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ABSTRACT

We propose a novel, adaptive model for image representation. The
model places image pixels on the nodes of a two-dimensional nearest-
neighbor graph. Edge weights for the graph depend on the image of
interest, and can be determined by solving a corresponding least-
squares problem. The proposed model is shown to provide an effi-
cient image representation well-suited for image compression.

Index Terms— Image representation, orthogonal transform,
compression, nearest-neighbor graph, orthogonal polynomials.

1. INTRODUCTION

Images are ubiquitous examples of 2-D discrete signals thatare used
and studied in multiple disciplines. Effective image representations
have been developed for various purposes, including coding, stor-
age and transmission, recognition and classification, restoration and
enhancement [1]. These techniques pursue different objectives, and
they can be optimized to satisfy different performance requirements.

Some widely-used image representations are based on expand-
ing images into orthonormal bases with the expectation thatmost
information is captured with few basis functions. The expansion co-
efficients are calculated using a corresponding orthogonaltransform.
The optimal basis and transform for the representation and compres-
sion of a set of images is given by the corresponding Karhunen-
Loève transform (KLT) [2]. However, there is no general efficient
algorithm to compute this transform. In practice, images are often
represented using other, more computationally-efficient orthogonal
transforms, such as the discrete cosine (DCT) and discrete wavelet
(DWT) transforms. These transforms are very efficient in therepre-
sentation of natural, “smooth” images, and have given rise to widely-
used JPEG and JPEG 2000 image compression standards [1].

Contributions. In this paper, we propose a novel representation
of images that is based on two-dimensional (2-D) nearest-neighbor
(NN) graphs. This work is based on the signal processing framework
developed for signals represented with one-dimensional (1-D) NN
graphs [3, 4]. We represent image pixels as nodes of a 2-D regular
grid, which we view as 2-D undirected weighted NN graphs. An
example of such a graph is shown in Fig. 1(b). A 2-D NN graph
can be constructed as a Cartesian product of two 1-D NN graphs
shown in Fig. 1(a). The weights of the graph edges are specificto
images of interest and are constructed in an adaptive fashion. We
introduce the corresponding signal representation model for signals
on 2-D NN graphs and derive the corresponding orthonormal basis
for image representation. As a potential application, we consider
image compression and demonstrate the advantages of the proposed
representation when compared to the widely-used DCT and DWT.

2. BACKGROUND

In this section, we discuss the signal model based on a 1-D NN
graph. This model and the corresponding signal processing frame-
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Fig. 1. Undirected, weighted NN graphs. a) 1-D graph; b) 2-D graph
obtained as a Cartesian product of two 1-D graphs.

work have been introduced in [3, 4]. In general, a 1-D NN graphis
a weighted, directed line graph with possible self-links. However,
in this paper, we only consider a simpler case of an undirected NN
graph with no self-links, such as the graph shown in Fig. 1(a). Here,
we review relevant properties and structures of the corresponding
algebraic signal model and processing framework.

Signal model.Consider a finite discrete signal

s=
(

s0 s1 . . . sn−1

)T
. (1)

The signal processing framework for the analysis of such signals is
determined by the correspondingalgebraic signal modelgiven as a
triple (A,M,Φ). Here,A is a set of filters that is closed under the
operations of serial and parallel connections, as well as amplification
of filters.M is a set of signals that is closed under the operations of
linear combination of signals and filtering by filters fromA. Finally,
Φ is a generalized form ofz-transform that maps discrete signals
s∈ C

n in (1) to signalss ∈ M.
As demonstrated in [3, 4], the signal model for 1-D discrete sig-

nals of lengthn residing on an 1-D weighted undirected NN graph 1(a)
with edge weights1 a0, . . . , an−2 and no self-links is

A = M = C[x]/Pn(x),

Φ : C
n → M, s 7→ s(x) =

∑

0≤k<n skPk(x).
(2)

