signal. A dethye
finite periodic time series of lengthV is s, = $,—1 mod N-
Using the vector notation (1), the shifted signal is writen

(b)
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Fig. 1. Examples of graph signals. Signal values are reptegevith different . 1
colors. a) The periodic time seriess %T" resides on a directed line graph

with six nodes; the edge from the last node to the first capttive periodicity . . . . .-
of the series. b) Temperature measurements across thalBidees resides on Note that (3) IS preC|ser the adjacency matrix of the p&CIOd

the graph that represents the network of weather sensoréetdite topics are time series graph in Fig. 1(a).
encoded as a signal that resides on the graph formed by mksetietween DSR; extends the concept of shift to general graphs by
the websites. d) Average numbers of tweets for Tweeter wsergncoded as defini th h shift | | ti that |
a signal that resides on the graph representing who follohanwv e INing thegraph shiitas a Oca_ operauon : a ] replaces a
signal values,, at nodew, by a linear combination of the
values at the neighbors of, weighted by their edge weights:
Given the graph, the dataset formgeaph signaj defined _ A 4
as a map So=D Anmsm. (4)
meN,
s + V=C, It can be interpreted as a first-order interpolation, weight
Up > Sn, averaging, or regression on graphs, which is a widely-used
where C is the set of complex numbers. It is convenient tgper_atlo_n in graph regression, distributed consensuscdai- .
: . munications, Markov processes and other approaches. Using
write graph signals as vectors i ; . .
the vector notation (1), the graph shift (4) is written as

s:[so 81 ... sN—l}TECN. 1) 52[50 §N_1}T:As. (5)

One should view the vector (1) not just as a list, but as a gragla_h ) ) ) ]
with each values,, residing at node,.. he graph shift (5) naturally generalizes the time shift (2)

Fig. 1 shows examples of graph signals. Finite periodic S_ince in DSR the gra\_ph shift is defined _axiomaticall_y, other
time series, studied by finite-time discrete signal proiogss choices for the operation of a graph shift are possible. The
(DSP) [21], [19], are indexed by directed cyclic graphs hsas advantage of the deflnlthn (4) is that it quds to a s.|gnal
the graph in Fig. 1(a). Each node corresponds to a time samRE2cessing framework for Imear. and commutative graphrélte
all edges are directed and have the same weighéflecting Other choices, such as selective averaging over a subset of
the causality of time series; and the edge from the last to tAgighbors for each graph vertex, do not lead to linear commu-
first node reflects the periodicity assumption. Data caliédty tatlvg filters and hence to well-defined concepts of frequenc
sensor networks is another example of graph signals: senEgHrier transform, and others.
measurements form a graph signal indexed by the sensor
network graph, such as the graph in Fig. 1(b). Each gragiyaph Filters andz-transform
node is a sensor, and edges connect closely located sensors. . . ) .

Graph signals also arise in the World Wide Web: for instance.,In signal processing, lter is a syst_emH(-) that takes a
website features (topic, view count, relevance) are graptats signal (1) as an input and outputs a signal

indexe_d by graphs formed by hyperlink referenc_es, such@s th 5 — [50 N §N71}T — H(s). (6)
graph in Fig. 1(c). Each node represents a website, andeirec

edges correspond to hyperlinks. Finally, graph signalscate Among the most widely used filters are linear shift-invatian
lected in social networks, where characteristics of irtiigils (LSI) ones. A filter islinear, if for a linear combination of
(opinions, preferences, demographics) form graph sigoals inputs it produces the same combination of outpiféws; +



Bs2) = aH(s1) + BH(sz). Filters H;(-) andHy(-) arecom- and graph signals (1) as polynomials(z~!) =
mutative or shift-invariant if the order of their application toazgz_ol snbn(271), where b,(z71'), 0 < n < N, are
signal does not change the outpH; (Hz(s)) = H2(H;(s)). appropriately constructed, linearly independent polyiadsn
The z-transformprovides a convenient representation for sigef degree smaller thatVv (see [17] for details). Analogously
nals and filters in DSP. By denoting the time delay (2xas, to (9), the output of the graph filter (14) is obtained as the

all LSl filters in finite-time DSP are written as polynomials i product of z-transforms modulo the minimal polynomial

27t . ma(z71) of the shift matrixA:
= heem, 7 e
(z7h HZ:O z Q) ) =Y GabacY)
n=0
where the coefficientdg, h1,...,hxy_1 are calledfilter taps

= h(z")s(z"! d . (15
Similarly, finite time signals are written as (z7)s(z7) mod ma(z™) (15)

