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Motivation: Human mobility is hard to understand.

Ride sharing has become primary and economical mode of
transportation.

• Didi completed 7 billion requests in China in 2017 [Ref: China
Daily].

• In South Carolina 1% ride sharing fee has yielded more than a
million dollars for municipalities to spend [Ref: NYTimes].

Exploit large scale human mobility data analytics to facilitate
valuable services for societal good.
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Contributions

• Discovery of human mobility patterns by leveraging
extensive real world data.

• Spatial and Temporal characterization

• Modeling for large scale synthetic data generation for broader
research community.

• Learning dynamic mobility patterns in real-time.
• Vehicle Placement Problem
• Dynamic Pooling
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Human Mobility Patterns

(a) Between 8 - 8:05pm (b) Between 3 - 3:05am

Ride Requests in New York.

Goal: Characterize city level spatial and temporal variation.
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Spatial Variation – Fractal Dimension

Figure: Self-similarity for cross roads of Montgomery county [Belussi 98].
S2 =

∑
(#points)2.
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Spatial Variation – Fractal Dimension

Figure: Self-similarity for cross roads of Montgomery county [Belussi 98].
S2 =

∑
(#points)2.

Given a set of points P with finite cardinality and fractal dimension
D2, the average number of points within a square of radius ε follow
a power law:

nb(ε) ∝ εD2 (1)
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Spatial Variation – Fractal Dimension

Figure: Self-similarity for cross roads of Montgomery county [Belussi 98].
S2 =

∑
(#points)2.

Relevance of Fractal Dimension:
• Provides a way to characterize deviation from uniformity.
• Hypothesis testing and rule discovery.
• Other applications – query optimization for spatial access

methods (SAM) [Faloustos 94].
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Spatial Variation – Fractal Dimension

Figure: S2 =
∑

(#points)2; Self-similarity for ride requests [Jauhri 17].

City D2 min. D2 max. D2 mean fractal range (m.)
Chicago 1.003 1.459 1.206 (600, 3000)

Los Angeles 0.828 1.482 1.074 (1500, 4000)
New York 1.250 1.668 1.457 (450, 2500)

San Francisco 1.049 1.686 1.343 (450, 2500)

Table: Summary of measured correlation fractal dimension (D2) for four cities; computed over a week for every
3-minute time snapshot.
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Fractal Dimensionality & Spatial Variation

Discovery: Number of ride requests within a bounded of
region follow a power law.
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Temporal Variation – Ride Request Graph

c©OpenStreetMap contributors
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(a) Four ride requests distributed spatially
over a map

c©OpenStreetMap contributors
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(b) Corresponding Ride Request Graph
with four nodes (marked by red boxes) and

directed edges.

Figure: Transformation of ride requests for a small interval into a
directed Ride Request Graph (RRG).
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Temporal Variation – Densification Power Law

Time-evolving graph like arXiv citation graph, the Patent citation
graph, social network graph, and many others share the
Densification Power Law property [Chakrabarti 98].

Image source: Chakrabarti, D. (2006). Graph mining: Laws, generators, and algorithms.
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Temporal Variation – Ride Request Graph

DPL Property – (Number of ride requests) ∝ (Number of grids)α [Jauhri 17].

(a) Hyderabad (b) Paris

(c) New York (d) San Francisco 11 / 37



Densification Power Law & Temporal Variation

Discovery: Ride Request Graphs obey Densification Power
Law property over time.
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DPL and Poolability

Poolability – Percentage of ride requests which:
• originate within the same time snapshot of 5minutes.
• pickup location within circle of radius εsr = 100m.
• drop-off location within a circle of radius of εdr = 1000m.
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DPL and Poolability

Poolability – Percentage of ride requests which:
• originate within the same time snapshot of 5minutes.
• pickup location within circle of radius εsr = 100m.
• drop-off location within a circle of radius of εdr = 1000m.

City Mean Poolability α

Hyderabad 2.23 1.031
Paris 2.39 1.054

New York 4.48 1.098
San Francisco 5.48 1.104

Mean poolability, and α for four cities computed for over a week’s data.
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Summary of Mobility Patterns

1. Fractal dimensionality provides an approximation of how ride
requests are geographically distributed.

2. RRGs provide a rigorous model to characterize requests over
time.
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Summary of Mobility Patterns

1. Fractal dimensionality provides an approximation of how ride
requests are geographically distributed.

2. RRGs provide a rigorous model to characterize requests over
time.

These characterizations could help in synthetic generation and to
understand how algorithms perform for applications related to
human mobility.
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Contributions

• Discovery of human mobility patterns by leveraging
extensive real world data.

• Spatial and Temporal characterization

• Modeling for large scale synthetic data generation for broader
research community.

