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ABSTRACT

We propose a new framework for distributed computation efage
consensus. The presented framework leads to a systemsitn aé
iterative algorithms that compute the consensus exaattygaar-
anteed to converge in finite time, are computationally effitiand
require no online memory. We demonstrate that our apprcaap-i
plicable to a broad class of networks. For remaining netsjookir
framework leads to the construction of approximating atpars for
consensus that are also guaranteed to compute in finite {Doe.
approach is inspired by graph filters introduced by the titbeal
framework of signal processing on graphs.
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in the literature. They differ in preprocessing, online negyn and
computational requirements, as well as the nature of cgevee
(finite-time vs. asymptotic convergence). These metriad te var-
ious design trade-offs; for instance, it is expected thgorkthms
with asymptotic convergence (see [4, 6] and referencegittjesire
less memory and computationally intensive than algorithwith
finite-time convergence, such as [7, 8].

Contribution. In this paper we present a new framework for
distributed computation of the average consensus (2) teadsthe
trade-off between convergence and efficiency. Our apprésads
to a systematic design of algorithms that, on the one haedarct
and guaranteed to convergefimite time and, on the other hand, are

Index Terms— Consensus, distributed average, graph filters computationally efficient and require no online memory. \den-

network.

1. INTRODUCTION

We consider a network d¥ agents that is described by a gragh=
(V,&),whereV = {v1,...,vn}isthe setof nodes arlC V x V
is the set of edges. Each noderepresents theth agent, and nodes
vy, anduy, are linked by alirectededge(v,, vn) € € ifthe agent,
communicates to the agent,. Indices of nodes that communicate
to thenth agent form a se®,, = {m | (vm,v,) € £} called the
neighborhoodf v,,.

Each agent,, at timet holds a scalar value, (t) € C. Agents
communicate with their neighbors and update their valuesutih
distributed linear iterations of the form

Ta(t+1) = Wan(OTa(t) + > Wam (H)zm (t),

meQy

@)

where, in general, the weights,..(t) € C are complex-valued
scalars that change with tinte

The distributed average consenspsoblem refers to the situa-
tion when all agents seek to compute the average of all indlaes

- :%(xl(o)-l—xz(())-l—...—b-wN(O)) )

in a distributed manner, that is, through iterative comroation

of the form (1). Key questions that need to be answered far thi

problem are: a) what conditions should be imposed on thehiig

wnm (t) to compute the average consensus (2) exactly or approxi-

mately, and b) how the corresponding computational algrican
be constructed.

Distributed computation of the average consensus was- origi

nally formulated in [1] and has been extensively studiedlimarous
works, including [2, 3,4, 5, 6,7, 8, 9, 10] and others. Muéipnple-
mentations of the distributed average consensus have beposed
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tify a family of networks that can compute the average cosisen
exactly and in finite time, determine a lower bound on the nemaib
iterations required for exact computation, and providersstoictive
procedure for the corresponding algorithms. We also stueyptob-
lem of approximate computation of average consensus i fiinite
and demonstrate that it can be formulated as a semidefimigggm.
The presented approach is inspired by a class of operatited ca
graph filtersthat were introduced by the theoretical framework of
discrete signal processing on graphs [11, 12] as genetializaof
linear time-invariant filters from regular lattices to drhiy graphs.
It offers a general, principled formulation of the distriéd com-
putation of linear functions that can be applied to variotgbfems,
not only the distributed average consensus. This convasfsame-
work with other existing implementations of distribute@eage con-
sensus, such as [10], that also consider exact and finited¢om-
putation of distributed consensus, but do not generalizegsttfor-
wardly to other transforms.

2. COMPUTATION MODEL

In this section, we introduce specific assumptions on thenoem
nication model (1) and formalize our computational framenfor
agent networks.

We assume that weights, (¢) change from time to timet+1
proportionally to each other, so that the ratig.. (t + 1) /wnm (t) is
constant for alh # m. We formalize this assumption by expressing
the weights in the form

{wnm (t) = Btwnmy

Wnn (t) = ot + Btwnny

n #m,

®)

wherew,,, € C stand forw,.(0) anday, 5 € C are arbitrary
scalar coefficients. We assume that the weights, are known and
provided as a part of the network topology, while coefficsen
andp; are unknown variables. Unlike many existing algorithms for
distributed consensus, we do not require the weights (¢) to be
non-negative.



