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ABSTRACT

We propose a new framework for distributed computation of average
consensus. The presented framework leads to a systematic design of
iterative algorithms that compute the consensus exactly, are guar-
anteed to converge in finite time, are computationally efficient, and
require no online memory. We demonstrate that our approach is ap-
plicable to a broad class of networks. For remaining networks, our
framework leads to the construction of approximating algorithms for
consensus that are also guaranteed to compute in finite time.Our
approach is inspired by graph filters introduced by the theoretical
framework of signal processing on graphs.

Index Terms— Consensus, distributed average, graph filters,
network.

1. INTRODUCTION

We consider a network ofN agents that is described by a graphG =
(V, E), whereV = {v1, . . . , vN} is the set of nodes andE ⊆ V ×V
is the set of edges. Each nodevn represents thenth agent, and nodes
vn andvm are linked by adirectededge(vn, vm) ∈ E if the agentvn
communicates to the agentvm. Indices of nodes that communicate
to thenth agent form a setΩn = {m | (vm, vn) ∈ E} called the
neighborhoodof vn.

Each agentvn at timet holds a scalar valuexn(t) ∈ C. Agents
communicate with their neighbors and update their values through
distributed linear iterations of the form

xn(t+ 1) = wnn(t)xn(t) +
∑

m∈Ωn

wnm(t)xm(t), (1)

where, in general, the weightswnm(t) ∈ C are complex-valued
scalars that change with timet.

The distributed average consensusproblem refers to the situa-
tion when all agents seek to compute the average of all initial values

yn =
1

N
(x1(0) + x2(0) + . . .+ xN(0)) (2)

in a distributed manner, that is, through iterative communication
of the form (1). Key questions that need to be answered for this
problem are: a) what conditions should be imposed on the weights
wnm(t) to compute the average consensus (2) exactly or approxi-
mately, and b) how the corresponding computational algorithm can
be constructed.

Distributed computation of the average consensus was origi-
nally formulated in [1] and has been extensively studied in numerous
works, including [2, 3, 4, 5, 6, 7, 8, 9, 10] and others. Multiple imple-
mentations of the distributed average consensus have been proposed
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in the literature. They differ in preprocessing, online memory, and
computational requirements, as well as the nature of convergence
(finite-time vs. asymptotic convergence). These metrics lead to var-
ious design trade-offs; for instance, it is expected that algorithms
with asymptotic convergence (see [4, 6] and references therein) are
less memory and computationally intensive than algorithmswith
finite-time convergence, such as [7, 8].

Contribution. In this paper we present a new framework for
distributed computation of the average consensus (2) that avoids the
trade-off between convergence and efficiency. Our approachleads
to a systematic design of algorithms that, on the one hand, are exact
and guaranteed to converge infinite time, and, on the other hand, are
computationally efficient and require no online memory. We iden-
tify a family of networks that can compute the average consensus
exactly and in finite time, determine a lower bound on the number of
iterations required for exact computation, and provide a constructive
procedure for the corresponding algorithms. We also study the prob-
lem of approximate computation of average consensus in finite time
and demonstrate that it can be formulated as a semidefinite program.

The presented approach is inspired by a class of operators called
graph filtersthat were introduced by the theoretical framework of
discrete signal processing on graphs [11, 12] as generalizations of
linear time-invariant filters from regular lattices to arbitrary graphs.
It offers a general, principled formulation of the distributed com-
putation of linear functions that can be applied to various problems,
not only the distributed average consensus. This contrastsour frame-
work with other existing implementations of distributed average con-
sensus, such as [10], that also consider exact and finite-time com-
putation of distributed consensus, but do not generalize straightfor-
wardly to other transforms.

2. COMPUTATION MODEL

In this section, we introduce specific assumptions on the commu-
nication model (1) and formalize our computational framework for
agent networks.