Recall that the minimal polynomial oA is the unique monic
1 = n polynomial of the smallest degree that annihilatks i.e.,
(1) =) s @) A(A) = 0 [22].
] . o Graph filters have a number of important properties. An
The filter output is calculated by multiplying itstransform (7) jnverse of a graph filter, if it exists, is also a graph filteattban
with the z-transform of the input signal (8) modulo the polype found by solving a system of at mast linear equations.

n=0

nomial 2~ — 1, [19]: Also, the number of taps in a graph filter is not larger than
N-1 the degree of the minimal polynomial &, which provides
7Y = Z Sp27" an upper bound on the complexity of their computation. In
n=0 particular, since the graph filter (12) can be factored as
= h(zHs(z7!) mod (z7V —1). 9) L—1
Equivalently, the output signal is given by the product [21] MA) = hi 51;[() (A—geD), (16)
§ = h(C)s, (10) the computation of the output (13) requires, in genefakl

degma () multiplications byA.
of the input signal (1) and the matrix gma () p y

N-1 Graph Fourier Transform
h(C) = Z;J hy © Mathematically, a Fourier transform with respect to a set

of operators is the expansion of a signal into a basis of

ho hya o the operators’ eigenfunctions. Since in signal processieg
h1 : operators of interest are filters, DSRlefines the Fourier
= (11)  transform with respect to the graph filters.
: : hn-1 For simplicity of the discussion, assume th#atis diagonal-
hy-1 .. ha ho izable and its eigendecomposition is
Obse_rvel that the_circula_nt matrfx(C) in (11).is obta.ined by A=VAV (17)
substituting the time shift matrix (3) foz~! in the filter z- )
transform (7). In finite-time DSP, this substitution esistis W]rcfer]s the columns;, of the matrixV' = [vo aae YVN'_l} €
a surjective (onto) mapping from the space of LS| filters arfd” " are the eigenvectors cA, and A € C**7% is the
the space ofV x N circulant matrices. diagonal matrix of corresponding eigenvalugs, ..., Anx_1

DSPRs extends the concept of filters to general graphs. Sinfif A- 'f_ A is.not diagona}lizable, Jordan decomposition into
larly to the extension of the time shift (2) to the graph sthf, 9eneralized eignevectors is used [17]. _
filters (11) are generalized toraph filtersas polynomials in  The eigenfunctions of graph filters(A) are given by the

the graph shift [17], and all LS| graph filters have the form €igenvectors of the graph shift matriA [17]. Since the
expansion into the eigenbasis is given by the multiplicatio

L—1 . . . . . .
B P with the inverse eigenvector matrix [22], which always &xis
h(A) = Z heA”. (12) the graph Fourier transformof a graph signal (1) is well-
=0 defined and computed as
In analogy with (10), the graph filter output is given by

§=[5% ... va]" = Vls
s = h(A)s. (13) = Fs (18)
The output can also be_ computed using gnaph z-transform whereF = V! is the graph Fourier transform matrix.
that represents graph filters (12) as The valuess,, in (18) are the signal’s expansion in the

-1 eigenvector basis and represent tiraph frequency content
h(z™") = Z hezt, (14) of the signals. The eig.envalues\n pf the shift matrix A
=0 represengraph frequencigsand the eigenvectoss, represent



the correspondingraph frequency component®bserve that where h(A) is a diagonal matrix with values(}\,) =
each frequency component, is a graph signal, too, with its Zf;ol he AL on the diagonal. As follows from (20),
mth entry indexed by the nodg,,. - - .

The in\)//erse graphyFourier transformeconstructs the graph s=h(A)s & Fs=h(A)s. (21)
signal from its frequency content by combining graph frefhat is, the frequency content of a filtered signal is modified
quency components weighted by the coefficients of the sgynaby multiplying its frequency content elementwise hy)\,,).
graph Fourier transform: These values represent tlgeaph frequency responsef the
graph filter (12).