It is called a1-D finite discrete-NN model. Here, polynomialsPk(x)
in (2) areorthogonal polynomials[5] that satisfy the recursion

x · Pk(x) = ak−1Pk−1(x) + akPk+1(x), (3)

1Weightsak may be given or may need to be adapted according to an
application. Coefficient selection in this work is discussed in Section 3.



with P−1(x) = 0 andP0(x) = 1. EachPn(x) is a polynomial of
degreen with distinct real rootsα0, . . . , αn−1. Both the signal and
filter space in (2) are given by the polynomial algebraC[x]/Pn(x),
which is a set of polynomials of degree less thann = degPn(x)
with polynomial multiplication performed moduloPn(x). Hence,
filters and signals are represented with polynomialsh(x) ∈ A and
s(x) ∈ M. The operations of parallel filter connection and signal
addition are defined as polynomial addition. The operationsof serial
filter connection and filtering of a signal with a filter are defined as
polynomial multiplication moduloPn(x).

Fourier transform. The Fourier transform in the 1-D finite NN
model (2) is calculated as

Sm =

n−1
∑

k=0

Pk(αm)sk. (4)

The matrix form of (4) isS=
(

S0 S1 . . . Sn−1

)T
= Pp,αs,

wheres is given by (1) and the matrix

PP,α =







P0(α0) · · · Pn−1(α0)
...

...
...

P0(αn−1) · · · Pn−1(αn−1)






(5)

is called adiscrete NN transform. As shown in [4],

PP,αP
T
P,α = an−1 · diag

(

Pn−1(αk)P
′
n(αk)

)

0≤k<n
= DP .

Hence, the scaled discrete NN transform

D
−1/2
P PP,α (6)

is an orthogonal matrix. There exist efficient computational algo-
rithms for discrete NN transforms [6].

Shift matrix. Each filterh(x) ∈ A is a polynomial inx, and
the filtering of a signals(x) ∈ M by a filter h(x) ∈ A in the
NN model (2) is represented as polynomial multiplication modulo
Pn(x). Hence, the basic non-trivial filtering operation in (2) is given
by x · s(x) mod Pn(x). We call this operation theshift.

Consider the matrixφ(x), such that the(i, j)th element ofφ(x)
equalsai if |i− j| = 1 and zero otherwise:

φ(x) =













a0

a0

. . .
. . . an−2

an−2













. (7)

The shift operation and the matrix (7) are related as

u(x) = x · s(x) mod Pn(x)

= Φ
(

φ(x)s
)

.

That is, the coefficientsuk of the resulting signalu(x) =
∑n−1

k=0
ukPk(x)

can be calculated as

u =
(

u0 u1 . . . un−1

)T
= φ(x)s,

wheres andφ(x) are given by (1) and (7). The matrixφ(x) in (7) is
called theshift matrix.

3. IMAGE REPRESENTATION WITH
NEAREST-NEIGHBOR GRAPHS

In this section, we introduce a novel signal model for imagesthat
is based on 2-D NN graphs. The model places image coefficients
(pixel values) on a 2-D NN graph, such as the one shown in Fig. 1(b).
We view this graph as the Cartesian product of two 1-D NN graphs
shown in Fig. 1(a). The weights of the graph are determined inan
adaptive way from the image pixel values.

Signal model. Signal models for the representation of multi-
dimensional signals can be constructed as tensor products of 1-D
models [4, 7]. Sincen1×n2 images can be viewed as 2-D finite dis-
crete signals, we construct the corresponding 2-D finite NN model
as a tensor product of two 1-D finite NN models (2) forn = n1 and
n = n2 as follows. Consider an1 × n2 signal

s=







s0,0 s0,1 . . . s0,n2−1

...
...

