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What is known about urban human mobility?

• Human mobility properties shown repetition - Individuals display significant 
regularity [Gonzalez 08], as they return to a few highly frequented locations, 
like home or work. 

• Aggregate individual patterns to summarize human behavior — [Song 2010] 
By measuring the entropy of each individual’s trajectory, we find a 93% 
potential predictability in user mobility across the whole user base.

Individual patterns may not differ across urban areas but city/county specific properties will; what are 
those city level characterizations of urban human mobility? This is the first work which establishes 

characterization across more than a dozen cities from large scale datasets from the real world. 
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Urban Human Mobility Facts

• Driver efficiency —  In 2020, Los Angeles recorded ~45 
hours are wasted on average in congestion per vehicle in a 
year.


• Potential Intervention — In 2020, production of car sales 
plummeted to 2011 levels but in the 2021 Tesla will 
manufacture ~1.2%, capable of self-driving, of the global 
production.

Is it possible to improve driver efficiency, and rider experience, and intervene in an 
automated environment with thorough characterization of urban human mobility?
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Based on analysis of real-world datasets from ride-sharing 
services, we want to understand and characterize human mobility 

patterns at the city scale, and gain insights on how to improve 
ridership experience and overall system/service efficiency.

Thesis Statement



Thesis Structure 
Sections Purpose

• Urban Human Mobility Characterization (Chapters 2, 3) 

Q1. What are the city level patterns?                  


Q2. How to capture the spatial distribution and evolution?

1. For validation of datasets 


2. To understand tradeoffs for a 
policy 


• Synthetic Generation of New Datasets (Chapter 4) 

Q3. How to generate synthetic data for any urban area? 

1. For city planning simulations


2. For what-if scenarios

• Applications & Useful Tools for human mobility (Chapters 5, 6) 

Q4. What are some applications which can be aided by city level 
characterizations?


Q5. How can the dataset be applied to different what-if scenarios? 

1. To validate our 
characterizations


2. To highlight what-if scenarios 
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Summary of real-data used in this work
City Ride Requests

Boston 625k
Chicago 930k
London 1.1M

Los Angeles 1.1M
Mexico City 1.3M

Miami 550k
New Delhi 450k

New Jersey 400k
New York 1.3M

New York (yellow cab) 2.7M
Paris 650k

Rio De Janeiro 400k
San Francisco 1M

Toronto 500k
Washington 800k
Volume of data for each city represents a typical week.

Each ride request consists -


1. Request timestamp


2. Drop-off timestamp


3. Pickup location


4. Destination location
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What are the city level temporal patterns? 



Ride Request Data

Volume of ride requests received over a week in New York.
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Ride Request Data
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https://www.youtube.com/watch?v=uc602Ppg3BM


Background — Data Graphs

World Wide Web Internet Social Networks

Communication Citation Biological Networks

Image Credits: https://www.cs.cmu.edu/~jure/pubs/thesis/jure-defense.pdf 10



Temporal Patterns — Ride Request Graph

- Transformation of ride requests into a directed Ride Request Graph (RRG).


- RRGs form a quantized sequence of a succinct representation. 
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Stacked sequence of ride requests 
overlaid on a map. Four ride requests 

distributed spatially over a map.

Corresponding Ride Request 
Graph with four nodes and 

directed edges.

Sequence of RRGs stacked; 
each RRG spans for a small 

window of time.
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Temporal Patterns - Ride Request Graphs

Black dots denote either pickup or drop-off location; connections 

between them are not shown.

Separate graphs from 
different time 

snapshots }
Densification Power Law (DPL): 
Number of edges E(t) and number of 
nodes N(t) for any given time t, have 
the following relation —


                  E(t) = C × N(t)α
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Ride Request Graphs



Temporal Patterns - Ride Request Graphs
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Temporal Patterns - DPL

Interpretation of exponent — Greater value of  signifies higher rate of super-linear growth 
in number of edges w.r.t. the number of nodes; implying more congested urban areas.

α

Notice the difference in the two graphs. Graph 1’s  < Graph 2’s α α
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Temporal Patterns — What causes DPL? 
• DPL’s  is a high level metric of an underlying pattern.


• Probability distribution of degree follows a power law 
probability distribution —  


                             

α

p(x) = cx−γ

Lot of nodes with less degree

Few nodes with high degree
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• Closed form solution to derive  from 
densification power law slope .