S = Svo+51vi+...+5y 1VN_ . _ o )
0,10A ! 1A NoTN=L The relation (21) is a generalization of the classiaivolu-
= F "'s=Vs (29)

tion theoren{21] to graphs: filtering a graph signal in the graph
Analogously to other DS concepts, the graph Fourierdomain is equivalent in the frequency domain to multiplying
transform is a generalization of the discrete Fourier fiams the signal's spectrum by the frequency response of the graph
from DSP. Recall that the:th Fourier coefficient of a finite filter.
time series of lengthV is
, Low and High Frequencies on Graphs
N mn

1 N-1 .
Sm = \/—N Z spe”’ 5 In DSP, frequency contents of time series and digital images
=0 are described by complex or real sinusoids that oscillate at
and the time signal’s discrete Fourier transform is writken different rates [24]. These rates provide an intuitive, bgl
vector form ass = DFTy s, where DFTy is the N x N interpretation of “low” and “high” frequencies: low-fregacy
discrete Fourier transform matrix with thé:, m)th entry components oscillate less and high-frequency ones dscilla
1/V'N exp(—j2rmnm/N). It is well-known that the eigende- more.

composition of the time shift matrix (3) is In analogy to DSP, frequency components on graphs can also
o250 be characterized as “low” and “high” frequencies. In paigc,

this is achieved by ordering the graph frequency components

C=DFT}/ DFTy . according to how much they change across the graph; that is,

i Y how much the signal coefficients of a frequency component

differ at connected nodes. The amount of “change” is caledla

Hence, the discrete Fourier transform is the graph FOurigLing the graph total variation [18]. For graphs with real
transform for cyclic line graphs, such as the graph in Fig).1( gyactra, the ordering from lowest to highest frequencies is

and )\, :.exp(—j27rn/N), 0 g n < N,_ are the corresponding)\0 > A\ > ... > Ay_1. For graphs with complex spectra,
frequepmes. In _DSP’ the rat@rn/N in the exponent,, = frequencies are ordered by their distance from the poini,|
eXP(—JQW/N) IS .also sometimes quled (aﬂgu'ar) frequencym the complex plane, whergax is the eigenvalue with the
Alternative Ch0|ces_ of Graph Fourier Ba;m SOme cases, largest magnitude. The graph frequency order naturallgdea
for example, when eigenvector computation is not stable,t& the definition of low-, high-, and band-pass graph filters,
may be advanta_geous to use other _vectors as the grap_h Fo%{h%{logously to their counterparts in DSP (see [18] for tBtai
ba5|§, such as smgular vectors or elgenvectors of th_e Ciapla In the special case of undirected graphs with real non-
matrix. Tfhese Cth'CeS z;rchon_astebnt W'th ESﬂnﬁe smgur:ar negative edge weights, the graph Fourier transform (18) can
vect(_)rs_ odrn}.t g g;&* oucrjle[ ?3'.5 when the grapf Shé\flt'so be expressed using the eigenvectors of the graph liaplac
matrix Is ehined asAA-, and Laplacian e!ggnvect.ors oMy atrix [16]. In general, the eigenvectors of the adjacency
the graph Fourier basis when the shift matrix is defined by tl&?\d Laplacian matrices do not coincide, which can lead to a

Laplac_ian. Howe\_/er, the former implicitly turns t_h_e o_rigln different Fourier transform matrix. However, when graphs a
graph into an undirected graph, and the latter explicittyuiees regular, both definitions yield the same graph Fourier f
that the original graph is undirected. As a result, in botbesa matrix ,and the same frequency ordering [18]

the framework does not use the information about the doacti
of graph edges that is useful in various applications [123], o
[18]. Examples, where relations are directed and not alwa§gplications

reciprocal, are Twitter (if user A follows user B, user B does DSRs is particularly motivated by the need to extend tra-
necessarily follows user A), and world wide web (if documertitional signal processing methods to datasets with comple
A links to document B, document B does not necessarily lirknd irregular structure. Problems in different domains ban

to document A). formulated and solved as standard signal processing pnsble
Applications include data compression through Fouriendra
Frequency Response of Graph Filters form or through wavelet expansions; recovery, denoising, a

%assification of data by signal regularization, by smaunghi

. In addition to expressing the frequency content Of grapr by adaptive filter design; anomaly detection via highspas
signals, the graph Fourier transform also characterizes tering: and many others (see [17], [18], [15], [16] and

effect of filters on the frequency content of signals. Thefiftg references therein)

operation (13) can be written using (12) and (18) as . . .
For instance, a graph signal can be compressed by computing
S=h(A)s=h(F 'AF)s=F 'h(A)Fs, (20) its graph Fourier transform and storing only a small fratid