...
...

sn1−1,0 sn1−1,1 . . . sn1−1,n2−1






∈ C

n1×n2 . (8)

The corresponding 2-D finite NN model is given by

A = M = C[x, y]/〈Pn1
(x), Qn2

(y)〉 (9)

Φ : C
n1×n2 → M

s 7→ s(x, y) =

n1−1
∑

k1=0

n2−1
∑

k2=0

sk1,k2
Pk1

(x)Qk2
(y).

Here,Pk1
(x) andQk2

(y) are orthogonal polynomials generated by
recursions (3) with coefficientsa0, . . . , an1−2 and b0, . . . , bn2−2,
respectively. In this model, filters and signals are two-variate poly-
nomialsh(x, y) ands(x, y). Multiplication is performed modulo the
ideal〈Pn1

(x),Qn2
(y)〉 [4]. Since the model (9) is a tensor product

of two 1-D models, this is equivalent to performing multiplication
moduloPn1

(x) andQn2
(y) simultaneously.

Let α0, . . . , αn1−1 be the roots ofPn1
(x); andβ0, . . . , βn2−1

be the roots ofQn2
(y). The Fourier transform

S=







S0,0 S0,1 . . . S0,n2−1

...
...

...
...

Sn1−1,0 Sn1−1,1 . . . Sn1−1,n2−1







for the 2-D model (9) is calculated as

S= PP,αsPT
Q,β ,

wherePP,α andPQ,β are discrete NN transforms (5) for polynomi-
alsPk1

(x) andQk2
(y), respectively.

The model has two basic shift operations that correspond to mul-
tiplication byx andy. In particular, signal coefficientsuk1,k2

ob-
tained as a result of the combined shift

u(x, y) = (x+ y) · s(x, y) mod 〈Pn1
(x), Qn2

(y)〉

can be calculated as

u =







u0,0 . . . u0,n2−1

...
...

...
un1−1,0 . . . un1−1,n2−1






= φ(x)s+ sφ(y)T . (10)

Shift matricesφ(x) andφ(y) aren1 × n1 andn2 × n2 matrices (7)
with coefficientsa0, . . . , an1−2 andb0, . . . , bn2−2, respectively.



Coefficient selection. In order to construct a specific instanti-
ation of the 2-D NN model (9) for an image of interest, we need
to select appropriate coefficientsa0, . . . , an1−2 andb0, . . . , bn2−2.
We determine these coefficients by constructing the shift matrices
φ(x) andφ(y) that minimize theℓ2 distortion of the shift (10)2:

{

a0, . . . , an1−2,
b0, . . . , bn2−2

}

= argmin
ak1

,bk2∈C

||φ(x)s+ sφ(y)T − s||2.

It can be solved as an overdetermined least-squares problem







A0 B0

...
...

An2−1 Bn2−1



























a0

...
an1−2

b0
...

bn2−2





















= sv. (11)

Here, eachAk2
is a(n1)×(n1−1) matrix withAk2

(i, i) = si+1,k2
,

Ak2
(i+ 1, i) = si,k2

for 0 ≤ i < n1 − 1 and other elements equal
to zero. EachBk2

is a (n1) × (n2 − 1) matrix with Bk2
(i, k2 −

1) = si,k2−1, Bk2
(i, k2) = si,k2+1 for 0 ≤ i < n1 and other

elements equal to zero. The vectorsv ∈ C
n1n2 is the column-first

vectorization ofs, so thatsv(i+ jn1) = s(i, j).

4. IMAGE COMPRESSION

The proposed model can potentially be used for compression,adap-
tive filtering, and denoising of images. In this paper we study image
compression, which is an extensive research area in image process-
ing with multiple approaches, algorithms, and standards [1].

Compression using orthonormal bases.Orthonormal bases
have long been used for efficient image representation and compres-
sion. A suitable basis captures most of the image information with
relatively few basis functions (that is, most of the image energy is
stored in a few projection coefficients with large magnitudes). In ad-
dition, orthogonality of basis functions removes redundancy in the
image representation.