It is reasonable to assume th@at # 0 for eacht in (3), since s the average consensus matrix; the vector
otherwise the corresponding weighis (¢) would be equal to zero
for all m # n. Hence, we can rewrite the iteration step (1) using the 1=[1 1 ... 1
assumptions (3) as

1" (11)

denotes a vector of all ones, . The average consensus (9 camb

o putedexactlyand infinite timeby a network of agents if there exist a
xn(t+1) = B <<— + wnn) xn(t) + Z wnmxm(t)> non-negative finite integerand coefficientsf; andgo, g1, ..., gt—1
B meQ, that satisfy
4) t—1
We define the vector of values P=f H(gi I+W). (12)
T =0
x(t) = [21(t) 22() ... an(D)] Observe that by fixing, one can attempt to find coefficients
and write (4) in the matrix-vector form ft andgo, g1, ..., g+—1 by casting (12) as a minimization problem.
However, it is not obvious how to select the value f@and what is
x(t+1) = B (2 I +W) x(t) the smallest that leads to an exact solution. Moreover, depending
B on W, the search for a solution can also be complicated by slow

convergence and numerical instability. In Section 3, wevigi® a
) x(0), (5)  principled approach to solving (12).

t
H Bi (% I+W
i=0 ’ Connection with graph filters. The right-hand side of (7) can

wherel is aN x N identity matrix and be written as a matrix polynomial
Wil ... WiN h(W) = hoI+hiW 4+ hoW? + ...+ h,W'.  (13)
W= ! : : (6) Itis obtained by evaluating the scalar-coefficient polyfam
wN,1 ... WN,N t—1
isandN x N matrix of weightsw,,.. We then define coefficients hz) = fi]](gi+2) (14)
1=0
gi = ai/Bs = hodhiz+ hez? 4.+ b2t (15)
and Foor = BoBr--- B atz = W. By comparing polynomials (14) and (15), we immedi-
. N ot K ately conclude that the coefficiefitin (7) and coefficient. in (15)
and write the computation model (5) as are equal:
t ft = ht« (16)
x(t+1) = ferr [ [(9: T+W)x(0). @) The matrix polynomial (W) in (13) has the same form
=0 as graph filtersintroduced by the discrete signal processing on

We describe computation algorithms using the model (7)erath graphs [11, 12]. This framework studies the analysis andgssing
than (4); that is, in terms of coefficients,1 and g; rather than  of signals residing on graphs, and graph filters operate mbatng
a: andB;. Since the weight matri¥V is known, an algorithm is  weighted averages of neighborhoods of different radii émtenode.
completely specified by the corresponding coefficigiats andgs;. Hence, the computation model (12) can be seen as an implemen-

In addition, we assume that the weight matrix (6) is symroktri  tation of the distributed average consensus using an apately
so that weights in (3) satisfw,.. = wm~». In other words, the designed graph filter on the graphthat describes the agent network
network is undirected. We also assume that the weights for all and has the adjacency matrix (6).
1 < n < N satisfy

W = — Z o ®) 3. EXACT COMPUTATION
men In this section, we identify a broad class of networks that oam-

In this paper, we study the computation of the average censempute the average consensus exactly and in finite time. Welatso-

sus (2) using algorithms of the form (7). In particular, lstwrite ~ mine the minimal number of iterations required for the examn-

the average consensus in the matrix-vector form putation of the consensus and provide a construction pruveddr
the corresponding algorithm.
_ (0) 9 . . . L.
y=Px". 9) SinceW is a symmetric matrix, it has a full set of orthonormal
Here, eigenvectors [13]. The eigendecompositiorMifis given by
T
y=[y v ... uyn] W=VAVT, 17)
is the vector of averages (2). The matrix . .
where the columns of the eigenvector matrix
1 ... 1
P _ 1 . . . V = [Vl V2 e VN]
N 1 ' 1 are the orthonormal eigenvectorsWf, and
AL,
= Ly (10) thm
N A= (18)

1Assuming thaW is Hermitian leads to practically identical results. i L e



is a diagonal matrix of eigenvalues, where each distinareiglue
A for 1 < k& < K has algebraic multiplicityn; the multiplicities
add up to

mi1+mo+...+mg = N.

Furthermore, it follows from (8) that matri¥v has an eigen-
value 0, which we assign to be the first eigenvalde = 0. Its
corresponding eigenvector is

1
vi=—1. 19
1= TR (19)
As follows from (17) and (19),
Vvi=—=—vT1=[1 0 ... q". (20)

VN

The following theorem establishes a family of networks tteat
compute the average consensus exactly and in finite timepiioé
is omitted due to space restrictions.

