
Aerial Video Stream over Multi-hop
using Adaptive TDMA Slots

Luis Ramos Pinto∗†, Luis Almeida∗, Hassan Alizadeh∗ and Anthony Rowe†
∗ Instituto de Telecomunicações, Faculdade de Engenharia, Universidade do Porto, Portugal

† Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract—Unmanned Aerial Vehicles (UAVs) are rapidly be-
coming an important tool for applications like surveillance, target
tracking and facility monitoring. In many of these contexts, one
or more UAVs need to reach an area of interest (AOI) while
streaming live video to a ground station (GS) where one or more
operators inspect the AOI and carry out fine control of UAVs
position. In remote areas, intermediate UAVs can act as relays
and form a line network to extend range. Interactive control
requires a live video stream where both throughput and delay
are important. In this paper, we show that routing packets over
CSMA/CA (native medium access protocol of WiFi, the most
common wireless technology among UAVs) behaves poorly in this
context due to link asymmetries. We propose a novel distributed,
adaptive and self-synchronized TDMA protocol (DVSP) that
both enhances delay and packet delivery while operating on
commodity hardware and leveraging a standard UDP/IP protocol
stack. We prove that DVSP converges to a global solution that
minimizes delay using local information, only, thus in a fully
distributed manner. Real world experiments with multiple UAVs
show gains in delay up to 75%, and packet delivery up to 50%,
without sacrificing goodput.

Index Terms—delay; IEEE 802.11; multi-hop; relay network;
TDMA; throughput; UAV; WiFi; wireless networks

I. INTRODUCTION

Inspection of large-scale structures like bridges and towers,
as well as search-and-rescue in areas affected by disasters can
benefit tremendously from remotely operated drones. In these
scenarios an operator located at a ground station often needs
to fine-tune the position of drones and sensors in order to
improve sensing resolution in certain areas of interest. Ad-hoc
communication between drones [1] offers a viable alternative
compared to infrastructure networks, e.g., cellular, in terms of
availability, reliability and/or cost.

Unmanned Aerial Vehicles (UAVs) are increasingly becom-
ing a commodity to support these types of inspection tasks
given their ad-hoc WiFi (IEEE 802.11) native support, and
inclusion of cameras and other sensors in their hardware.
Unfortunately, video streaming on standard WiFi performs
poorly, particularly with relays, resulting in long delays and
lost frames. Typically, the losses are compensated using com-
plementary IP-based technologies, such as TCP/IP, at the cost
of a severe and unpredictable impact on delays.

In this paper, we design and analyze a new data-link
protocol optimized for multi-hop online video streaming ap-
plications. Our system provides soft real-time guarantees in
terms of delay such that operators can interactively pilot UAV
fleets while maximizing reliability to provide reasonable video

AoI

SENSOR

GS

R3

R2
R1

SENSOR

Fig. 1. Multi-source aerial stream to a ground sink, resorting to multiple UAV
relays to transmit data.

Quality-of-Service (QoS). Figure 1 shows an example scenario
where two UAVs (sensors) are being manually controlled
to track desired features in the area of interest using video
streams. Meanwhile, other UAVs are relaying the streams
across the network to the Ground-Station. We first show
that a naive solution that uses commodity WiFi hardware
on commercial multirotor UAVs struggles in terms of both
reliability and timeliness. We then propose an overlay Time
Division Multiple Access (TDMA) protocol for use over WiFi
that self-synchronizes transmitters (based on RA-TDMA [2])
and supports multi-hop video routing. Our protocol adapts
the length of the TDMA slots in a distributed fashion to
minimize in-network queuing, which is the primary cause of
network delay. By controlling the length of the TDMA slots
according to the status of their associated transmitters, we can
mitigate throughput asymmetries among network links and
achieve end-to-end throughput equalization. We analytically
and experimentally show the advantage of our TDMA protocol
on a four-hop network of quadrotor UAVs streaming video,
when compared to a naive approach based on using WiFi
directly. Thus, our contributions are:

• DVSP - a new TDMA framework that adapts its slots
using a model of actual link bandwidth,

• A proof of DVSP convergence under distributed opera-
tion,

• Experimental validation with real UAVs.

The paper is organized as follows. Section II discusses
related work. Section III states the problem we are addressing,
followed by the solution we propose in Section IV, namely
DVSP. Section V presents the architecture of our implemen-
tation, and Section VI shows the experimental results that
confirm the expected improvements. Section VII concludes
the paper.

II. RELATED WORK

Several authors have developed numerous UAV test-beds
for commercial, military and research purposes. Many of
these have explored using UAVs as flying wireless sensor
networks, especially comprising cameras. In many works,
such as [3], UAVs are used to collect aerial imagery for
mapping and localization. This can be performed locally if
UAVs have enough computing power or remotely using a
cloud infrastructure if a connection is available. In tasks such
as monitoring or target tracking, a human operator is often
the end user that takes final decisions. This means that the
UAVs should be able to form a network and stream video
from a remote location. In [4], authors describe multiple
ways of organizing UAVs to form a sensor network, whether
the sensors can be disconnected from the base station for
sometime, or whether all sensors need to remain directly
connected to the base station, or even whether relays can be
used to keep connectivity while increasing the communication
range. Multi-hop UAV networks are therefore a known tool for
remote sensing but a thorough analysis on network metrics is
missing. The work in [5] shows a UAV wireless multi-source
video stream use case. Despite using a network topology
different from a line and the sink being another UAV, not
a ground station, the authors show that transmitters should
adapt their PHY rate to improve throughput, depending on the
network load and link conditions. In contrast to our work, none
of these approaches explore the impact on delay of buffered
packets at intermediate relays with a loaded network.

The authors in [6] analyze network throughput using one
relay to transmit pictures to a base station. With only a single
relay added, the buffering problem was not clearly identified.
We see identical performance in our two-hop network experi-
mental results, which degrades significantly for three hops and
beyond, with the introduction of hidden terminals.