We assume that weightswnm(t) change from timet to timet+1
proportionally to each other, so that the ratiownm(t+1)/wnm(t) is
constant for alln 6= m. We formalize this assumption by expressing
the weights in the form

{

wnm(t) = βtwnm, n 6= m,

wnn(t) = αt + βtwnn,
(3)

wherewnm ∈ C stand forwnm(0) andαt, βt ∈ C are arbitrary
scalar coefficients. We assume that the weightswnm are known and
provided as a part of the network topology, while coefficients αt

andβt are unknown variables. Unlike many existing algorithms for
distributed consensus, we do not require the weightswnm(t) to be
non-negative.



It is reasonable to assume thatβt 6= 0 for eacht in (3), since
otherwise the corresponding weightswnm(t) would be equal to zero
for all m 6= n. Hence, we can rewrite the iteration step (1) using the
assumptions (3) as

xn(t+ 1) = βt

(

(

αt

βt

+wnn

)

xn(t) +
∑

m∈Ωn

wnmxm(t)

)

.

(4)
We define the vector of values

x(t) =
[

x1(t) x2(t) . . . xN(t)
]T

and write (4) in the matrix-vector form

x(t+ 1) = βt

(

αt

βt

I+W

)

x(t)

=

t
∏

i=0

βi

(

αi

βi

I+W

)

x(0), (5)

whereI is aN ×N identity matrix and

W =







w1,1 . . . w1,N

...
...

...
wN,1 . . . wN,N






(6)

is andN ×N matrix of weightswnm. We then define coefficients

gi = αi/βi

and
ft+1 = β0β1 · · ·βt

and write the computation model (5) as

x(t+ 1) = ft+1

t
∏

i=0

(gi I+W)x(0). (7)

We describe computation algorithms using the model (7) rather
than (4); that is, in terms of coefficientsft+1 and gi rather than
αt andβt. Since the weight matrixW is known, an algorithm is
completely specified by the corresponding coefficientsft+1 andgi.

In addition, we assume that the weight matrix (6) is symmetric1,
so that weights in (3) satisfywnm = wmn. In other words, the
network is undirected. We also assume that the weightswnn for all
1 ≤ n ≤ N satisfy

wnn = −
∑

m∈Ωn

wnm. (8)

In this paper, we study the computation of the average consen-
sus (2) using algorithms of the form (7). In particular, let us write
the average consensus in the matrix-vector form

y = Px
(0). (9)

Here,
y =

[

y1 y2 . . . yN
]T

is the vector of averages (2). The matrix

P =
1

N







1 . . . 1
...

...
...

1 . . . 1







=
1

N
11

T (10)

1Assuming thatW is Hermitian leads to practically identical results.

is the average consensus matrix; the vector

1 =
[

1 1 . . . 1
]T

(11)

denotes a vector of all ones, . The average consensus (9) can be com-
putedexactlyand infinite timeby a network of agents if there exist a
non-negative finite integert and coefficientsft andg0, g1, . . . , gt−1

that satisfy

P = ft

t−1
∏

i=0

(gi I+W). (12)

Observe that by fixingt, one can attempt to find coefficients
ft andg0, g1, . . . , gt−1 by casting (12) as a minimization problem.
However, it is not obvious how to select the value fort and what is
the smallestt that leads to an exact solution. Moreover, depending
on W, the search for a solution can also be complicated by slow
convergence and numerical instability. In Section 3, we provide a
principled approach to solving (12).

Connection with graph filters. The right-hand side of (7) can
be written as a matrix polynomial

h(W) = h0 I+h1W + h2W
2 + . . .+ htW

t. (13)

It is obtained by evaluating the scalar-coefficient polynomial

h(z) = ft

t−1
∏

i=0

(gi + z) (14)

= h0 + h1z + h2z
2 + . . .+ htz

t. (15)

at z = W. By comparing polynomials (14) and (15), we immedi-
ately conclude that the coefficientft in (7) and coefficientht in (15)
are equal:

ft = ht. (16)

The matrix polynomialh(W) in (13) has the same form
as graph filters introduced by the discrete signal processing on
graphs [11, 12]. This framework studies the analysis and processing
of signals residing on graphs, and graph filters operate by combining
weighted averages of neighborhoods of different radii for each node.
Hence, the computation model (12) can be seen as an implemen-
tation of the distributed average consensus using an appropriately
designed graph filter on the graphG that describes the agent network
and has the adjacency matrix (6).