its spectral coefficients, the ones with largest magnitufiee operations and memory access to the entire N matrix A.
compressed signal is reconstructed by computing the iavehMote that graph filtering can also be performed in the spectra
graph Fourier transform with the preserved coefficientseWhdomain with O(N?) operations using the graph convolution
the signal is sparse in the Fourier domain, that is, when mdalseorem (21), but it also requires the initial eigendecositpm
energy is concentrated in a few frequencies, the compresséd.
signal is reconstructed with a small error [17], [25]. Degree heterogeneity in graphs with heavily skewed degree
Another example application is detection of corrupted datdistributions, such as scale-free graphs, presents aticuhli
In traditional DSP, a corrupted value in a slowly changinghallenge. Graph filtering (16) requires iterative weighte-
time signal introduces additional high-frequency compise eraging over each vertex’s neighbors, and for vertices with
that can be detected by high-pass filtering of the corruptkitge degrees this process takes significantly longer tban f
signal. Similarly, a corrupted value in a graph signal cavertices with small degrees. In this case, load balancirmith
be detected through a high-pass graph filter, which can &mart distribution of vertices between computational soide
used, for instance, to detect malfunctioning sensors is@enrequired to avoid a computation bottleneck.
networks [18]. For very large datasets, algorithms with quadratic andacubi
arithmetic cost are not acceptable. Moreover, computsatioat
I1l. CHALLENGES OFBIG DATA require access to the entire datasets are ill-suited fgeldata

While there is no single, universally agreed upon set of propizes and lead to performance bottlenecks, since memoegsicc
erties that define Big Data, some of the commonly mentioné orders of magnitude slower than arithmetic computations
ones arevolume velocity, and variety of data [1]. Each of This problem is exacerbated by the fact that large dataétets o
these characteristics poses a separate challenge to tigm dedo not fit into main memory or even local disk storage of a
and implementation of analysis systems and algorithms iipr BSingle machine, and must be stored and accessed remotely and
Data. First of all, the sheer volume of data to be processeecessed with distributed systems.
requires efficient distributed and scalable storage, ac@esd  Fifty years ago, the invention of the famous fast Fourier
processing. Next, in many applications new data is obtainté@nsform algorithm by Cooley and Tukey [27], as well as many
continuously. High velocity of new data arrival demands fagther algorithms that followed (see [28], [29] and refesnc
algorithms to prevent bottlenecks and explosion of the dafaerein), dramatically reduced the computational costhef t
volume and to extract valuable information from the data arstiscrete Fourier transform by using suitable propertieshef
incorporate it into the decision-making process in realetimstructure of time signals, and made frequency analysis and
Finally, collected datasets contain information in alligties filtering of very large signals practical. Similarly, in harticle,
and forms, including numerical, textual, and visual data. ™e identify and discuss properties of certain data reptasien
generalize data analysis techniques to diverse datasetseed graphs that lead to more efficient implementations of BSP
a common representation framework for datasets and thejerations for Big Data. A suitable graph model is provided
structure. by product graphs discussed in the next Section.

The latter challenge of data diversity is addressed in ISP
representing dataset structure with graphs and quarngifyata
into graph signals. Graphs provide a versatile data altgtrac
for multiple types of data, including sensor network mea- Consider two graph&/; = (V1,A;) and G2 = (V2, As)
surements, text documents, image and video databasea} sadith |V1| = N1 and|V;| = N; nodes, respectively. Thoduct
networks, and others. Using this abstraction, data arsalygraph denoted by, of G; and G, is the graph
methods and tools can be developed and applied to datasets
of different nature. G=GroGy=(V,As), (22)

For efficient Big Data analysis, the challenges of da@ith V| = N1 N, nodes and an appropriately definddNy x

volume and velocity must be addressed as well. In partipul:j\\l/th2 adjacency matrixA, [30], [31]. In particular, three

the fundamental signal processing operations of filterind acommonly studied graph products are the Kronecker, Cartgsi
spectral decomposition may be prohibitively expensive f%\rnd strong products '

large datasets both in the amount of required computatiods a For the Kronecker graph product, denoted a8 = Gy ®

memory demands. : L : .
Recall that processing a graph signal (1) with a graph the adjacency matrix is obtained by the matrix Kronecker

filter (16) requiresL multiplications by aN x N graph product of adjacency matrices, and A.:

shift matrix A. For a general matrix, this computation re- Ag=A® As. (23)
quiresO(LN?) arithmetic operations (additions and multipli-

cations) [26]. WhenA is sparse and has on averafenon- Recall that theKroneckerproduct of matrice8B = [b,,] €
zero entries in every row, graph filtering requir@$LNK) CM>*N andC € CK*l is a KM x LN matrix with block
operations. In addition, graph filtering also requires asd® structure
the entire graph signal in memory. Similarly, computatidn o

the graph Fourier transform (18) requir€ N2) operations

and access to the entire signal in memory. Moreover, the BoC= : : : : (24)
eigendecomposition of the matrix requires additionaD (N ?) byv-10C ... by_1n-1C