Using TDMA to guarantee timeliness has been studied
extensively as it is a technique that grants all nodes a
guaranteed periodic transmission window, called a slot, thus
preventing mutual interference and associated phenomena like
starvation. Changing slot size to improve network metrics has
been studied before, as in [7], but not applied to a multi-
hop aerial line network, where data is generated at one tip
of the network, only, and relayed through the other nodes,
over links that present variable throughput. Most wireless
sensor networks using TDMA, focus on guaranteeing that
all nodes can communicate their own data. The fact that, in
our work, middle nodes are solely relaying data, but their
links can present variable throughput, makes the system prone
to inefficiencies when using traditional TDMA approaches.
Relays in our network only require a time slot long enough
to relay incoming data while minimizing in-network queuing;
hence slots should adapt to overall network throughput.

Other works such as [8] and [9] clearly identified distance
as the main factor of packet delivery ratio (PDR), in fixed
sensor networks. However, in most such works, there is no
on-line stream of sensor data; packets are sent scarcely, not

generating queuing issues. When streaming data intensely, as
in our case, buffer overflow becomes a strong problem and a
potential cause of PDR degradation, requiring adequate traffic
management to avoid stalling the network.

Another domain where related research works can be found
is that of robotic networks. For example, the work in [10]
investigates how robots motion can be controlled in order to
maintain high throughput for streaming data to a base-station
using a multi-hop network. They conclude that, instead of
transmitting from every point directly to a gateway, it is better
to concentrate transmissions in areas where/when the channel
is good, slowing the robot, and then moving faster in areas with
poor channel characteristics. The focus of this work is on the
robot’s mobility control and not on the network configuration.
The paper does motivate the variability and asymmetry of
wireless links, which we also consider. In [11], the authors
analyze mobile robotic networks performance as a function
of distance from a base station and required data-rate/delay
requested by users. They also consider the implications of
using relay nodes. However, when robots move far from the
base, the authors propose swapping to a data mule model
that leverages delay tolerant networking, giving away the
live connection to the base. Although other researchers have
also explored different UAV network operation modes, most
tolerate breaking base connectivity, which is incompatible
with the live streaming scenarios we consider. Moreover, such
works do not provide any experimental data on delay and PDR
over single or multi-hop links, which in our case is paramount.

The works in [12] and [13] address a similar purpose as
ours, in the sense of aiming at establishing a line topology of
relays to support a live multimedia connection. However, they
focus on the specific characteristics of tunnels and pipelines
which, under certain circumstances, behave like wave-guides.
This makes the results of these works inapplicable to our
scenario of operation in semi or wide open areas, but corrob-
orates the need for remote live streaming. The work in [14]
also shows relationship to ours since it analyses the behavior
of multi-hop networks under TDMA versus CSMA/CA. This
work addresses networks in general, focusing on a small scale
case, and the authors conclude that, depending on payload size
and slot length, both medium access control techniques can
dominate one another in terms of worst-case network delay.

Our work is the first to propose an adaptive overlay TDMA
framework on-top of CSMA/CA links in a mobile line relay
network, that keeps TDMA cycles constant, but adjusts slots
dynamically in a distributed fashion in order to minimize end-
to-end delay.

III. PROBLEM STATEMENT

Consider a multi-hop wireless network architecture with n
UAV nodes and a sink, as illustrated in Figure 2 where the aim
is to deliver real-time message streams, such as live videos,
produced by one or more sources to a unique sink, i.e., a
ground station, through a line of n−1 relays. We have studied
before [1] the delay-range trade-off implied by using UAV
relays to connect a live video source to a ground station. Each

...21 n sink
B12 B23 Bn,n+1Bn-1,n

s1 s2 sn

Fig. 2. Multi-hop Line Network model. Bandwidth of each link is represented
by Bi,j . si represents the units of time (time slot) available to each node to
transmit periodically every T .

buffered

Packet Transmissions Time

Node ID

3

2

1

...

Asymmetric links:

Different retries and losses?

Different PHY bit rate?

More access to the medium?

Fig. 3. Inefficiencies such as buffered packets and wasted bandwidth are cre-
ated when all nodes are allowed to transmit concurrently and asynchronously,
and links have different characteristics such a PHY rate or packet loss. The
source node 1 is transmitting faster than node 2 can cope.

relay provides additional range but it must use a buffer to hold
received packets, which are forwarded later to the following
node, downstream in the line topology, thus adding delay.
However, transient reductions of the outgoing packet rate with
respect to the incoming rate require further increasing the
buffer depth that, in turn, increases the end-to-end network
delay. This delay must be below a certain deadline so that
an operator in the base station can still interact with the
sensor(s) UAV(s) through the live video stream(s) effectively.
This corresponds to upper bounding the buffer depth.

For comparison purposes, we establish a baseline case in
which the source generates as much data as it can transmit
to its immediate neighbor, i.e., the first relay. In turn, relays
forward immediately every received packet to the next hop,
subsequently closer to the sink. In this case, transmissions
are carried out using the native distributed and asynchronous
CSMA/CA arbitration of WiFi, without any further control.

As expected, this approach quickly degrades under high
load. Transient bandwidth asymmetries between the links of
each relay lead to packet buffering, longer delay and eventually
to overflow and packet losses. Increasing buffer size is not
a solution, as it will increase end-to-end delay. Figure 3
illustrates this situation with asymmetric links resulting from
either different PHY rates, asymmetric antennas, localized
interference generating asymmetric packet loss that leads to
different retries at the MAC level, or simply because some
node accesses the medium more often under the CSMA/CA
random arbitration. Furthermore, the line topology with con-
current asynchronous network access is prone to hidden nodes,
which can contribute to degrade the network performance even
more. Both buffer overflow and hidden nodes decrease link
PDR and lead to high end-to-end delays. As a consequence

Slot1 Slot 2 Slot3 Slot4

1 4

Asymmetric links:
Different retries and losses?

 Different PHY bit rate?

buffered

Packet Transmissions

Round Period
Time0 2 3

Fig. 4. Inefficiencies such as buffered packets and wasted transmission time
are also created under TDMA when all time slots are of equal length and
links are asymmetric.