In general, if vectorsb0, b1, . . . , bn−1 form an orthonormal ba-
sis inCn, a signals∈ C

n in (1) can be compressed as follows. First,
the coefficients of the projection ofs on the basis are computed as

c =
(

c0 · · · cn−1

)T
= B s, (12)

where the matrix

B =
(

b0 · · · bn−1

)H
(13)

represents an orthogonal transform. Without loss of generality, we
can assume the coefficientsc0, . . . , cn−1 are ordered by decreasing
magnitude, so that|c0| ≥ |c1| ≥ . . . ≥ |cn−1|. The compressed
signal̂scan be reconstructed as

ŝ= B
H ĉ, (14)

2This coefficient selection is partially motivated by [8], where images
are modeled as non-causal autoregressive fields with constant coefficients
determined by the MMSE prediction error. They can be visualized as 2-
D NN graphs in Fig. 1(b) with edge weightsa0 = . . . = an1−2 and
b0 = . . . = bn2−2. Our approach can extend the model in [8] to fields
with non-constant coefficients. Image-based optimizationof edge weightsai
andbi also distinguishes our approach from other works, such as [9, 10],
where edge weights are determined by vertices rather than signal coefficients
assigned to vertices.

where the vector̂c =
(

c0 · · · cℓ−1 0 · · · 0
)T

is obtained
from c by keeping only coefficientsc0, . . . , cℓ−1. The corresponding
compression ratio isR(ǫ) = n/ℓ.

For a fixed peak signal-to-noise ratio (PSNR)ρ with the corre-
sponding mean squared error (MSE)ǫ, we achieve the highest com-
pression ratioR(ǫ) by finding the smallestℓ that satisfies [1]

1

n
||s− ŝ||22 ≤ ǫ. (15)

For multiple signalss0, . . . , sm−1 ∈ C
n that require, respec-

tively, ℓ0, . . . , ℓm−1 coefficients to satisfy (15) for the MSEǫ, the
average compression ratioRavg(ǫ) is

Ravg(ǫ) =
nm

ℓ0 + ℓ1 + . . .+ ℓm−1

. (16)

Identifying a suitable basis for an efficient representation and
compression of images of interest is a non-trivial task. A number
of such bases have been proposed. Some of the most successful
and widely-used ones are the cosine basis and wavelet bases.These
bases are well-suited for representation of natural, “smooth” im-
ages. The corresponding orthogonal transform matricesB in (13)
that compute the projection coefficients are the DCT and the DWT.

Proposed algorithm.Since the scaled discrete NN transform (6)
is an orthogonal matrix, its rows represent an orthonormal basis in
C

n. Hence, the rows of the tensor product3

D
−1/2
Q PQ,β ⊗D

−1/2
P PP,α (17)

of discrete NN transformsPP,α andPQ,β , introduced in Section 3,
form an orthonormal basis inCn1n2 .

Based on this property, we propose the tensor product (17) of
PP,α andPQ,β as the compressing orthogonal transformB in (13).
The proposed compression algorithm consists of four steps:

Step 1. Represent an images in (8) in the column-first vectorized
form sv, so thatsv(i+ jn1) = s(i, j).

Step 2. Determine the coefficientsa0, . . . , an1−2 andb0, . . . , bn2−2

by solving the least-squares problem (11).

Step 3. Construct the corresponding scaled discrete NN transforms
D

−1/2
P PP,α andD−1/2

Q PQ,β . Compute the projectionsc
in (12) of sv on the orthonormal basis given by the rows of
the tensor product (17).

Step 4. For a fixed MSEǫ, determine and keep the minimal required
number of projection coefficients, discard others, and calcu-
late the compressed signalŝ in (14).