IV. PRODUCT GRAPHS

booC ... bon_1C



For the Cartesiangraph product, denoted &3 = G; x Ga,
the adjacency matrix is

A, =A, ®IN2—|—IN1 RAS. (25)

Finally, for the strong product, denoted a& = G X Gs, the
adjacency matrix is

Ag =A1® Ay + A @Iy, + 1y, ®As. (26)

Digital image Row Column
@)

Measurements of one sensor

The strong product can be seen as a combination of the Kro-
necker and Cartesian products. Since the products (23), (25z £
and (26) are associative, Kronecker, Cartesian, and stnamh £ — X
products can be defined for an arbitrary number of graphs. : £
Product graphs arise in different applications, including ~

signal and image processing [32], computational sciences
and data mining [33], and computational biology [34]. Their
probabilistic counterparts are used in network modeling an
generation [35], [36], [37]. Multiple approaches have been
proposed for the decomposition and approximation of graphs

with product graphs [38], [30], [31], [39].
Product graphs offer a versatile graph model for the represe = X
tation of complex datasets in multi-level and multi-paréene

ways. In traditional DSP, multi-dimensional signals, suh

digital images and video, reside on rectangular latticet th Intercommunity Community
are Cartesian products of line graphs. Fig. 2(a) Shows a tWo- ggial network with communities CO";?:SX?:M sruetue
dimensional lattice formed by the Cartesian product of two ©

one-dimensional lattices.

. Another example of graph signals residing on pro_dUCt gr"_"pﬁa. 2. Examples of product graphs indexing various datdigjtal images
is data collected by a sensor network over a period of tim@side on rectangular lattices that are Cartesian proddditse graphs for rows
In this case, the graph signal formed by measurements of &l columns; b) Measurements of a sensor network are indexée strong

: : uct of the sensor network graph with the time seriestgapges of the
sensors at all time steps resides on the product of the Se%ﬁfesian product are shown in blue and green, and edges dfrtimecker

network graph with the time series graph. As the example pfoduct are shown in grey; the strong product contains ajesyj c) A social
Fig. 2(b) illustrates, théith measurement of theth sensor is network with three similar communities is approximated Wyeatesian product

: f th ity struct h with the int i icati
Indexed- by thelth nOde Of thekth Copy Of the Ser:]sor graphorapﬁ_ community structure graph wi e intercommunitynmoaunication

(or, equivalently, théth node of theath copy of the time series

graph). Depending on the choice of product, a measurement of

a sensor is related to the measurements collected by th8sisen Graph products are also used for modeling entire graph

and its neighbors at the same time and previous and followifgnilies. Kronecker products of scale-free graphs with the
time steps. For instance, the strong product in Fig. 2(8tesl same degree distribution are also scale-free and have the sa
the measurement of theth sensor at time stefr t0 its gjstripution [40], [35].K - ande-nearest neighbor graphs, which
measurements at time steps— 1 and k + 1, as well as 10 e ysed in signal processing, communications and machine
measurements of its neighbors at tinles 1, k, andk + 1. |earming to represent spatial and temporal location of ,data
A social network with multiple communities also may b&ych as sensor networks and image pixels, or data similarity
representable by a graph product. Fig. 2(c) shows an examgig,cture, can be approximated with graph products, as the
of a social network that has three communities with Sim”%rxamples in Figs. 2(a) and 2(b) suggest. Other graph fanilie

structures, where individuals from different communit@so g ch as trees, are constructed using rooted graph proddgfs [
interact with each other. This social graph may be seen ggich are not discussed in this article.

an approximation of the Cartesian product of the graph that
captures the community structure and the graph that capture
the interaction between communities.

Other examples where product graphs are potentially usefuln this Section, we discuss how product graphs help “mod-
for data representation include multi-way data arrays thalarize” the computation of filtering and Fourier transfoom
contain elements described by multiple features, parametgyraphs and improve algorithms, data storage and memory ac-
or characteristics, such as publications in citation dadab cess for large datasets. They lead to graph filtering andi€tour
described by their topics, authors, and venues; or internetnsform implementations suitable for multi-core andstdued
connections described by their time, location, IP addnesd, platforms with distributed storage by taking advantage of
accesses, and other parameters. In this case, the graprsfastuch performance optimization techniques as parall@izat
in (22) represent similarities or dependencies betweesetab and vectorization. The presented results illustrate havdyct
of characteristics. graphs offer a suitable and practical model for constrgctin

Measuremer

at on

Sensor network measurements Sensor network Time series

(b)