                                              


                                       

γ
α



Temporal Patterns — DPL & Degree Exponent

City Degree Exponent from 
real data (average)

Theoretical degree 
exponent

New York 1.116 1.853 1.792

Paris 1.298 2.037 2.084

Mexico City 1.073 1.849 1.864

Toronto 1.333 2.083 2.069

α
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Temporal Patterns — Community Coefficient 

• Community Coefficient ( ): is the ratio of 
the average out degree and average in 
degree.


• : more outward movement


• : more inward movement 


• Community Coefficient provides 
directionality of the movement. 

ζ

ζ > = 1

ζ < 1
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Community Coefficient for New York starting; left-most 
point is at 20:00 hrs on Thursday evening.



Temporal Patterns - DPL
• Interpretation of exponent — Greater value of  signifies higher rate of super-

linear growth in number of edges w.r.t. the number of nodes; implying more 
congested urban areas.


• Planning (oversimplified example)

α

1. Plan to increase office spaces in downtown;

2. Measure the potential impact to ;

3. Suggest potential ways to reduce congestion. For instance:


1. bound on the number of people or;

2. alternative spots

3.  to check balance in the traffic

α, γ, ζ

ζ
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What are the city level spatial patterns?



Spatial Patterns — why is it difficult to capture? 

Reason #2: Techniques like spatial auto-
correlation assume locations close to each other 
exhibit more similar values; not true with real-
data.

Reason #1: It is difficult to fit a distribution to 
clusters in sparse areas.

Dense 
Community

Sparse 
community
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Spatial Pattern — why is it difficult to capture? 

Points of requests in San Francisco from real data (left), and using synthetic data (right)
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Spatial Patterns — Fractal Dimension
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- Fractal dimension for cross roads in Montgomery county [Belussi 98].


- Measure the dispersion affect.

Every dot is an intersection



Spatial Patterns — Fractal Dimension

D2 =
∂ log∑i p2

i

∂ log ϵ
= constant ϵ ∈ (ϵ1, ϵ2)

where:

-  is the probability of number of points within a cell

-  is the cell length    

pi
ϵ
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Spatial Variation — Fractal Dimension

Correlation Fractal Dimension using yellow cab dataset for New York for four consecutive time snapshots each spanning 300 seconds. Top row 
constructed with pick-up points, and bottom row using drop-off points.
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Spatial Variation — Fractal Dimension

City   mean Fractal Range (m.)

New York 1.457 (450, 2500)

Mexico City 1.529 (600, 2500)

Paris 1.586 (900, 4000)

Toronto 1.292 (500, 2500)

D2
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Spatial Variation — Fractal Dimension

City   mean

Toronto 1.292

New York 1.457

Mexico City 1.529

Paris 1.586

D2
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New YorkToronto

ParisMexico City

Image credits — https://www.lightpollutionmap.info

Notice the pockets of red 
regions in Toronto and 

New York. 



• Planning (same oversimplified example!)

1. Plan to increase office spaces in downtown;

2. Measure the potential impact to ;

3. Suggest potential ways to reduce congestion. For instance:


1. bound on the number of people or;

2. alternative spots

α, γ, ζ, D2

Spatial Variation — Fractal Dimension
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Summary of Urban Human Mobility Characterization

• Temporal (DPL) characterization depicts the temporal pattern of human 
movement.


• Fractal dimension provides a statistic for the spatial distribution of requests. 


• Both, temporal and spatial characterizations, form qualitative metrics to 
validate urban level characteristics of ridership.
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How to generate synthetic data for any 
urban area based on its characteristics?



Synthetic Data - Why GANs?
• Allows to model Pr(        )


• Generator capable of generating realistic looking images.


• Minimize the divergence between generated distribution and target distribution. 


• Gives us a parameterized model to augment the number of rides.