Slot1 Slot 2 Slot3 Slot4

Round Period

1 2 3 40 time

Packet Transmissions

Fig. 5. Using DVSP, each slot has different length, to guarantee that every
node has enough time to transmit all received data from its upstream neighbor.
All nodes are sending the same amount of data.

the video stream at the sink will be both chopped and lagged.
This is the problem we are tackling in this paper, i.e., how

to manage the traffic in a line multi-hop network, adjusting to
variations in instantaneous bandwidth of individual links so to
minimize in-network queuing and reduce end-to-end delays.

IV. A VARIABLE SLOT-LENGTH TDMA SOLUTION

To maximize end-to-end throughput at minimal delay, we
propose a TDMA-based solution that operates on top of the
standard WiFi protocol where each node i is scheduled to
transmit in a predefined time window called Time Slot, with
duration si, that arrives periodically with period T , called
Round Period.

TDMA schemes typically provide an exclusive (collision-
free) slot to every transmitter in the network, granting a fixed
length to the slots of all nodes (s1 = s2 = · · · = sN = T/N)
as Figure 4 illustrates. Due to bandwidth irregularities across
links, we propose a dynamic slot length assignment where
each node has an exclusive time slot as Figure 5 exemplifies1.

Time slot length is dynamically set according to the current
bandwidth status of the network to mitigate buffer queuing.
We define bandwidth Bi,j as the average capacity in bytes per
second available to transmitter node i to send data to receiver
node j (cf. Figure 2). Knowing both bandwidth estimates of
all links in the line network and (fixed) round period T , we
can compute the optimal slot length (si) of every node that

1Channel reuse could eventually improve bandwidth, but not decrease delay
which is our major concern.

guarantees no buffered data, and therefore minimum delay.
Under our TDMA assumptions, in average a node i receives
si−1

T Bi−1,i bytes per second from its up stream node (i−1),
and sends out si

T .Bi,i+1 bytes of data per second to its down
stream node (i+1). To enforce long term stability of the
network with limited buffering, we need to ensure these rates
coincide and round period stays constant, thus Equation 1.{

s1B1,2 = s2B2,3 = · · · = snBn,n+1

s1 + s2 + · · ·+ sn = T
(1)

Solving the system in Equation 1 for si yields the slot-length
solution Equation 2.

si =
(Bi,i+1)

−1
T∑n

j=1 (Bj,j+1)
−1 (2)

In order to implement this system, a central node (GS
for instance) would need to collect every link bandwidth
estimation and then disseminate the corresponding slot length
to every node. Assuming that slot order is fixed and chosen
to minimize delay from source to sink2, collection of link
bandwidth estimates would take one round period, and dis-
semination would take n rounds to complete, where n is the
number of nodes excluding the GS (same as the number of
slots) [15]. There are two main problems with this approach:
(1) if the GS misses some of the bandwidth estimations
or fails to distribute the new slot length to every node, we
can get inconsistencies leading to different round periods and
potential slots overlapping; and (2) buffers can fill up before
the dissemination of slots is completed.

Alternatively, we chose to design a distributed approach
where each node sets the best slot length for itself and the node
up stream. Since by design, stream data is coming exclusively
from neighbor node(s), one node can do flow control and
instruct its neighbor to decrease its transmission slot, thus
reducing buffering needs. Based on this idea, we created a
new protocol for live streaming in multi-hop lines that we call
Distributed Variable Slot-length Protocol (DVSP).

A. Distributed Variable Slot-length Protocol (DVSP)

We propose a distributed variable time slot allocation proto-
col where the task of time slot adjustment is locally performed
by every pair of neighbor nodes. In this approach, initial time
slot length values are iteratively redefined until convergence to
their optimal values as defined in Equation 2. Each node adapts
its own slot si and up stream node slot si−1 simultaneously
such that the sum of the slot lengths is kept constant, thus
keeping the round period unchanged. By changing up stream
slot time, we can quickly solve buffer problems at the local
source, and propagate this effect to the initial data source node.
Using an equation system similar to Equation 1, and assuming
that 1) node i has an accurate estimation of current bandwidth
available in the previous and next links, respectively Bi−1,i

2This means the slot order in the TDMA round matches the physical order
in the link topology from source to sink, to favor propagation of source data.

Node i Node i-1

Compute
si

(k+1) and si-1
(k+1)

Request: si-1
(k+1)

Change slottime
length to: si-1

(k+1)
send new

 slottime length

X

some foreignrequest si
(k+1)

send our
new slot length

Change slottime
length to: si

(k+1)

Fig. 6. Handshake diagram of Distributed Variable Slot-length Protocol
(DVSP)

and Bi,i+1, and 2) bandwidths are constant for a round period,
yields Equation 3, for iteration k.{

s
(k+1)
i + s

(k+1)
i−1 = s

(k)
i + s

(k)
i−1

s
(k+1)
i−1 .Bi−1,i = s

(k+1)
i .Bi,i+1

(3)

This system of equations result in two recursive functions
(Equation 4).

s
(k+1)
i = ζi−1,i

(
s
(k)
i + s

(k)
i−1

)
s
(k+1)
i−1 = ζi−1,i

(
s
(k)
i + s

(k)
i−1

) (4)

where

ζi−1,i =
Bi−1,i

Bi−1,i +Bi,i+1

ζi−1,i =
Bi,i+1

Bi−1,i +Bi,i+1
= 1− ζi−1,i

ζi−1,i, ζi−1,i ∈]0, 1[, i ∈ {2, · · · , n}

We design an handshake protocol to make these changes
consistent and robust to failure. As Figure 6 depicts, node
i initiates the process computing Equation 4. It then sends a
request of a new slot length (s(k+1)

i−1) to node i−1 , and locks it
self to incoming requests from any other node. This guarantees
that until the handshake is completed no other handshakes are
initiated that could corrupt the round period value (sum of
all slot times). In the case this request packet is missed, it
is repeated once per round until the handshake is finalized.
Upon reception, node i−1 sets up its slot length to the new
value present in the request (s(k+1)

i−1). Then, at the beginning
of node i−1’s slot time, this new length is already used. Every
packet contains information about the current transmitter time
slot length in its TDMA header to allow slot synchronization.
Therefore, as node i receives packets from node i−1, the
former will know that the new and expected time slot length
is being used. Node i changes its own slot time length to new
value s(k+1)

i . This terminates the handshake.