V. SIGNAL PROCESSING ONPRODUCT GRAPHS



and implementing signal processing methodologies forelargve obtain
datasets. In this, product graphs are similar to other graph

S S
families, such as scale-free and small-world graphs, that a a0o 3(1) + agy Si
used to model properties of real-world graphs and datasets: So S5
while models do not fit exactly to all real-world graphs, they (A ®1I3 )S = - -
capture and abstract relevant representations of graptis an %0 %3
facilitate their analysis and processing. @10 2 +on 24

5

Here, three sequential signal values are multiplied by one
Filtering element of matrixA at the same time. These operations are
performed simultaneously by a processor with vectorimatio
Recall that graph filtering is computed as the multiplicatiocapabilities, which respectively decreases the compmurtitne
of a graph signal (1) by a filter (16). As we discussed ipy a factor of three.
Section I, computation of a filtered signal requires répda  In addition to its suitability for parallelized and vectoed
multiplications by the shift matrix, which is in general amplementations, computing the output of the filter (27) on
computation- and memory-expensive operation for veryearg Cartesian graph also requires significantly fewer opmafi
datasets. since the multiplication by the shift matrix (25) requirdg
Now, consider, for instance, a Cartesian product graph withultiplications by anV, x N, matrix andN, multiplications by
the shift matrix (25). A graph filter of the form (16) for thisan V; x N; matrix, which results irO(NyN3) + O(NZN3) =
graph is written as O(N(N; + N3)) operations rather tha@(N?). For example,
when N, N, ~ /N, this represents a reduction of the
computational cost of graph filtering by a factgtV. To put
hA) =he [] (A1 @Tn, +In, ®As — i Inin,) - (27)  this into the Big Data perspective, for a graph with a million

L-1

=0 vertices, the cost of filtering is reduced by a factor1600,
Hence, multiplication by the shift matriA  is replaced with _and for a graph with a billion vertices, the cost reductiortda
multiplications by matrices\; ® I, andIy, ®As. is more than30000.

We discuss here operation counts for general graphs with ful
I57_1atrices. In practice, adjacency matrices are often sparse
their multiplication requires fewer operations. Compigtaal
savings provided by product graphs are, likewise, sigmifica
for sparse adjacency matrices.

Furthermore, the multiplication by a matrix of the folrnm A

Multiplication by matrices of the forniy, ® Az andA; ®
Iy, have multiple efficient implementations that take adva
tage of modern optimization and high-performance techesqu
such as parallelization and vectorization [26], [42], [4B]
particular, the produdl i, ®As)s is calculated by multiplying

N; signal segments,, . ,in,, 0 < < Ny, of length o . ! .
1 89 gmentsy,.., Ny o= T ! g (can be replaced by the multiplication with a matix T with

N> by the matrix A,. These products are computed wit . ) _ . . :
independent parts of the input signal, which eliminatesa daf® additional arithmetic operations by suitable permatatf

dependency and makes these operations highly suitable fo?'%f'al_vallées [22], [42], I[I4?]. 'I(;his ?terchange(zjapilitfads_ toa
parallel implementation on a multicore or cluster platform [42]Se ection between paralielized and vectorized implentiemts

As an illustration. forN: — 3. N» — 2. matrix and provides means to efficiently compute graph filteredadgn
' TR e on platforms with arbitrary number of cores and vectorizati

ao  ao1 capabilities.
A= [am alj (28) The advantages of filtering on Cartesian product graphs also
apply to Kronecker and strong product graphs. In particular
and a signak € C°, we obtain using the property [22]
SEPRE AL ® Ay = (A1 @ 1In,)(In, ®A2), (29)
A 81 we write the graph filter (16) for the Kronecker product as
A -3
(Lea)s=| A |s=|a|2||. hAw) = hr TT ((Ar © T ) (I, 9A 1
A | 53] (Ag) = LH(( 1@ In,)(In, ®A2) — ge NlNz)a
A [54] =0
e and for the strong product as
L-1
Here, all multiplications byA are independent from each other  p(Ag) = &y H ((A1 @ In,)Iy, ®As)
both in data access and computations. 7—0

Similarly, the produc{A; ® In,)s is calculated by multi-
..... n4(Na—1)Np» 0 < n < N, of
the input signal by the matriXA;. These products are highly Similarly to (27), these filters multiply input signals by ma
suitable for avectorizedimplementation, available on moderntrices Iy, ® A; and A; ® Iy, and are implementable using
computational platforms, that performs an operation oeigdv parallelization and vectorization techniques. They a¢sudlto
input values simultaneously [42]. For instance, forin (28), substantial reductions of the number of required comptati

