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ABSTRACT

We propose a novel, adaptive model for image representaliba
model places image pixels on the nodes of a two-dimensi@zabst-

neighbor graph. Edge weights for the graph depend on thedimhg L dn=2
interest, and can be determined by solving a correspondiast-|
squares problem. The proposed model is shown to providefian ef (@
cient image representation well-suited for image comjwass
bo — bl bn272
Index Terms— Image representation, orthogonal transform, L] T [l
compression, nearest-neighbor graph, orthogonal polialem ao o ao
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1. INTRODUCTION
a1 a1 a1
Images are ubiquitous examples of 2-D discrete signalsatieaised :
and studied in multiple disciplines. Effective image regametations an 5 lan s @ o
have been developed for various purposes, including coditog- ”lb ”lb b ™
age and transmission, recognition and classificationprason and o——1r e —R222 1
enhancement [1]. These techniques pursue different dlgsctnd
they can be optimized to satisfy different performance iregoents. (b)

Some widely-used image representations are based on expaqqg_ 1. Undirected, weighted NN graphs. a) 1-D graph; b) 2-D graph
ing images into orthonormal bases with the expectation riadt obtained as a Cartesian product of two 1-D graphs.

information is captured with few basis functions. The exgbam co-
efficients are calculated using a corresponding orthogoaasform.
The optimal basig and trapsfqrm for the representatiop anees-  \york have been introduced in [3, 4]. In general, a 1-D NN griaph
sion of a set of images is given by the corresponding Karhunen, weighted, directed line graph with possible self-linksowdver,
Loéve transform (KLT) [2]. However, there is no general@éint  , this paper, we only consider a simpler case of an undidetite

algorithm to compute this transform. In practice, imagesaften
represented using other, more computationally-efficietitogonal
transforms, such as the discrete cosine (DCT) and discratelet
(DWT) transforms. These transforms are very efficient inrdpre-
sentation of natural, “smooth” images, and have given dsedely-
used JPEG and JPEG 2000 image compression standards [1].

graph with no self-links, such as the graph shown in Fig.. If&ye,
we review relevant properties and structures of the cooredipg
algebraic signal model and processing framework.

Signal model.Consider a finite discrete signal

S= (80 S1 Snfl)T- (1)

Contributions. In this paper, we propose a novel representation

of images that is based on two-dimensional (2-D) neareghher
(NN) graphs. This work is based on the signal processingdveonk
developed for signals represented with one-dimensiondl)(INN

The signal processing framework for the analysis of suchadfgis
determined by the correspondiatgebraic signal modegjiven as a

triple (A, M, ®). Here, A is a set of filters that is closed under the

graphs [3, 4]. We represent image pixels as nodes of a 2-Daregu Operations of serial and parallel connections, as well gdification

grid, which we view as 2-D undirected weighted NN graphs. Anof filters. M is a set of signals that is closed under the operations of

example of such a graph is shown in Fig. 1(b). A 2-D NN graphlinear combination of signals and filtering by filters fro Finally,

can be constructed as a Cartesian product of two 1-D NN graph® is a generalized form of-transform that maps discrete signals

shown in Fig. 1(a). The weights of the graph edges are speaific S€ C™ in (1) to signalss € M.

images of interest and are constructed in an adaptive fashide
introduce the corresponding signal representation madtedignals

As demonstrated in [3, 4], the signal model for 1-D discrége s

nals of length residing on an 1-D weighted undirected NN graph 1(a)

on 2-D NN graphs and derive the corresponding orthonormsisba With edge weightsa, . . ., a,—2 and no self-links is

for image representation. As a potential application, wesiter
image compression and demonstrate the advantages of {hesp

representation when compared to the widely-used DCT and DWT

2. BACKGROUND

In this section, we discuss the signal model based on a 1-D NN

graph. This model and the corresponding signal processamge-
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A= M =Cla]/Pu(a),