3. EXACT COMPUTATION

In this section, we identify a broad class of networks that can com-
pute the average consensus exactly and in finite time. We alsodeter-
mine the minimal number of iterations required for the exactcom-
putation of the consensus and provide a construction procedure for
the corresponding algorithm.

SinceW is a symmetric matrix, it has a full set of orthonormal
eigenvectors [13]. The eigendecomposition ofW is given by

W = VΛV
T , (17)

where the columns of the eigenvector matrix

V =
[

v1 v2 . . .vN

]

are the orthonormal eigenvectors ofW, and

Λ =







λ1 Im1

. . .
λK ImK






(18)



is a diagonal matrix of eigenvalues, where each distinct eigenvalue
λk for 1 ≤ k ≤ K has algebraic multiplicitymk; the multiplicities
add up to

m1 +m2 + . . .+mK = N.

Furthermore, it follows from (8) that matrixW has an eigen-
value 0, which we assign to be the first eigenvalueλ1 = 0. Its
corresponding eigenvector is

v1 =
1√
N

1 . (19)

As follows from (17) and (19),

Vv1 =
1√
N

V
T
1 =

[

1 0 . . . 0
]T

. (20)

The following theorem establishes a family of networks thatcan
compute the average consensus exactly and in finite time. Theproof
is omitted due to space restrictions.

Theorem 1The distributed average consensus can be computed ex-
actly and in finite time byany network with a symmetric commu-
nication matrixW that satisfies the condition (8) and has a simple
eigenvalueλ1 = 0 (that is,m1 = 1).

The corresponding polynomialh(z) of the form (15) satisfies
the set of conditions

{

h(0) = h0 = 1,

h(λk) = 0, 2 ≤ k ≤ K.
(21)

Recall that we do not make any assumptions about the weights
wnm. If we assume that they are non-negative, Theorem 1 can be
formulated as follows.

Corollary 1 The distributed average consensus can be computed ex-
actly and in finite time by any connected network with a symmetric
communication matrixW that satisfies the condition (8) and has
non-negative weightswnm ≥ 0 for n 6= m.

Proof: Observe that matrixW that satisfies (8) and has positive
weightswnm > 0 for n 6= m can be seen as a negative Laplacian
matrix of the underlying graph. In this case, the multiplicity of the
eigenvalueλ1 = 0 equals to the number of connected components in
the graph [14], that is,m1 = 1, since the graph is connected. Hence,
the conditions of Theorem 1 are satisfied, and the average consensus
can be computed exactly in finite time by the considered network. �

The next theorem identifies the smallest number of iterations re-
quired to compute the average consensus.

Theorem 2Consider a network ofN agents and a polynomialh(z)
that satisfies the conditions of Theorem 1. The minimum number of
iterations required to compute the distributed average consensus (10)
by this network isK − 1.

Proof: The system (21) ofK − 1 linear equations can be written in
the matrix-vector form as











1 λ1 . . . λt
1

1 λ2 . . . λt
2

...
...

...
1 λK . . . λt

K





















h0

h1

...
ht











=











1
0
...
0











. (22)

Since the system matrix of (22) is a Vandermonde matrix, thislin-
ear system has an exact solution ift ≥ K − 1 [13]. Hence, the
minimum number of iterations required to compute the distributed
average consensus isK − 1. �

Notice that Theorems 1 and 2 only specify how to determine
coefficientshi of the polynomialh(z). However, the implementa-
tion (12) requires the knowledge of the coefficientsgi, which in turn
requires the factorization of the corresponding polynomial h(z). For
networks with a large number of agentsN this task can be computa-
tionally expensive and numerically unstable.