+A; @In, +1In, ®As —goIN N, )



Fourier Transform . i

The frequency content of a graph signal is computed through ,
the graph Fourier transform (18). In general, this procedur g i
has the computational cost 6f(N?) operations and requires 5 i
access to the entre signal in memory. Moreover, it also B )

requires a preliminary calculation of the eigendecompasit (a) Cartesian product  (b) Kronecker product
of the graph shift matrixA, which, in general, take®(N?)

operation. ‘

Let us consider a Cartesian product graph with the shift \
matrix (25). Assume that the eigendecomposition (17) of the :
matricesA; and A, is respectivelyA; = V,; A; V;l, i € -
{1,2}, whereA; has eigenvalues, o, ..., A\; y—1 on the main N :

dlag(_)nal. S|m|lar results can be obFa_uned for non?d|a_graa.|ale (c) Strong product

matrices using Jordan decomposition. The derivation isemor

involved, and we omit it for simplicity of d_ISCUSSIOn. .. Fig. 3. Frequency values for the product graphs in Fig. Kbjquencies are
If we denoteV = V; ® V,, then the eigendecompositionshown as a color-coded 2D map, with and y-axis representing frequencies

of the shift matrix (25) is [22] of two factor graphs. Higher values correspond to lowerdegmries, and vice
versa.

Ay =V(A @Iy, +1Iy, @A) VL. (30)

Hence, the graph Fourier transform associated with a Garntesto these components are different and on each graph have a
product graph is given by the matrix Kronecker product of thdifferent interpretation as low or high frequency. For exden
graph Fourier transforms for its factor graphs: the values in the upper left corner of Figs. 3(a), 3(b), arg 3(
B 1 x—1 -1 correspond to the same frequency component. By comparing
F.o=(Vi®Vy)™ =V @V, =F10F, (31) these values, we observe that this component represents the
and the spectrum is given by the element-wise summation fighest frequency in the Cartesian product graph, the towes

the spectra of the smaller graphs;,, + X2, 0 < n < N; frequency in the Kronecker product graph, and a mid-spectru
and0 < m < No. ' ' component in the strong product graph.

Reusing the property (29), (31) can be writtenBg = Fast Graph Fourier TransformsA major motivation behind
F, o F, = (F; ®1y,)(Iy, ®Fy) and efficiently implemented the use of product graphs in signal processing and PSP
using parallelization and vectorization techniques. Meeg, is derivation of fast computational algorithms for the drap
the computation of the eigendecomposition (30) is replac&@urier transform. A proper overview of this topic requires
with finding the eigendecomposition of the shift matricks an additional discussion of graph concepts and an algebraic
and A,, which reduces the computation cost frod(/N3) approach to fast algorithms [44], [29], [45] that are beytimel
to O(N} + N3). For instance, whenV,, N, ~ /N, the scope of this article.
computational cost of the eigendecomposition is reduced byAs an intuitive example, consider a well-known and widely
a factor Nv/N. Hence, for a graph with a million vertices,used decimation-in-time fast Fourier transform for power-
the cost of computing the eigendecomposition is reduced Byo sizes [27]. It is derived using graph products as follows
a factor of more thas x 10%, and for a graph with a billion We view the DFTy as the graph Fourier transform of a
vertices, the cost reduction factor is ok 1013, graph with adjacency matriC?, whereC is the cyclic shift

The same improvements apply to the Kronecker and strof@trix (3). This is a valid algebraic assumption, since the
matrix products, since the eigendecomposition of the eorlPF Ty is a graph Fourier transform not only for the graph

sponding shift matrices is in Fig. 1(a), but for any graph with adjacency matrix given
. by a polynomialh(C). This graph, after a permutation of its
Ag = V(AI®A) VT, vertices at stride two (which represents the decimatiotirie
Ag = VAL @In, +Iny, @A +AI @A)V, step), becomes a product of a cyclic graph w2 vertices

with a graph of two disconnected vertices. As a result, igpbr
urier transformDF T becomes a produd; @ DFT y /o
and additional, sparse matrices that capture the opesatibn

Observe that all three graph products have the same gr
Fourier transform. However, the corresponding spectraldre

ferent: for Cartesian and strong products, they are, réispgc graph restructuring. By continuing this process reculgifer

AtnAzm NA ALnAzm + Arn + Aom, Whered < n < Ny DFTy/;, DFTy/4, and so forth, we decomposBFTy

and 0 < m < Nz. Thus, while all three graph prOdUCtS|nto a product of sparse matrices with cumulative arithmeti

have the same frequency components, the ordering of th S8t of O(N log N), thus obtaining a fast algorithm for the
components from lowest to highest frequencies, as defined mputation oﬂ)F’i‘N