2
P:C" =M, s s(x) =D gcpen S6Pr(@). @

Itis called al-D finite discrete-NN modeHere, polynomials ()
in (2) areorthogonal polynomial§5] that satisfy the recursion

z - Py(z) = ap—1Pr—1(x) + ar Pet1(x), ?3)

lWeightsa;, may be given or may need to be adapted according to an

application. Coefficient selection in this work is discubge Section 3.



with P_;(z) = 0 and Po(z) = 1. EachP,(z) is a polynomial of
degreen with distinct real rootsy, . . ., an—1. Both the signal and
filter space in (2) are given by the polynomial algebifa]/ P, (z),
which is a set of polynomials of degree less thar= deg P, (z)
with polynomial multiplication performed modul®, (x). Hence,
filters and signals are represented with polynomidls) € A and

3. IMAGE REPRESENTATION WITH
NEAREST-NEIGHBOR GRAPHS

In this section, we introduce a novel signal model for imatied
is based on 2-D NN graphs. The model places image coefficients
(pixel values) on a 2-D NN graph, such as the one shown in fig. 1

s(x) € M. The operations of parallel filter connection and signal\We view this graph as the Cartesian product of two 1-D NN ggaph

addition are defined as polynomial addition. The operatifrserial
filter connection and filtering of a signal with a filter are defil as
polynomial multiplication moduld®, ().
Fourier transform. The Fourier transform in the 1-D finite NN
model (2) is calculated as
n—1
Sm =Y Pr(cwm)s. (4)
k=0
The matrix form of (4) isS= (So 51
wheresis given by (1) and the matrix

Snfl)T - Pp,oz57

Po(Oéo) Pnfl(ao)

Ppya - : : (5)
Po(an—1) Pr_1(an—1)
is called adiscrete NN transformAs shown in [4],

Ppyapg,a = an—1 " diag (Pnfl(ak)PrlL(ak))ng<n = DP .

Hence, the scaled discrete NN transform

D,"’Pra (6)
is an orthogonal matrix. There exist efficient computaticaigo-
rithms for discrete NN transforms [6].

Shift matrix. Each filterh(z) € A is a polynomial inz, and
the filtering of a signals(z) € M by a filter h(z) € Ain the
NN model (2) is represented as polynomial multiplicationduio
P,(x). Hence, the basic non-trivial filtering operation in (2) igem
by z - s(x) mod P,(x). We call this operation thshift

Consider the matrix(z), such that thé:, j)th element ofp(z)
equalsa; if |¢ — j| = 1 and zero otherwise:

™
An—2
The shift operation and the matrix (7) are related as

u(z) = mod Py, (z)

shown in Fig. 1(a). The weights of the graph are determineahin
adaptive way from the image pixel values.

Signal model. Signal models for the representation of multi-
dimensional signals can be constructed as tensor prodéidtsDo
models [4, 7]. Since; x n2 images can be viewed as 2-D finite dis-
crete signals, we construct the corresponding 2-D finite Nddieh
as a tensor product of two 1-D finite NN models (2) foe= n, and
n = n2 as follows. Consider a; x n2 signal

50,0 50,1 S0,mp—1
s= e Cm ™2 (8)
Sni1—1,0 Sni—1,1 Sni—1,n3—1
The corresponding 2-D finite NN model is given by
A= M = Clz,y]/(Pn, (), Qn, () ©)

X
d: C" " 5 M
ny—1lng—1

s s(z,y) = Z Z Sty ko Py (2) Qo ().

k1=0 ky=0

Here, P, (z) andQx, (y) are orthogonal polynomials generated by
recursions (3) with coefficientso, ..., an, —2 andbo, ..., bn,—2,
respectively. In this model, filters and signals are twdatarpoly-
nomialsh(z, y) ands(z, y). Multiplication is performed modulo the
ideal (P,, (x), Qn, (v)) [4]. Since the model (9) is a tensor product
of two 1-D models, this is equivalent to performing multgaition
modulo P,,, (z) and@n, (y) simultaneously.