As we demonstrate next, the factorization of the polynomial
h(z) actually can be completely avoided for the computation algo-
rithm that used the fewest possible number of iterationsK − 1.

Theorem 3The coefficientsgi andft required to compute the aver-
age consensus operator in exactlyK − 1 iterations are

{

gk = −λk+2, 0 ≤ k ≤ K − 2,

ft =
(−1)K−1

λ2λ3···λK
.

(23)

Proof: As follows from Theorem 2, the minimal possible degree for
polynomialh(z) that satisfies (12) ist = K − 1. In this case, it has
t = K − 1 roots−gi for 0 ≤ i ≤ t− 1.

By direct inspection of conditions (21) we conclude that these
roots are precisely−gi = λi+2 for 0 ≤ i ≤ K − 2, which leads to
the first part of (23).

Combining this result with the fact thath0 = 1, as established
by the equality (21) in Theorem 1, we obtain

ht =
(−1)K−1

λ2λ3 · · ·λK

.

Sinceft = ht (see (16)), we obtain the second part of (23). �

We would like to point out here that a result similar to Theorem 3
was obtained in [10] for the distributed average consensus computa-
tion in exactlyK−1 iterations in sensor networks with non-negative
weightswnm ≥ 0. In contrast, our approach applies to networks
with arbitrary weights. Moreover, Theorems 1 and 2 provide agen-
eral solution for the exact implementation of the average consensus
in an arbitrary number of iterationst ≥ K − 1. The solution can be
obtained by solving (22) for the desired value oft.

Discussion.Given a network with a known weight matrixW,
we can use the solution (23) to quickly determine the number of iter-
ations required to computed the distributed averaging operator (10)
and corresponding coefficients.

Recall that the minimal number of iterations required to com-
pute the average consensus in any network cannot be smaller than
the diameter of the network. In general, the fastest algorithms that
compute the average consensus in the smallest possible number of
iterations require careful selection and tuning of parameterswnm(t)
in (1) for each time stept. However, despite the restrictions (3), our
framework can also produce algorithms that compute the average
consensus in the smallest number of iterations.

For example, consider the star network ofN agents in Fig. 1(a).
Its diameter is two; hence, the fastest algorithm for average consen-
sus would require two iterations. Let us set all non-zero coefficients
wnm to 1 and ensure the condition (8) by settingw11 = 1−N and
wnn = −1 for 2 ≤ n ≤ N . The corresponding communication
matrixW hasK = 3 distinct eigenvaluesλ1 = 0, λ2 = −1, and
λ3 = −N with respective multiplicitiesm1 = 1, m2 = N − 2, and
m3 = 1. As follows from Theorem 2, the computation algorithm



(a) Star (b) Circle

Fig. 1. Example graphs representing networks of agents. All edges
are undirected.

requirest = K − 1 = 2 iterations. It is thus the fastest algo-
rithm. As follows from Theorem 3, the corresponding coefficients
aref2 = 1/N , g0 = 1 andg1 = N .

Another example is the circle network ofN agents in Fig. 1(b).
Its diameter isN/2 (we assume thatN is even). Again, we set non-
zero coefficientswnm to 1 and satisfy the condition (8) by setting
wnn = −2 for all n. In this case, the eigenvalues of corresponding
W areλk = 2 cos(2πk/N)−2 for 0 ≤ k ≤ N/2 with multiplicity
mk = 1 for k ∈ {0, N/2} andmk = 2 otherwise. Hence, the dis-
tributed average consensus can be computed by this circle network
in N/2 iterations, which is the fastest possible algorithm.