• Learning dynamic mobility patterns in real-time.
• Vehicle Placement Problem
• Dynamic Pooling
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Synthetic Data Generation – First Attempt

Used PoI data from OSM to act as proxy for spatial
distribution of population, and a simple model to construct

graph which obeys DPL property.
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Synthetic Data Generation – First Attempt

Hyderabad Paris New York San Francisco

Figure: DPL plots from real data (top row) and synthetic data (bottom
row) for four cities.
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Synthetic Data Generation – Poolability Comparison

Figure: Comparison of poolability generated by synthetic data (red line)
and real data (dotted blue line).
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Synthetic Data Generation – GANs (Initial Results)

Figure: Ride requests generated for a 5 minute time interval at 11am
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Synthetic Data Generation – GANs (Initial Results)

Figure: Ride requests generated for a 5 minute time interval at 11pm
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Learning in Dynamic Environments

• Real-time mobility environment is changing; drop-off and
pickup locations are hard to predict.

• Costs alter including traffic conditions, rider and driver
demands.

Goal: Learn to make real-time decisions in a dynamic
environment at city-scale.
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Vehicle Placement Problem

How to reduce rider waiting and driver idling time by placing
vehicles close to riders without knowledge of future ride

requests?

In San Franciso, it’s estimated that approximately 20 percent of the miles traveled by
Uber and Lyft drivers are without passengers. – Citylab, April, 2018.
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Vehicle Placement Problem

d2

d1
• di - dropoffs at time

snapshot t

• pi - possible placements for
d1 by time snapshot t + 1

• pi - possible placements for
d2 by time snapshot t + 1
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Vehicle Placement Problem

p1 p2 p3

p4 d2p5
p6

p7 p8 p9

p1 p2 p3

p7 p8 p9

p4 p5
d1 p6

• di - dropoffs at time
snapshot t

• pi - possible placements for
d1 by time snapshot t + 1

• pi - possible placements for
d2 by time snapshot t + 1

24 / 37



Vehicle Placement Problem
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Two placements are made using
some algorithm.
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Vehicle Placement Problem

d2

d1

p∗

p∗

3

7

p∗

• di - dropoffs at time
snapshot t

• p∗ - placement for d1 by
time snapshot t + 1

• p∗ - placement for d2 by
time snapshot t + 1

Two placements are made using
some algorithm.

Reward R is computed for every time snapshot:

R(t + 1) = #good placements
#total placements

For the example above:

R(t + 1) = 1
2
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Vehicle Placement Problem

d2

d1

p∗

p∗

3

7

p∗

• di - dropoffs at time
snapshot t

• p∗ - placement for d1 by
time snapshot t + 1

• p∗ - placement for d2 by
time snapshot t + 1

Two placements are made using
some algorithm.

Reward R is computed for every time snapshot:

R(t + 1) = #good placements
#total placements

Objective: Maximize the reward R over time.
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Vehicle Placement Problem – Results

(a) Chicago (b) Los Angeles

(c) New York (d) San Francisco

Figure: Reward percentage plots for a week with three minute time
snapshots [Jauhri 17].
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Vehicle Placement Problem – Results

(a) Chicago (b) Los Angeles

(c) New York (d) San Francisco

Figure: Reward percentage plots for a week in comparison with optimal.
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Ideas to Improve Performance of the Vehicle Placement
Problem

• Perform placements for beyond t + 1 by using reinforcement
learning.

• Reinforcement Learning methods are difficult to train in
practice; how can we learn model(s) deployable at city scale?

• How useful is historical information or is real-time information
enough?
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Dynamic Pooling

What is the design space of to perform dynamic pooling to
increase average vehicle occupancy?
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Dynamic Pooling – Restricted Constraints

loc(‘src’, p)

circle radius εsr

loc(‘des’, p)

circle radius εdr

loc(‘src’, s1) loc(‘des’, s1)

loc(‘src’, s2) loc(‘des’ , s2)

Restricted Constraints: The source region is defined by a circle with
radius εsr and centers at the pick up point of the primary request p. The
destination region is defined by another circle with radius εdr .
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Dynamic Pooling – Hybrid Constraints

.

ε w

circle radius εsr

loc(‘src’, p)

circle radius εdr

loc(‘des’, p)
loc(‘src’, s1)

loc(‘des’, s1)

θ(p, s2)

loc(‘src’, s2)

loc(‘des’, s2)
εl

Hybrid Constraints: An expanded set of constraints to do pooling [Jauhri
17].
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Dynamic Pooling – Comparison of Techniques

Figure: Comparison of pooling using Restricted, Directed, and Hybrid
constraints in San Francisco.
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Dynamic Pooling – Comparison of Cities

Figure: Results with varying esr , k for three benefits and one cost
metrics. εdr = 1000m, εw = 2000m, εθ = 20 are kept constant.
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Dynamic Pooling – Societal Benefits

Metric San Francisco New York Los Angeles Mean1

Total Travel
Distance Reduction (%) 17.13 19.06 11.01 15.76

Total Vehicle
Count Reduction (%) 33.76 36.93 23.03 31.23

Mean Poolability (%) 48.94 56.39 34.52 46.61
Mean Travel Time

Penalty (sec) 162.12 97.55 148.17 135.94

Table: Summary of benefits and costs.

1Across 3 cities.
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Things to be done

• Generate synthetic data for small time instances (≈ 5 minute)
and city scale.

• Rigorously validate synthetic data using spatial and temporal
properties.

• Develop techniques to attain close to optimal placement of
vehicles.

• Find societal benefits of pooling and placement by modulating
the volume of requests (what-if scenarios).

• Other ideas...
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