Let ao, ..., an, -1 be the roots of?,, (z); and 5o, . . .
be the roots of),, (v). The Fourier transform

76’”’2*1

So,0 So,1 So0,ns-1

S—
Snlfl,ngfl

Snlfl,O Snlfl,l

for the 2-D model (9) is calculated as
S= PP,(XSPS,,EM

whereP p , andP g s are discrete NN transforms (5) for polynomi-
als Py, (z) andQy, (y), respectively.

The model has two basic shift operations that correspondito m
tiplication by x andy. In particular, signal coefficientss, ., ob-
tained as a result of the combined shift

u(@,y) = (x +y) - s(z,y) mod (Pu,(2), Qns (y))

can be calculated as

Thatis, the coefficients;, of the resulting signak(z) = 37—} wy Pi(z)

can be calculated as
un-1)" = (x)s,

u= (UO Ul

wheresand¢(z) are given by (1) and (7). The matgXx) in (7) is
called theshift matrix

0,0 U0,no—1

= ¢(z)s+sp(y)". (10)

Unq—1,0 Uny—1,mo—1

Shift matricesp(x) and¢(y) areni x n1 andng x ne matrices (7)
with coefficientsao, . . ., an, —2 andbo, . . ., bn, —2, respectively.



Coefficient selection. In order to construct a specific instanti-

ation of the 2-D NN model (9) for an image of interest, we needfrom c by keeping only coefficients, . . .

to select appropriate coefficients, . . ., an, —2 andbo, . . ., bp,—2.
We determine these coefficients by constructing the shifrioes
é(x) and¢(y) that minimize thef, distortion of the shift (16}

{ j

It can be solved as an overdetermined least-squares problem

ag, ...,

bo, ...,

an1727
bn272

= argmin ||¢(z)s+ sp(y)”

Ay by €

—9f2.

ao
Ao Bo
: a”bﬂ =s,. (11)
. . 0
Ang —1 Bng —1
b7L272

Here, eachy, isa(ni) x (n1—1) matrix with Ay, (4,7) = Si41,k,,
A, (1 +1,4) = s, for 0 < i < ny — 1 and other elements equal
to zero. EachBy, is a(n1) x (ne — 1) matrix with By, (i, k2 —

1) = Siko—1, Bry(i,k2) = Siky+1 for 0 < ¢ < ny and other
elements equal to zero. The vectre C"'"2 is the column-first
vectorization ofs, so thats, (i + jn1) = (i, 7).

4. IMAGE COMPRESSION

The proposed model can potentially be used for compresadanp-
tive filtering, and denoising of images. In this paper we gtindage
compression, which is an extensive research area in image$s-
ing with multiple approaches, algorithms, and standariis [1

Compression using orthonormal bases.Orthonormal bases
have long been used for efficient image representation amges-
sion. A suitable basis captures most of the image informatiith
relatively few basis functions (that is, most of the imagergy is
stored in a few projection coefficients with large magnis)dén ad-
dition, orthogonality of basis functions removes reduroyaim the
image representation.

In general, if vector®o, by, . .., b,—1 form an orthonormal ba-
sisinC", a signals € C™ in (1) can be compressed as follows. First,
the coefficients of the projection efon the basis are computed as
Cn71)T =B S,

c= (Co (12)

where the matrix
B = (ho bn1)”

represents an orthogonal transform. Without loss of gdibgrave
can assume the coefficients, . . . , ¢,—1 are ordered by decreasing
magnitude, so thago| > |c1] > ... > |cn—1]- The compressed
signals can be reconstructed as

(13)

s=B'¢, (14)

2This coefficient selection is partially motivated by [8], ere images
are modeled as non-causal autoregressive fields with cinstefficients
determined by the MMSE prediction error. They can be vigedlias 2-
D NN graphs in Fig. 1(b) with edge weightsy = = ap,-2 and
bo = bp,—2. Our approach can extend the model in [8] to fields
with non- constant coefficients. Image-based optimizatibedge weights;
andb; also distinguishes our approach from other works, such asl(p
where edge weights are determined by vertices rather tiyaalsioefficients
assigned to vertices.

ci—1 0 O)T is obtained

, ce—1. The corresponding

where the vectot = (co

compression ratio i&(e) = n/{.