Compression of multiple images.One advantage of transforms
such as the DCT and the DWT is that they do not depend on the im-
age that we wish to compress. The proposed transform (17), how-
ever, depends on the image of interest. When compressing mul-
tiple images of the same size and similar structure and intensity,
we can avoid constructing separate transforms for each image by
considering a single 2-D NN model (9) for all images. The corre-
sponding weightsa0, . . . , an1−2 andb0, . . . , bn2−2 are obtained by
solving the following joint minimization problem for allm images
s0, . . . , sm−1 simultaneously:

{

a0, . . . , an1−2,
b0, . . . , bn2−2

}

= argmin
ak1

,bk2

m−1
∑

i=0

||φ(x)si+siφ(y)T−si||22.

(18)

3A tensor product of matricesA ∈ Cn1×n1 andB ∈ Cn2×n2 is a
matrix C = A ⊗ B ∈ Cn1n2×n1n2 such thatC(k1n1 + k2, m1n1 +
m2) = A(k1,m1)B(k2,m2).



(a) Digits (b) Faces

Fig. 2. Examples of images used for the evaluation of the proposed
compression algorithm.

5. EXPERIMENTS

Setup. To analyze the performance of the proposed algorithm, we
apply it to the compression of two classes of images: hand-written
digits and faces (examples are shown in Fig. 2). The digit images
are obtained from the MNIST dataset [11]. We use1000 images for
each of the ten digits. The face images are obtained from the Faces94
dataset [12]. We use20 images for each of152 individuals.

For each set of images (1000 images per digit,20 images per in-
dividual), we construct a 2-D NN model (9) by solving the joint min-
imization problem (18). We calculate the average compression ra-
tio (16) for PSNR valuesρ ∈ {30 dB, 40 dB, 50 dB, 60 dB}, which
correspond to MSE valuesǫ ∈ {65, 6.5, 0.65, 0.065} in (15). For
comparison, we also consider two standard orthogonal transforms
the DCT and the DWT, the latter based on orthogonal Daubechies
filters4 of length 4 with three decomposition levels [1]. The 2-D
forms of both transforms, corresponding to the matrixB in (13), are
constructed as tensor products of two 1-D transform matrices.

Discussion of results.Table 1 shows average compression ra-
tios (16) obtained for different PSNR values. The proposed com-
pression algorithm leads to increased average compressionratios in
comparison to the DCT and the DWT.

Observe that both digit and face images are “smooth” and have
relatively little sharp variations of the intensity in adjacent pixels.
The DCT and the DWT are known to be well-suited for efficient
representation and compression of such images. This observation
makes the improvements in compression ratios achieved by the pro-
posed algorithm more significant. Also, we use the method (18)
for the construction of weightsak andbk. Other methods, such as a
weightedℓ2-norm minimization orℓ0-norm minimization, may yield
a more optimal choice of weights and lead to yet larger improve-
ments in the representation efficiency and compression ratios.

6. CONCLUSIONS

We have proposed a novel, adaptive signal model for the representa-
tion of images. The model places image pixels on the nodes of a2-D
NN graph, obtained as the Cartesian product of two 1-D NN graphs.
Edge weights for the graph depend on the image of interest, and can
be constructed in an adaptive way by solving a correspondingleast-
squares problem. This representation uses and extends the theory
of nearest-neighbor signal models. The proposed representation is
shown to be well-suited for image compression and achieves higher
compression ratios in comparison to other standard image compres-
sion techniques.

4Since we consider compression with orthonormal bases, we use an or-
thogonal DWT in our experiments. The JPEG 2000 standard usesbiorthogo-
nal wavelet bases that are beyond the scope of this paper.

Dataset Algorithm
Peak signal-to-noise ratio

30 dB 40 dB 50 dB 60 dB

Digits

Proposed 5.8 3.0 2.4 2.1

DCT 2.2 1.4 1.1 1.1

DWT 5.2 3.0 2.3 1.9

Faces

Proposed 32.0 6.6 2.4 1.5

DCT 4.4 1.8 1.3 1.1

DWT 19.4 5.0 2.2 1.4

Table 1. Average compression ratios obtained for PSNR values of
30 dB, 40 dB, 50 dB, and 60 dB.
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