By design, nodes under handshake lock to incoming re-
quests from other nodes. In a line network, where slots are
ascendantly ordered, this means that all nodes with even slot
IDs (or odd), can perform handshakes with all upstream odd
neighbors (or even), simultaneously. In a following moment,
nodes with odd slot IDs (or even) can initiate requests.

Convergence

To prove the convergence of this method assume a line
network with n + 1 nodes, n of which are transmitters and
so n time slots (the sink does not transmit). We name the
correspondent time slots length s1 (source), s2 (first relay),
etc.. We assume every node starts (iteration k = 0) with
the same time slot length s

(0)
1 = . . . = s

(0)
n . According

to our protocol, in the subsequent iteration (k = 1) all
nodes with even ids (i = 2, 4, . . .) initiate handshakes with
upstream nodes (i = 1, 3, . . . , respectively). For odd number
of transmitters, node n remains unchanged. Thus:

s
(1)
1 = ζ1,2

(
s
(0)
1 + s

(0)
2

)
s
(1)
2 = ζ1,2

(
s
(0)
1 + s

(0)
2

)
s
(1)
i = . . .

s
(1)
i+1 = . . .

s(1)n = s(0)n

where i ∈ {3, 5, . . . }.
At the next iteration (k = 2), odd nodes (i = 3, 5, . . .)

initiate their handshakes with up stream even nodes (i =
2, 4, . . .), and node 1 is unchanged. If n is even, node n is
also unchanged. Thus:

s
(2)
1 = s

(1)
1

s
(2)
2 = ζ2,3

(
s
(1)
2 + s

(1)
3

)
s
(2)
3 = ζ2,3

(
s
(1)
2 + s

(1)
3

)
s
(2)
i = . . .

s
(2)
i+1 = . . .

s(2)n = s(1)n

where i ∈ {4, 6, . . . }.
We can convert the system into a more compact form using

matrix notation:

s(k+1) = As(k) ∧ s(k+2) = Bs(k+1)

where A and B are (n×n) matrices, as shown next, and s the
(n × 1) time slot vector; combining two iterations at a time,
yields:

s(2k) = (BA)ks(0) = Cks(0)

An =

ζ1,2 ζ1,2 0 · · · · · · 0 0

ζ1,2 ζ1,2 0 · · · · · · 0 0
0 0 ζ3,4 ζ3,4 · · · 0 0
...

... ζ3,4 ζ3,4 · · · 0 0
· · · ζij ζij 0

· · · ζij ζij 0
(0 0 · · · · · · · · · 0 1)

Bn =

1 0 · · · · · · · · · · · · 0 0
0 ζ2,3 ζ2,3 0 · · · · · · · · · 0

0 ζ2,3 ζ2,3 0 · · · · · · · · · 0
0 0 0 ζ4,5 ζ4,5 · · · · · · 0
...

... 0 ζ4,5 ζ4,5 · · · · · · 0
· · · 0 0 ζij ζij 0

· · · 0 0 ζij ζij 0
(0 0 · · · · · · · · · · · · 0 1)

If n is even, last row and column of An do not exist. If n is
odd, last row and column of Bn do not exist. To prove this
system converges, we show that in the limit:

lim
k→∞

(s(2k+2) − s(2k)) = 0n ⇔ lim
k→∞

(
Ck+1 − Ck

)
= 0n

Performing an eigenvalue decomposition on C, results in
C = V DV −1, where D is a diagonal matrix with C’s
eigenvalues. We know that Ck = (V DV −1) · · · (V DV −1) =
V DkV −1, therefore:

lim
k→∞

(
Ck+1 − Ck

)
= 0n ⇔

lim
k→∞

(
V Dk+1V −1 − V DkV −1

)
= 0n ⇔

lim
k→∞

(
V Dk(D − In)V −1

)
= 0n

If in the limit Dk(D−In) is zero, then the equation holds and
the system converges. Exploring the structure of D, yields:

Dk(D − In) =

λ
k
1(λ1 − 1) 0 0

0
. . . 0

0 0 λkn(λn − 1)

From the expression above, we see if the modulo of the

eigenvalues is less than or equal to 1, then limk→∞ λki (λi −
1) = 0, and the system converges. For the general case, we
know that the maximum modulo of the eigenvalues of C, also
known as spectral radius ρ(C), is indeed not greater than
1. This comes from Gelfand’s formula corollary that states
that the spectral radius of the product of two matrices is less
or equal to the product of spectral radius of both matrices:
ρ(C) = ρ(BA) ≤ ρ(B)ρ(A). We can prove that matrices A
and B have spectral radius 1. Note that A has n rows, and by
design bn/2c pairs of rows are linear dependent, so there are
bn/2c zero-valued eigenvalues.

λ1 = . . . = λbn/2c = 0

All other dn/2e eigenvalues are in fact 1. Knowing that the
eigenvalues of AT are the same of A for any matrix, we can

Iteration Number - k
0 2 4 6 8 10 12 14

S
lo

t
le

n
g

th
 s

x(k
)

(m
s
)

15

20

25

30

35

40

s
1

(k)

s
2

(k)

s
3

(k)

s
4

(k)

Fig. 7. Example of slot length convergence in a network with four slots.
For any bandwidth values, and for any number of nodes it is proven that the
distributed system converges to the global solution.

trivially find the remaining dn/2e eigenvectors vi that make
AT vi = 1vi equation true, because all rows add up to 1. An
example is shown below.

AT v1=

ζ1,2 ζ1,2 0 · · · · · · 0 0

ζ1,2 ζ1,2 0 · · · · · · 0 0
0 0 ζ3,4 ζ3,4 · · · 0 0
...

... ζ3,4 ζ3,4 · · · 0 0
...

... · · · ζij ζij 0
...