For a fixed peak signal-to-noise ratio (PSNRWith the corre-
sponding mean squared error (MSEe achieve the highest com-
pression ratidk(e€) by finding the smallest that satisfies [1]

Lis—sg<e (15)
n

For multiple signalss, ...,sm—1 € C" that require, respec-

tively, £o, ..., ¢n—1 coefficients to satisfy (15) for the MSE the
average compression ratiB,.q(€) is
nm
Ray = . 16
= T s (16)

Identifying a suitable basis for an efficient representatimd
compression of images of interest is a non-trivial task. Anbar
of such bases have been proposed. Some of the most successful
and widely-used ones are the cosine basis and wavelet basese
bases are well-suited for representation of natural, “shfoion-
ages. The corresponding orthogonal transform matidges (13)
that compute the projection coefficients are the DCT and th&'D
Proposed algorithm. Since the scaled discrete NN transform (6)
is an orthogonal matrix, its rows represent an orthonorraslsin
C™. Hence, the rows of the tensor product

D,'*Pgs @D, *Ppa 17)

of discrete NN transformP p,. andP g s, introduced in Section 3,
form an orthonormal basis i@"*"2.

Based on this property, we propose the tensor product (17) of
Pp,. andPg g as the compressing orthogonal transfdsnin (13).
The proposed compression algorithm consists of four steps:

Step 1. Represent an imagén (8) in the column-first vectorized
forms,, so thats, (i + jni) = (4, j).

Step 2. Determine the coefficients, . . . , an, —2 andby, . ..
by solving the least-squares problem (11).

Step 3. Construct the corresponding scaled discrete NN¥foans
D,'?Pp . andD,'/* Pq 5. Compute the projections
in (12) of s, on the orthonormal basis given by the rows of
the tensor product (17).

Step 4. For a fixed MSE, determine and keep the minimal required
number of projection coefficients, discard others, andwzalc
late the compressed sigraih (14).

Compression of multiple imagesOne advantage of transforms
such as the DCT and the DWT is that they do not depend on the im-
age that we wish to compress. The proposed transform (1W; ho
ever, depends on the image of interest. When compressing mul
tiple images of the same size and similar structure and sitien
we can avoid constructing separate transforms for eacharbgg
considering a single 2-D NN model (9) for all images. The eerr
sponding weightso, . .., an, —2 andbo, . . ., bn,—2 are obtained by
solving the following joint minimization problem for ath images

3 bn272

%, - - -, Sm—1 Simultaneously:
ag, ..., Qn;-2, _ T 2
; p 2} = argmin S Iow)s +s) 1B
0y veen Un2=2 akybhy o
(18)

3A tensor product of matricest € C™1 %"t and B € C"2*"2 is a
matrix C = A ® B € C"n2Xmn2 gych thatC(kin1 + k2, mini +
ma) = A(k1, m1)B(k2, m2).



. Peak signal-to-noise ratio
Dataset  Algorithm
30dB 40dB 50dB 60dB

(a) Digits (b) Faces Proposed 5.8 3.0 2.4 2.1
Digits ~ DCT 2.2 1.4 1.1 1.1
Fig. 2. Examples of images used for the evaluation of the proposed DWT 5.2 3.0 2.3 1.9

compression algorithm.
Proposed  32.0 6.6 2.4 1.5

Faces DCT 4.4 1.8 1.3 1.1
5. EXPERIMENTS DWT 19.4 5.0 2.2 1.4

Setup. To analyze the performance of the proposed algorithm, welable 1. Average compression ratios obtained for PSNR values of
apply it to the compression of two classes of images: hantlenr 30 dB, 40 dB, 50 dB, and 60 dB.
digits and faces (examples are shown in Fig. 2). The digigesa
are obtained from the MNIST dataset [11]. We 1860 images for
each of the ten digits. The face images are obtained fromabes94 7. REFERENCES
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