Image credits: https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

Quality of images generated by GANs over the years
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Synthetic Data Generation — Spatial Generator
1. Ride Requests to Images 2. Parallel Training using GANs

We use conditional GANs where time snapshot is the label for each image.
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Synthetic Data Generation — Spatial Generator
Synthetic overlap of ride requests for San Francisco (Bay Area) and New York after stitching blocks trained in parallel — 
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Synthetic Data Generation — Graph Generator
How to convert points into valid ride requests?
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Given a set of nodes , empty rich set : 

1. Uniformly randomly choose a source node from , and some number of edges. 

2. With some low probability choose destination from a rich set of nodes , or else just 
choose from . 

3. Add source node to .

M R

M

R
M

R



Validation of Real & Synthetic Datasets
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Temporal Validation of Real & Synthetic Datasets

City Real Data Sets (   ) Synthetic Data 
Sets (   )

Chicago 1.415 1.492

New York 1.299 1.361

Los Angeles 1.053 1.614

San Francisco 1.250 1.341

Increase of 0.1 in exponent translates to ~10% decrease in number of nodes. 

α α
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Spatial Validation of Real & Synthetic Datasets

City Real Data Sets 
(      mean)

Synthetic Data 
Sets (     mean)

Chicago 1.384 1.435

New York 1.648 1.540

Los Angeles 1.352 1.314

San Francisco 1.548 1.442

D2 D2
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What are some applications which can be 
aided by the city level characterization? 



Real-time Vehicle Placement Problem

• Advantageous for ride-sharing services to reduce average waiting time for 
rider.


• Also, beneficial for driver, and vehicle efficiency; more savings if cars can be 
directed to the right place beforehand. 
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Real-time Vehicle Placement Problem

Objective: Maximize reward over time
39



Real-time Vehicle Placement Problem

• We explore a bunch of online algorithms - 


1. Follow the leader — go to the node with maximum number of 
requests based on historical data. 


2. Uniformly at random choose a node for placement.


3. Assume every node follows a poisson process for incoming 
ride requests.
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Real-time Vehicle Placement Analysis

Theorem 1: Using fractal dimension, the expected reward with 
follow the lead with complete history would be strictly better than 
algorithm which chooses a node uniformly at random.
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Real-time Vehicle Placement Analysis

Theorem 2: Follow the leader with complete history would have an 
expected performance equivalent to an algorithm which assumes 
that every node observes a poisson process for ride requests.
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Vehicle Placement: Real-data results

New York San Francisco

Los Angeles Chicago
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Vehicle Placement: Real vs. Synthetic Results

New York

Chicago

San Francisco

Los Angeles 44



Dynamic Ride Pooling

• Propose the design space for real-time pooling of riders. 


• The decisions for pooling take into account the temporal and spatial proximity 
of the ride requests.


• Such a method can be used by ride-sharing services, and also for different 
what-if scenarios to assess the societal benefit.
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Dynamic Ride Pooling
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Dynamic Ride Pooling
Design Space: 


1. Time interval


2. Vehicle Occupancy


3. Distance from pickup ( )


4. Distance from drop-off ( )


5. Rectangular Width ( )


6. Rectangular length ( )


7. Angular difference ( )

ϵsr

ϵdr

ϵw

ϵl

ϵθ
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Dynamic Ride Pooling — Results
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Contributions
• By access to massive amounts of data, highlighted different ways to 

characterize dynamics of urban human mobility:


• Ride Request Graph for temporal patterns


• Fractal dimension for spatial patterns


• Parallel privacy preserving method for generating synthetic data which can 
easily be parallelized. 


• Use temporal, and spatial characterizations to demonstrate real-world 
applications for reducing traffic congestion; and make cities more eco-friendly.


• Urban human mobility toolkit for analysis, data generation, and applications: 


http://github.com/ajauhri/mobility-modeling
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Future Works
• Better sampling methods from GANs to eradicate training bias. 


• Urban planning from synthetic data; what-if scenarios.


• Covid-19 drastically changed mobility patterns; ride-sharing services 
survived due to food delivery services. It will be interesting to look 
pattern of food delivery services and compare it with ride-sharing 
services. 


• What is the appropriate balance between applying differential privacy 
and preserve characteristics of urban human mobility data?


• How can vehicles act as smart sensing objects; learn real-time human 
mobility patterns and respond with intervention?
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Thanks!



Contributions
• By access to massive amounts of data, highlighted different ways to 

characterize dynamics of urban human mobility:


• Ride Request Graph for temporal patterns


• Fractal dimension for spatial patterns


• Parallel privacy preserving method for generating synthetic data which can 
easily be parallelized. 


• Use temporal, and spatial characterizations to demonstrate real-world 
applications for reducing traffic congestion; and make cities more eco-friendly.


• Urban human mobility toolkit for analysis, data generation, and applications: 


http://github.com/ajauhri/mobility-modeling
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