DSPR; and discussed in Section I, can be different. As an
illustration, consider the example in Fig. 3. It shows the- fr
guencies (eigenvalues) of the three graph products in fig. 2
All product graphs have the same 16 frequency componentdhe instantiation of DS for product graphs relates to
(eigenvectors), but the frequencies (eigenvalues) qooreding existing approaches to complex data analysis that are setba

VI. RELATION TO EXISTING APPROACHES



on graphs but rather view data as multi-dimensional arrays [ Fraction of coefficients usedC{/ V)

[3], [4] -GiVen a K-dimensional datas_ﬁ S CNIXN2X”'-X.NK, 1/50 1/20 1/15 1/10 1/7 1/5 1/3
the family of methods calleccanonical decompositioror
parallel factor analysisearches fok matricesM;, € CV+*E, EBror ) 49 35 31 26 21 16 07

1 < k < K, that provide an optimal approximation of the PSNR (B) 712 741 751 76.7 785 809 871
dataset

TABLE |
ERRORS INTRODUCED BY COMPRESSION OF THE TEMPERATURE DATA

R
SZZml,Tomg,ro...omK7r+E, (32)
r=1

that minimizes the error difference between the original dataset and the reconstiuc

N Nk one normalized by the norm of the original dataset. Note, that
|E|l = Z Z |Enyng,.ni |2 while the approach is tested here on a relatively small dgtas
ni=1  ng=1 it is applicable in the same form to arbitrarily large datase

The compression errors for the considered temperature
dataset are shown in Table I. The results demonstrate that
even for high compression ratios, that is, when the number
C of stored coefficients is much smaller than the dataset size
N = N;N,, the compression introduces only a small error
and leads to insignificant loss of information. A comparisén
this approach with schemes that compress the data only in one

Fy Rk dimension (they separately compress either time serign fro
S= Z o Z Criore M 0compg e +E. (33)  gach sensor or daily measurements from all sensors) [15]], [2
n=l rx=l also reveals that compression based on the product graph is
Tucker decomposition is also called a higher-order PCA eignificantly more efficient.
SVD, since it effectively extends these techniques fromrimat
ces to higher-order arrays. VIIl. CONCLUSIONS

Decompositions (32) and (33) can b_e in_te_rpreted_ as signahn this article, we presented an approach to Big Data
compression on product grgphs. For simplicity of dISCEi’ﬁs'()analysis based on the discrete signal processing on graphs.
assume thaf = 2 and consider a signale C"*"2 that lies \we reviewed fundamental concepts of the framework and
on a product graph (22) and corresponds tB-dimensional jjjystrated how it extends traditional signal processimeptry to
signal S € CM "2, s0 thatSy, ., = Sn,Na+no» Where0 < gatasets represented with general graphs. To addresstampor
n; < N for i = 1,2. If matricesM, and M, contain as challenges in Big Data analysis and make implementations of
columns, respectively?; and iz, eigenvectors ofA; andA;, fyndamental DSP techniques suitable for very large datasets,
then the decomposition (33) represents a lossy compressjgf considered a generalized graph model given by several
of the graph signal in the frequency domain, a widely us§ghds of product graphs, including the Cartesian, Kronecke

Here, my, , denotes therth column of matrix M, and o
denotes the outer product of vectors.

A more general approach, calletucker decompositign
searches forK matricesM; € CNM«xFx 1 < |k < K,
and a matrixC ¢ CfixFax.-xEx that provide an optimal
approximation of the dataset as

compression technique in signal processing [21], [24]. and strong product graphs. We showed that these produdi grap
structures significantly reduce arithmetic cost of assedia
VIl. EXAMPLE APPLICATION DSR; algorithms and make them suitable for parallel and

As a motivational application example of DSPn product distributed implementation, as well as improve memoryager
graphs, we consider data compression. For the testingedata@nd access of data. The discussed methodology bridges a
we use the set of daily temperature measurements collegtedd8P between signal processing, Big Data analysis, and high-
150 weather stations across the United States [17] during tRérformance computing, as well as presents a framework for
year 2002. Fig. 1(b) shows the measurements from one dA§ development of new methods and tools for analysis of
(December 01, 2002), as well as the sensor network graphgssive datasets.

The graph is constructed by connecting each sensor to 8 of its

nearest neighbors with undirected edges with weights giyen IX. AUTHORS
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