... · · · ζij ζij 0
(0 0 · · · · · · · · · 0 1)

1
1
0
...
...
...

(0)

=

1
1
0
...
...
...

(0)

It is clear from the example above that all vectors vi with

exactly n−2 zeros and two consecutive ones in a odd and even
index are eigenvectors and have the corresponding eigenvalue
1, such that:

vi =
[
0 · · · 12i−1 12i · · · 0

]T
When n is odd, there is an extra eigenvector vdn/2e that also
has an associated eigenvalue 1, namely:

vdn/2e =
[
0 · · · · · · 1

]T
The rationale used for matrix A can also be used for matrix B,
and we have now proved that both matrices have a spectral
radius equal to 1 (ρA = ρB = 1), and therefore the whole
distributed system converges.

Figure 7 shows a mock example of the distributed algorithm
running on four nodes - 1 is the source, 2, 3 and 4 are
relays ordered from source to sink. Bandwidths were randomly
selected and the round period set to T = 100ms. We can see
the slot length of each node (bold lines) changing over thirteen
iterations, and converging within 5% of the final value in 6
iterations. That limit is the global solution given by Equation 2
(dashed lines). Note how nodes at the tip of the network (1 and
4), only change every other iteration. All other nodes change
at every iteration.

Bandwidth changes as UAVs move, due to antennas orien-
tation and path properties, but inspection uses slow velocity
and frequent hovering, and bandwidth statistical variations take

several seconds. Conversely, our protocol can converge in less
than 1s assuming an iteration every round period and a realistic
configuration of T=100ms and 3 relays.

B. Worst Case Delay

In a line network with n hops, packet end-to-end delay
dwc is the sum of the time taken by the packet while being
transmitted over the air at all links (dtx), plus the time a packet
spends within buffers, waiting to be sent (dw), yielding:

dwc = dtx + dw (5)

Time dtx can be considered an affine function of hop count
n, since payload size P is fixed and PHY bit-rate R, too. So
dtx = nP/R.

In Figure 5, one can see that every node transmits the same
amount of information during its own slot. In this situation,
buffer usage does not increase, and in the worst case we can
consider that buffers are consistently full. We consider all
nodes have the same buffer size U . This way, a new packet
entering the system at the source waits till all buffered packets
are sent, at each node. At each round T , all links are able to
send the same amount of data k(1) = Bjsj ,∀j ∈ [1, n], and
since there are no concurrent transmissions there is no back-off
time to consider. Therefore, the worst case delay is:

d(1)w = n

⌈
U

k(1)

⌉
T (6)

where, using the global solution Equation 2,

k(1) =
T

n∑
i

B−1i

The best case is when all buffers are empty (U = 1) and as
expected, it takes one round to deliver the packet.

Using the same time slot at every node as depicted in
Figure 4 (rigid TDMA case), each node is able to send a
different amount of data during its own time slot, and therefore
the worst case is when the downstream node has a lower
bandwidth than its upstream neighbor, and as such, buffers
keep filling or keep full at all times. For such, when a packet
reaches its next hop, its buffer is full and has to wait for
U packets to be delivered before it proceeds to the next
hop. Furthermore, all slots have the same length, but different
bandwidths. So, each node can send at most Bi.si amount of
data per round; they actually send k(2), the minimum of all
hops since all sent data comes from the upstream nodes, st.:

k(2) = min
i

(Bi.si) ,∀i ∈ [1, n] (7)

we have d(2)w st:

d(2)w = n

⌈
U

k(2)

⌉
T (8)

Under rigid TDMA, delay d
(2)
w is guaranteed to be never

better than DVSP delay d(1)w , since k(2) is never greater than

Call PM_send(, sink_ip)
Identify

frame part

Append to current
 frame file

[last frame part]

[first frame part]
Close

frame file

Create new
frame file

[else]

Open camera

Grab new frame

[i==n][else]

Divide into n parts: App Pkt

App Pkt

Source (Application Layer) Sink (Application Layer)

Call PM_receive() App Pkt
[i++]

App Pkt (B)App Pkt (A)

Fig. 8. Behavior diagrams for the Application Layer running at the Source
and Sink. In the Source, the AL is responsible for grabbing camera frames,
fragmenting them and sending fragments to the PM layer. In the Sink, the AL
does the frame re-assembly. The AL communicates with the PM layer using
PM_send() and PM_receive() functions.

k(1). We prove this by showing that since under rigid TDMA
all slots have the same size T/n, yields:

k(1) =
T

n∑
i

B−1i

≥ min
i

(Bi).
T

n
= k(2) (9)

⇔
n∑
i

B−1i ≤ n 1

min
i

(Bi)
(10)

Furthermore, buffer usage U will be lower in DVSP by design
than with rigid TDMA slots.

When using the native WiFi CSMA/CA, the worst case
delay for a packet to be delivered is not exactly determined
since it depends on the link load and the time taken by the
back-off mechanism. Nevertheless, under CSMA there is no
guarantees of balanced throughput, leading to strong queuing
delays as in rigid TDMA case.

V. ARCHITECTURE

Our architecture is a three-tiered design with an Application
layer (AL) on top, a Packet Manager (PM) and our TDMA
layer at the bottom.

A. Application Layer (AL) - Video capture and collection

The AL is only accessed at the source and sink devices since
these are the only nodes that are responsible for generating
or consuming data. The AL in the source runs the camera
application, dedicated to grabbing video frames directly from
the camera device. The frames are fragmented to fit WiFi
packets that are then sent to the PM layer. Each fragment
takes attached a corresponding header for proper identification
and later re-assembly of frames at the sink. The left side of
Figure 8 shows the activity diagram of the AL on the source
node. The AL on the sink side just collects frame packets, re-
assembles the frames into image files and hands them to the
operator application, for display and/or further processing. The
respective behavior is outlined in the right side of Figure 8.

B. Packet Manager (PM) Layer - Routing

The PM layer (Figure 9) is in charge of finding the next
hop of an incoming packet, whether it comes from the upper
AL layer or from other node through the lower TDMA layer.