Since the system matrix of (22) is a Vandermonde matrix, lthis
ear system has an exact solutiort if> K — 1 [13]. Hence, the
minimum number of iterations required to compute the disted
average consensushs — 1. d

Notice that Theorems 1 and 2 only specify how to determine
coefficientsh; of the polynomiali(z). However, the implementa-
tion (12) requires the knowledge of the coefficieptswhich in turn
requires the factorization of the corresponding polyndrhia). For
networks with a large number of agem¥sthis task can be computa-
tionally expensive and numerically unstable.

As we demonstrate next, the factorization of the polynomial
h(z) actually can be completely avoided for the computation -algo
rithm that used the fewest possible number of iteratins 1.

Theorem 3The coefficientg); and f; required to compute the aver-
age consensus operator in exadily— 1 iterations are

gk = —Aky2, 0<k<K-2
_ (=pi-?
fo=sxan

(23)

Theorem 1The distributed average consensus can be computed ex-

actly and in finite time byany network with a symmetric commu-

Proof: As follows from Theorem 2, the minimal possible degree for

nication matrixW that satisfies the condition (8) and has a simplePolynomialh(z) that satisfies (12) is= K — 1. In this case, it has

eigenvalue\; = 0 (thatis,m; = 1).
The corresponding polynomidl(z) of the form (15) satisfies
the set of conditions

{h(o) =ho =1,

h(Ak) =0, D)

2<k<K.

Recall that we do not make any assumptions about the weights
wnm. If we assume that they are non-negative, Theorem 1 can be

formulated as follows.

t=K—1roots—g;for0 <¢<t¢t—1.

By direct inspection of conditions (21) we conclude thatsthe
roots are precisely-g; = A2 for 0 < i < K — 2, which leads to
the first part of (23).

Combining this result with the fact thah = 1, as established
by the equality (21) in Theorem 1, we obtain

(_I)Kfl

hi = ——————.
D VS VD

Sincef, = h. (see (16)), we obtain the second part of (23). O
We would like to point out here that a result similar to Theni®

Corollary 1 The distributed average consensus can be computed e¥zas obtained in [10] for the distributed average consensmgpata-

actly and in finite time by any connected network with a synrinet

tion in exactlyK — 1 iterations in sensor networks with non-negative

communication matrixW' that satisfies the condition (8) and has eightsuw,,,, > 0. In contrast, our approach applies to networks

non-negative weighta,,,, > 0 for n # m.

Proof: Observe that matridW that satisfies (8) and has positive
weightsw,,,,, > 0 for n # m can be seen as a negative Laplacian

matrix of the underlying graph. In this case, the multiplicdf the

eigenvalue\; = 0 equals to the number of connected components ine
the graph [14], thatisn, = 1, since the graph is connected. Hence,

the conditions of Theorem 1 are satisfied, and the averageenens
can be computed exactly in finite time by the considered ndtwo

The next theorem identifies the smallest number of iteratien
quired to compute the average consensus.

Theorem 2Consider a network alV agents and a polynomial(z)
that satisfies the conditions of Theorem 1. The minimum nurabe
iterations required to compute the distributed averagseasus (10)
by this network isk” — 1.

Proof: The system (21) ol — 1 linear equations can be written in
the matrix-vector form as

1 M\ X7 Tho 1
1 X AL h1 0

. =1|.]. (22)
1 Ak Moo | [ e 0

with arbitrary weights. Moreover, Theorems 1 and 2 providea-
eral solution for the exact implementation of the averageseasus
in an arbitrary number of iterations> K — 1. The solution can be
obtained by solving (22) for the desired valuet of

Discussion. Given a network with a known weight matrv,
can use the solution (23) to quickly determine the numbi¢ei
ations required to computed the distributed averagingaipef10)
and corresponding coefficients.

Recall that the minimal number of iterations required to eom
pute the average consensus in any network cannot be snialer t
the diameter of the network. In general, the fastest algmst that
compute the average consensus in the smallest possibleenahb
iterations require careful selection and tuning of paramst, . (¢)
in (1) for each time step. However, despite the restrictions (3), our
framework can also produce algorithms that compute theageer
consensus in the smallest number of iterations.

For example, consider the star networkMfagents in Fig. 1(a).
Its diameter is two; hence, the fastest algorithm for avei@msen-
sus would require two iterations. Let us set all non-zerdfmients
wnm t0 1 and ensure the condition (8) by setting; = 1 — N and
wnn, = —1for 2 < n < N. The corresponding communication
matrix W has K = 3 distinct eigenvalues; = 0, A = —1, and
A3 = —N with respective multiplicitiesn; = 1, m2 = N — 2, and
ms = 1. As follows from Theorem 2, the computation algorithm



(a) Star (b) Circle

Fig. 1. Example graphs representing networks of agents. All edge
are undirected.

requirest = K — 1 = 2 iterations. It is thus the fastest algo-
rithm. As follows from Theorem 3, the corresponding coeffitts
arefo =1/N,go =1andgs = N.