4. APPROXIMATE COMPUTATION

The average consensus cannot be computed exactly and in finite time
by a network that does not satisfy the conditions of Theorem 1. In
this case, we can only compute the consensus in finite time approxi-
mately.

The closest approximationh(W) of the average consensus op-
eratorP minimizes the output error of the operator. It minimizes
the spectral norm of the differenceh(W) −P and can be found by
solving the minimization problem

minimize
h(z)

||h(W) −P||2 . (24)

By introducing a slack variables, (24) can be formulated and solved
as a semidefinite program [5]

minimize
h(z)

s

subject to

[

s I h(W) −P

h(W)−P s I

]

� 0.

Here,� denotes matrix inequality: the relationW � B means that
W−B is a positive semidefinite matrix.

Discussion.For some networks, the search for the best approx-
imation to average consensus can be simplified even further or even
solved exactly. For example, consider a network with a symmetric
matrixW that satisfies condition (8), but its eigenvalueλ1 = 0 is
not simple. In this case, the objective function in (24) can be modi-
fied as

||h(W) −P||2 =
∣

∣

∣

∣

∣

∣
V

T (h(W) −P)V
∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣











h(λ1)− 1
h(λ1)

. . .
h(λK)











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= max
{

(h(λ1)− 1)2, h(λ1)
2, . . . , h(λK)2

}

.

Since the valuesh(λk) for 2 ≤ k ≤ K can be set arbitrarily
small, the minimization problem (24) is equivalent to the problem

minimize
h(z)

max
{

(h(λ1)− 1)2, h(λ1)
2
}

, (25)

which has the exact solution corresponding toh(λ1) = 1/2. Hence,
there exist infinitely many optimal approximate finite-timealgo-
rithms for the computation of the average consensus by a network
with symmetric matrixW that satisfies condition (8) and has a
repeating eigenvalueλ1 = 0. These algorithms can be found by
solving the system of equations

{

h(0) = h0 = 1/2,

h(λk) = γk, 2 ≤ k ≤ K,
(26)

whereγk are arbitrary constants that satisfy−1/2 ≤ γk ≤ 1/2
for 2 ≤ k ≤ K. In particular, if we set allγk = 0 in (26), we
immediately obtain

{

gk = −λk+2, 0 ≤ k ≤ K − 2,

ft =
(−1)K−1

2λ2λ3···λK
.

As an example, consider an undirected network that consistsof
several components that are not connected to each other. Theaverage
consensus cannot be computed in this network. Its optimal approx-
imation is an algorithm in which every agent computes an average
within its own component.

Our approach yields this optimal approximation algorithm that
computes in finite time. For instance, consider a network consisting
of two components withM andN − M agents. For this network,
m1 ≥ 2. Assuming thatm1 = 2, the eigenvalueλ1 = 0 has two
orthonormal eigenvectorsv1 given by (19) and

v2 =

√

N −M

NM

[

1M

− M

N−M
1N−M

]

,

where1n denotes a vector of lengthn containing all ones. In this
case, the solution to (26) with allγk = 0 yields a polynomialh(z)
of degreeK − 1 that satisfies

h(W) = V















1
2

1
2

0
. . .

0















V
T

=
1

2

[

1
M

1M 1T
M

1
N−M

1N−M 1T
N−M

]

. (27)

Comparing (27) with the consensus matrix (10), we observe that this
algorithm computes the average consensus in each componentin t =
deg h(z) = K − 1 iterations.

5. CONCLUSIONS

We have presented a new framework for distributed average consen-
sus computation by agent networks. The proposed framework leads
to a systematic design of iterative algorithms that computethe con-
sensus exactly, are guaranteed to converge in finite time, are compu-
tationally efficient, and require no online memory. We demonstrated
that our approach can be used with a broad class of networks. In
addition, we demonstrated that for all other networks the presented
framework leads to the construction of approximating algorithms
that are also guaranteed to compute in finite time and can be found
by solving a semidefinite program.
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