Packet Manager Layer (tx)

PMPkt

Grab oldest packet

Build PM packet: PM Pkt

Find next hop: nxt_ip

(enqueue)

Call TDMA_send(, nxt_ip)PM Pkt

PM Pkt

[I'm sink node][I'm not sink node]

Packet Manager Layer (rx)

Add to Tx Queue Add to Rx Queue

Call TDMA_receive()PMPkt

(dequeue)

(enqueue)

(dequeue)

(enqueue)

(A) (B)App Pkt

TX Queue

App Pkt App Pkt App Pkt

RX Queue

App Pkt App Pkt App Pkt

App Pkt

App Pkt App Pkt

(C) (D)

Fig. 9. Packet Manager (PM) layer, routes packets to the next hop, or
holds them for the AL if packets have reached their final destination (Sink).
Communicates both with AL (above) and TDMA layers (below).

TDMA Layer (tx)

Grab oldest packet

Build TDMA packet

Add to Rx Queue:

Call socket recvfrom()

(dequeue)

(enqueue)

(C)

TDMA Pkt

TDMA Pkt

[begin of time slot]
Synchronize clock

[else]

UDP Pkt

Measure clock delay

(enqueue) (dequeue)

(D)PM Pkt

TX Queue

PM Pkt PM Pkt PM Pkt

TDMA Layer (rx)

TX Queue

PM Pkt PM Pkt PM Pkt

Call socket sendto(, nxt_ip)TDMA Pkt

PM Pkt

PM Pkt

UDP Pkt

Fig. 10. TDMA layer is responsible for measuring network delays affecting
the incoming packets. The receiver node adjusts the phase of its own TDMA
slot according to any such delays, to keep slots sequential and reduce overlap.
Queued packets are only transmitted over the air during the TDMA time slot.

Then, the PM either forwards packets to the TDMA layer to
proceed their way along the network or, for packets meeting
their final destination (the Sink in this case), the PM saves
them to an internal queue, for later delivery to the AL.

C. TDMA Layer - Transmission Shaper

The TDMA layer does the shaping of the outgoing commu-
nications to the respective node TDMA slot and its behavior
is explained in detail in Figure 10. Basically, whenever the
TDMA slot of a node comes, and during its duration, that node
enqueues pending packets in the wireless card for transmission
over the air. Note, however, that a new packet is only sent to
the wireless card when it informs the TDMA module that the
previous packet has been sent.

The TDMA layer is also in charge of synchronizing the
node’s slot with the global TDMA framework. We use a
sliding phase adjustment based on the delay affecting the
incoming packets following the same principle as proposed
in [2]. At the time of transmission, senders tag packets with
their offset relative to the start of the respective slot. Thus,
receivers get these offsets, average per sender, and estimate the
start of the sender slot. If incoming packets are delayed, nodes
will estimate a late sender slot start time, thus delaying their
own slots to reduce overlap, which corresponds to shifting the
phase of the TDMA round (Figure 11). Note that slots are not
strictly isolated as typical in TDMA implementations. Residual
overlaps can occur and are sorted out with the native WiFi

Phase inside the round (ms)
0 1/4T 2/4T 3/4T T

R
ou

nd
 #

Local view of a relay

TX pkts
RX pkts
TX slot

Fig. 11. Example of packet reception and transmission (relaying) occurring
in a relay. The transmission window (sender time slot) is delayed to initiate
after the previous transmissions - TDMA self-synchronization.

CSMA/CA arbitration. This feature allows our protocol to
operate in open networks. Interference caused by other traffic
and hidden nodes will appear as delays affecting packets, thus
delaying the following slots. When triggered frequently, the
slot shifting increases the actual TDMA round period, causing
a reduction of the effective channel bandwidth available. The
protocol transparently adapts to these cases.

Figure 11 clarifies this process showing packet reception
and transmission at a node in the network. Each line contains
events occurred within one round period. Each red square
represents a received packet and its x-axis position the time in
the round when it was received. The black squares represent
the packets transmitted (relayed) by the node. In light blue we
see the time slot of this node, i.e., the period of time in which
the node can transmit data. The y-axis has an ever-increasing
round counter. Note how the time slot is occasionally being
shifted to the right, to accommodate delays in the incoming
packets due to delays in the nodes and in the medium.

Finally, the TDMA layer is also assessing the bandwidth of
both upstream and downstream links and running the DVSP.
Its requests and replies are periodically sent as TDMA packets
and filtered at this layer, being transparent for the layers above.

D. Encapsulation

Our protocol stack, from the AL to the TDMA layer, is
shown in Figure 12, which highlights the logical packets (pro-
tocol data units - PDUs) of each layer with their specific header
information. The header of each layer is only relevant for that
layer and accessed and modified at that layer, only, following
good layering practices. Thus, each layer can be independently
modified, or swapped among different implementation options,
without any impact on the remainder of the stack, i.e., in a
transparent way. Overall, the three layers impose an extra 23
byte overhead, which we consider negligible compared to the
payload of 1KB that we are using.

Finally, the TDMA packets are encapsulated into UDP/IP
packets. We opted for UDP instead of TCP to keep better
control of the timings of packet transmissions over the net-
work. We also decided not to do cross-layer optimizations,
despite some potential performance improvement that they

u16 timestamp
u32 slot_limits
u8 slot_id
u16 req_slot
(9 byte)

u64 seq_num
u8 src
u8 sink
(10 byte)

PM Pkt

u16 frame_id
u8 part_id
u8 part_total
(4 bytes)

App Pkt

pixels

TDMA Pkt

UDP Pkt

Fig. 12. Our protocol stack, fully respecting the layering principle, with an
independent protocol at each layer using own protocol data units, and final
encapsulation in a UDP/IP packet for transport.

could bring. The reason was also to strictly enforce layering,
facilitating debugging and future extensions.

VI. EVALUATION

In this section, we evaluate delay and packet delivery ratio
under immediate routing (traditional CSMA/CA) and under
TDMA with adaptive time slots (DVSP). Despite being less
important, end-to-end goodput or in other words video frame
rate is also measured to guarantee that we compare both
methods fairly.