Another example is the circle network &f agents in Fig. 1(b).
Its diameter iV/2 (we assume thaV is even). Again, we set non-
zero coefficientav,, to 1 and satisfy the condition (8) by setting
wnn, = —2 for all n. In this case, the eigenvalues of corresponding
W are\, = 2cos(2nk/N)—2for 0 < k < N/2 with multiplicity
my = 1for k € {0, N/2} andm; = 2 otherwise. Hence, the dis-
tributed average consensus can be computed by this cirtlorne
in N/2 iterations, which is the fastest possible algorithm.

4. APPROXIMATE COMPUTATION

The average consensus cannot be computed exactly andértifimét
by a network that does not satisfy the conditions of Theorerm1
this case, we can only compute the consensus in finite tim®x=ipp
mately.

The closest approximatiola( W) of the average consensus op-
eratorP minimizes the output error of the operator. It minimizes
the spectral norm of the differené€ W) — P and can be found by
solving the minimization problem

migi(m)ize [|h(W) =P, . (24)
By introducing a slack variable (24) can be formulated and solved
as a semidefinite program [5]
minimize
h(z)

S

sI
h(W)—-P

h(W) — P

subject to o1

= 0.
Here,= denotes matrix inequality: the relatid¥V > B means that
W — B is a positive semidefinite matrix.

Discussion.For some networks, the search for the best approx
imation to average consensus can be simplified even furtterem
solved exactly. For example, consider a network with a sytrime
matrix W that satisfies condition (8), but its eigenvalie = 0 is
not simple. In this case, the objective function in (24) camiodi-
fied as

IA(W) = Pll, = |[V" (W) —P) V]|

h(\) — 1

Since the value&(\y) for 2 < k < K can be set arbitrarily
small, the minimization problem (24) is equivalent to theldem

migi(rr}ize max { (h(\1) — 1)*, h(\1)?}, (25)
which has the exact solution correspondin@ () = 1/2. Hence,
there exist infinitely many optimal approximate finite-tira&go-
rithms for the computation of the average consensus by aomnketw
with symmetric matrixW that satisfies condition (8) and has a
repeating eigenvalug; = 0. These algorithms can be found by
solving the system of equations
h(0) = ho = 1/2,

S
{h()\k) = Yk,

where~;, are arbitrary constants that satisfyl/2 < ~, < 1/2
for 2 < k < K. In particular, if we set alx, = 0 in (26), we
immediately obtain

26
2< k<K, (26)

g = —Ak+2, 0<k<K-2
f _ (71)}(—1
= 2o N3 Ak

As an example, consider an undirected network that corsfists
several components that are not connected to each otheavEhage
consensus cannot be computed in this network. Its optimaioap
imation is an algorithm in which every agent computes anayer
within its own component.

Our approach yields this optimal approximation algorithratt
computes in finite time. For instance, consider a networlsisting
of two components witl\/ and N — M agents. For this network,
my > 2. Assuming thatn, = 2, the eigenvalué\; = 0 has two
orthonormal eigenvectons; given by (19) and

N-M { 1y ]

Vg = __M_q
N—M “N-M

NM
where1l,, denotes a vector of length containing all ones. In this
case, the solution to (26) with ajl, = 0 yields a polynomiak(z)
of degreeK — 1 that satisfies

1

S
2

h(W) 0 vT

1 ﬁ 113,
2

Comparing (27) with the consensus matrix (10), we obseratliis
algorithm computes the average consensus in each componeat

27)

1 T
~oar In-m 1Ny

deg h(z) = K — 1 iterations.

5. CONCLUSIONS

We have presented a new framework for distributed averagsers
sus computation by agent networks. The proposed framewadsl|
to a systematic design of iterative algorithms that compiogecon-
sensus exactly, are guaranteed to converge in finite timmea@npu-

tationally efficient, and require no online memory. We destmated
that our approach can be used with a broad class of networks. |
addition, we demonstrated that for all other networks tlesg@nted
framework leads to the construction of approximating dtors
that are also guaranteed to compute in finite time and canuafo
by solving a semidefinite program.

h(A1)

h(Ax)] |,
max {(h(A1) — 1)*, h(A\1)%, ..., h(Ak)} .
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