A. Setup

The experiments were taken inside a laboratory with
ArDrone 2.0 [16] UAVs, in fixed locations as Figure 13
shows3. One UAV is simultaneously source, using its frontal
camera, and sink, to facilitate delay measurements. The video
stream is sent through other UAVs in a circular route, returning
back to the sink. The number of hops is varied from two to
four (n = 2 . . . 4) skipping some relays in the path (Figure 13).
With DVSP, we chose a round period of T = 100ms and
the number of slots is updated to match the number of hops.
Queues in the relays are limited and, when overflowing, the
system will drop oldest packets first.

All nodes were set to operate in the same IEEE 802.11g ad-
hoc network at a bit rate of 24Mbps. This bit rate guarantees
that we can produce data faster than the channel capacity can
support, and therefore we are not limited by the processing
power of our platform/camera.

Each video stream experiment lasted for roughly 180 con-
secutive seconds, limited by local log file storage, during
which one of the two methods was used. Each frame has 57600
bytes divided in 50 packets that are sent to the Packet Manager
layer. Each packet corresponds to one horizontal line of pixels
in one image frame. The source is programmed to capture a
new frame only if the Packet Manager queue has room for at
least 50 packets.

To cause notable asymmetry in the links, the transmitter
of the last hop (#4) was set to transmit at 10dBm where all
other nodes were set at 15dBm. During a typical video stream
scenario, links have different lengths or/and are affected by
different attenuation factors due to obstacles or anisotropic
antennas, for instance.

3Outdoor experiments with actual flights were reported in [1] with rigid
TDMA slots for channel characterization.

Source (#1) Relay (#2)

Relay (#3)Relay(#4)

 2-hops
3-hops
4-hops

3m

3m

Fig. 13. Three possible different topologies used during the experiments.
Depending on the desired number of hops, traffic is routed through different
paths. Under DVSP the number of slots in use is also updated.

0 0.5 1 1.5 2 2.5
0

20

40

60

80

F
re

q
u
e
n
c
y

(%
)

2 Hops

0.7s
0.4s

0 0.5 1 1.5 2 2.5
0

20

40

60

F
re

q
u
e
n
c
y

(%
)

3 Hops
1.1s

0.8s

0 0.5 1 1.5 2 2.5

Delay(s)

0

10

20

30

40

F
re

q
u
e
n
c
y

(%
)

4 Hops

1.5s

1.3s

DVSP

CSMA/CA

Fig. 14. Histogram of measured end-to-end delay of each packet with
CSMA/CA (red thiner bars) and with DVSP (blue thicker bars), using different
number of network hops. It is clear that the average delay increases with hop
count, but it is always better when DVSP is in use.

B. Delay

Figure 14 shows the histograms of end-to-end delay mea-
surements of successful packets using different number of
hops. Red thiner bars show the case of CSMA/CA while blue
thicker bars are used for DVSP. We consider end-to-end delay
to be the elapsed time between a packet being successfully
sent to the Packet Manager at the source and being received
by the Application layer at the sink. Naturally, the average
delay and its variance increase with hop count, but DVSP
is consistently better than CSMA/CA. With two-hops, delay
increases approximately up to 75% when CSMA/CA is in
use. Overlaid dashed lines are Gaussian curves with the same
average and variance as the histograms, to merely provide a
visual notion of these metrics.

C. Packet Delivery

Due to buffer overflow, packets are expected to be dropped
under heavy load. This translates to a low packet delivery ratio
or PDR. Figure 15 shows that phenomena when CSMA/CA

30 40 50 60 70 80 90 100
0

20

40

60

80

F
re

q
u
e

n
c
y

(%
)

2 Hops

99.3 %

95.0 %

30 40 50 60 70 80 90 100
0

20

40

60

F
re

q
u
e
n
c
y

(%
)

3 Hops

94.8 %

80.6 %

30 40 50 60 70 80 90 100

Packet Delivery (%)

0

10

20

30

F
re

q
u
e
n
c
y

(%
)

4 Hops

91.0 %
60.1 %

DVSP

CSMA/CA

Fig. 15. Histogram of measured end-to-end packet delivery ratio. There is
a noticeable improvement with DVSP, specially when the number of hops
increases. Packet loss occurs essentially due to buffer overflow.

Fig. 16. Snapshot of the video stream at the sink. With CSMA/CA (on the
right), relays cannot handle every received packet, dropping some that appear
as black lines in the image. Under DVSP (on the left), video streaming is
visibly improved and frames are generally complete.

is in use. The average PDR is far from 100%, specially when
more and more relays are added. With CSMA/CA, relays
receive packets at a higher rate than they can retransmit. This
means that the source is actually sending more data than the
network can handle. With DVSP, the source has a periodic slot
to transmit data and DVSP shortens its duration whenever the
packets are not going through, down in the link, effectively
doing a kind of flow control and avoiding network overload.
Thus, PDR is close to 100%. With four hops, we obtain gains
of 50% in PDR. Figure 16 shows a snapshot of the video
stream at the sink. With CSMA/CA (right), the low PDR
manifests as black lines on the image (missing data). When
using DVSP (left), video streaming is visibly improved and
frames are generally complete.

D. Goodput

The last analyzed metric is goodput, which measures ap-
plication payload data received at the sink per second. As
we can see in Figure 17, more hops imply less goodput
since there are more transmitters sharing the medium, thus
end-to-end bandwidth is divided accordingly. Unlike delay
and PDR, there is no difference on average goodput between

100 200 300 400 500 600
0

10

20

30

40
F

re
q
u
e

n
c
y

(%
)

2 Hops

515.2 KBps511.1 KBps

100 200 300 400 500 600
0

10

20

30

40

F
re

q
u
e
n
c
y

(%
)

3 Hops

327.1 KBps329.9 KBps

100 200 300 400 500 600

Goodput (KB/s)

0

10

20

30

40

F
re

q
u
e
n
c
y

(%
)

4 Hops

231.2 KBps233.0 KBps DVSP

CSMA/CA

Fig. 17. Histogram of measured end-to-end goodput, i.e., actual application
payload data received at the sink per second. More hops imply less goodput
since there are more transmitters sharing the channel. There is no difference,
in average, in this metric between both methods.

both transmission control methods. This is actually expected
since, under heavy load, nodes always have some packets
in their buffer (DVSP case) or their buffers are always full
(CSMA case), and therefore the medium ends up being used
at maximum capacity either way. Therefore, the end-to-end
goodput is determined by the slowest link in the network in
both methods. The fact that variance is higher with DVSP is
explained by the constant adaptation of the time slots, which
causes data to arrive at the sink in bursts, unlike the CSMA/CA
scenario.

VII. CONCLUSION

In this paper, we addressed the problem of supporting live
video streaming from an area of interest to a ground station
through an ad-hoc relay network of UAVs. Data is generated
by the first UAV, only, and relayed through the remaining
ones, overcoming the distance limitation of the communication
range of a single UAV. We then showed that due to asymmetry
among the network radio links, simply relaying packets im-
mediately over the typical CSMA/CA medium access control
leads to large queuing delays or high packet drops. To remedy
this problem, we propose a novel distributed adaptive TDMA
overlay protocol called DVSP, for Distributed Variable Slot-
length Protocol, that balances the amount of data each node
transmits every round in order to minimize data buffering. We
proved that this distributed approach converges to the optimal
global solution using only local information. Experimental
results show that without loss in goodput, our DVSP protocol
outperforms immediate relaying in both network delay and
packet delivery ratio. Despite not showing in the paper, we
also carried out some experiments with typical TDMA imple-
mentation using fixed equal slots. The results were similar to
those of immediate relaying. We are currently studying the

connection of DVSP with the control of the relays placement
for further improving the end-to-end link.

ACKNOWLEDGMENT

This work is a result of the project NanoSTIMA (NORTE-
01-0145-FEDER-000016), supported by Norte Portugal Re-
gional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement, through the Eu-
ropean Regional Development Fund (ERDF). The work
was also partially supported by UID/EEA/50008/2013 and
CMU|Portugal (SFRH/BD/51630/2011).

REFERENCES

[1] L. Pinto, A. Moreira, L. Almeida, and A. Rowe, “Aerial Multi-hop
Network Characterisation using COTS Multi-rotors,” in 12th IEEE World
Conference on Factory Communication Systems (WFCS), 2016.

[2] L. Oliveira, L. Almeida, and P. Lima, “Multi-hop routing within tdma
slots for teams of cooperating robots,” in 2015 IEEE World Conference
on Factory Communication Systems (WFCS), May 2015, pp. 1–8.

[3] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative
monocular slam with multiple micro aerial vehicles,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Nov 2013,
pp. 3962–3970.

[4] N. Goddemeier, K. Daniel, and C. Wietfeld, “Role-based connectivity
management with realistic air-to-ground channels for cooperative uavs,”
IEEE Journal on Selected Areas in Communications, vol. 30, no. 5, pp.
951–963, June 2012.

[5] R. Muzaffar, V. Vukadinovic, and A. Cavallaro, “Rate-adaptive multicast
video streaming from teams of micro aerial vehicles,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016, pp. 1194–1201.

[6] M. Asadpour, B. V. den Bergh, D. Giustiniano, K. A. Hummel, S. Pollin,
and B. Plattner, “Micro aerial vehicle networks: an experimental analysis
of challenges and opportunities,” IEEE Communications Magazine,
vol. 52, no. 7, pp. 141–149, July 2014.

[7] E. Wandeler and L. Thiele, “Optimal tdma time slot and cycle length
allocation for hard real-time systems,” in Proceedings of the 2006 Asia
and South Pacific Design Automation Conference, ser. ASP-DAC ’06.
Piscataway, NJ, USA: IEEE Press, 2006, pp. 479–484.

[8] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proc. First Int. Conf. Embed.
Networked Sens. Syst. (SenSys). Los Angeles, CA, USA: ACM Press,
Nov 2003, p. 1.

[9] F. Jia, Q. Shi, G.-m. Zhou, and L.-f. Mo, “Packet Delivery Performance
in Dense Wireless Sensor Networks,” in Proc. Int. Conf. Multimed.
Technol. (ICMT). Ningbo, China: IEEE, Oct. 2010, pp. 1–4.

[10] M. Lindhe and K. Johansson, “Using robot mobility to exploit multipath
fading,” IEEE Wirel. Commun., vol. 16, no. 1, pp. 30–37, Feb. 2009.

[11] D. Henkel and T. X. Brown, “Delay-tolerant communication using
mobile robotic helper nodes,” in Proc. Int. Symp. Model. Optim. Mobile,
Ad Hoc, Wirel. Networks Work. (WiOPT). Berlin, Germany: IEEE, Apr.
2008, pp. 657–666.

[12] D. Sicignano, D. Tardioli, S. Cabrero, and J. L. Villarroel, “Real-time
wireless multi-hop protocol in underground voice communication,” Ad
Hoc Networks, vol. 11, no. 4, pp. 1484–1496, June 2013, special Issue on
Wireless Communications and Networking in Challenged Environments.

[13] C. Rizzo, D. Tardioli, D. Sicignano, L. Riazuelo, J. L. Villarroel, and
L. Montano, “Signal-based deployment planning for robot teams in
tunnel-like fading environments,” Int. J. Rob. Res., vol. 32, no. 12, pp.
1381–1397, Oct. 2013.

[14] Q. Wang, K. Jaffrès-Runser, Y. Xu, J. L. Scharbarg, Z. An, and
C. Fraboul, “Tdma versus csma/ca for wireless multihop communica-
tions: A stochastic worst-case delay analysis,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 2, pp. 877–887, April 2017.

[15] T. Facchinetti, L. Almeida, G. C. Buttazzo, and C. Marchini, “Real-time
resource reservation protocol for wireless mobile ad hoc networks,” in
25th IEEE International Real-Time Systems Symposium, Dec 2004, pp.
382–391.

[16] “Parrot AR. Drone 2,” https://www.parrot.com/us/drones, accessed: 21-
04-2016.

