
Hardware Assisted Clock Synchronization for
Real-Time Sensor Networks

Maxim Buevich, Niranjini Rajagopal, Anthony Rowe
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, USA.

{mbuevich, niranjir, agr}@ece.cmu.edu

Abstract—Time synchronization in wireless sensor networks
is important for event ordering and efficient communication
scheduling. In this paper, we introduce an external hardware-
based clock tuning circuit that can be used to improve synchro-
nization and significantly reduce clock drift over long periods of
time without waking up the host MCU. This is accomplished
through two main hardware sub-systems. First, we improve
upon the circuit presented in [1] that synchronizes clocks using
the ambient magnetic fields emitted from power lines. The
new circuit uses an electric field front-end as opposed to the
original magnetic-field sensor, which makes the design more
compact, lower-power, lower-cost, exhibit less jitter and improves
robustness to noise generated by nearby appliances. Second, we
present a low-cost hardware tuning circuit that can be used
to continuously trim a micro-controller’s low-power clock at
runtime. Most time synchronization approaches require a CPU
to periodically adjust internal counters to accommodate for clock
drift. Periodic discrete updates can introduce interpolation errors
as compared to continuous update approaches and they require
the CPU to expend energy during these wake up periods. Our
hardware-based external clock tuning circuit allows the main
CPU to remain in a deep-sleep mode for extended periods while
an external circuit compensates for clock drift. We show that our
new synchronization circuit consumes 60% less power than the
original design and is able to correct clock drift rates to within
0.01 ppm without power hungry and expensive precision clocks.

Keywords—Time Synchronization; Clock-rate Adjustment;
Wireless Sensor Networks;

I. INTRODUCTION

Time synchronization is a vital service in distributed sys-
tems that enables event ordering and coordinated communi-
cation. These are both critical aspects for improving system
Quality-Of-Service (QoS) required by real-time applications.
In wireless sensor networks (WSNs), time synchronization is
particularly challenging because of the uncertainty and jitter
associated with the arrival of external timing information.
Packet arrival times can be averaged to reduce these inac-
curacies, but such methods increase energy consumption. A
significant body of previous work exists on minimizing this
communication overhead while reducing uncertainty in timing.
Most of these approaches rely on compensating for clock drift
rates using software adjustments. In this paper, we present
a clock synchronization expansion module for the FireFly3
WSN platform that maintains clock synchronization through
a novel hardware clock rate adjustment module. Shifting the
rate-adjustment burden closer to the hardware layer results in
two advantages. First, it enables the system to adjust for clock

drift in a more continuous fashion that is able to reduce error
more effectively than software solutions. Second, the approach
offloads synchronization burden from the host micro-controller
allowing it to remain in a deep-sleep mode of operation for
extended periods without having to periodically wake up to
adjust for drift.

Crystal oscillators used in micro-controllers rely on the
mechanical resonance of a vibrating quartz element to create a
periodic electrical signal. In sensor networks, there is typically
a low-frequency clock that operates continuously even when
the processor is in a deep-sleep power state. Once the processor
wakes from sleep, a high-speed (and more energy consuming)
clock is activated to drive the instruction counter on the MCU.
Clocks on different nodes will suffer from frequency variation
due to factors such as temperature differentials, manufacturing
limitations, aging effects and mechanical acceleration. These
factors cause each node’s notion of time to drift with respect to
other nodes. In order to compensate for this drift, the system
requires a global timing reference.

The most common WSN approach for providing a global
timing reference is through message passing. Protocols like
[2], [3], [4] exchange packets in a manner that allows them
to reduce timing uncertainties. In [1] we presented a hardware
device called a Syntonistor that is able to achieve a similar
goal by tracking the 60 Hz magnetic field (common across a
wide area) being emitted from power lines within a building.

The power line signal can be used as a global clock source
for battery-operated sensor nodes to eliminate drift between
nodes over time even when they are not passing messages.
With this scheme, each receiver is frequency-locked with each
other, but there is typically a phase-offset between them.
Since these phase offsets tend to be constant, a higher-level
compensation protocol can be used to globally synchronize
a sensor network (described in more detail in [1]). The first
contribution of this paper is an improved Syntonistor sensing
front-end that is based on electric field sensing, as opposed to
magnetic resonance. In Section IV we show that the new circuit
reduces power (less than half on average), cost, complexity and
provides an input with lower jitter (more than 75% better) than
the previous design. Once a system has an available global time
reference, the host micro-controller is required to periodically
resynchronize with it in order to account for clock drift. At any
given moment, the accuracy depends on the clock’s drift rate
and the last synchronization point. This implies that in order to
achieve tighter synchronization the system must perform wake
up operations more frequently. These wake up operations have

an associated energy penalty. We propose and evaluate a rate
adaptive software scheme to help reduce this overhead.

The second contribution of this paper is a novel hardware
clock-rate adjustment module that allows an external ultra-low-
power device to continuously tune the main processor’s clock
at runtime. Such an approach is often used by temperature
controlled oscillators, which employ a control loop to tune a
voltage-controlled oscillator (VCO), thereby maintaining more
accurate time. In our case, the input to the control loop is
a global clock reference being supplied by the syntonistor
circuit. This can entirely remove the need for periodic resyn-
chronization wakeups of host processor. As compare to our
rate adaptive software scheme, hardware clock tuning has the
added benefit of simplifying the software running on the host.
In the case of the FireFly3, we use the Syntonistor circuit to
control the host CPU’s clock, however the same principle can
be applied using other external synchronization sources (for
example WWVB receivers).

Our rate adjustment circuit uses a varactor (variable ca-
pacitance diode) in place of one of the load capacitors
typically found on low-power clock crystals. This allows a
programmable digital-to-analog converter (DAC) to push and
pull the oscillator’s frequency. By carefully adjusting the load
capacitance, we can safely tap one side of the crystal’s output
and feed it into the input of an external microcontroller that
monitors the crystal’s rate. In the FireFly3 hardware design, the
MCU, which tracks the 60Hz power line signal, also senses and
tunes the main clock driving the FireFly3 node. This allows
the Syntonistor to autonomously adjust the host MCU clock to
compensate for drift. This has two main benefits: (1) the main
host can now sleep deeply uninterrupted for extended periods
of time and (2) if asynchronous events wake the node, they
can be immediately and accurately timestamped without the
need for resynchronization.

The remainder of the paper is organized as follows. Section
II will review work related to WSN time synchronization
and hardware clock rate adjustment. Section III will discuss
clock synchronization using the Syntonistor and hardware
rate adjustment. Section IV will discuss the details of our
system design including our improved Syntonistor and our
hardware clock rate adjustment circuit. Section V will provide
experimental performance results and Section VI will discuss
limitations of the system. Finally, Section VII will conclude
and provide future work.

II. RELATED WORK

A significant amount of work from the distributed systems
community can be applied to wireless sensor networks. [5]
presents the seminal work on logical clocks for total event
ordering in a system. The approach captures a numerical
method for ordering events based on time-counter exchanges
among devices. More recent work has focused directly on
establishing a common notion of wall-clock time [6], [7], [8],
[9]. The most commonly adopted of these approaches is the
Network Time Protocol (NTP) that uses round-trip message
delay averaging to set times. When changes to time are
required, NTP uses a clock-rate adjustment technique ensuring
that time remains continuous. For example, if a computer’s
notion of time falls behind actual time, it adjusts its mapping

of ticks to seconds such that its virtual clock runs faster. We
naturally use a similar approach since our hardware clock-
rate adjustment circuit will gradually adjust the clock without
causing discrete ”jumps” in the main CPU’s notion of time.

Next, we look at message passing approaches for syn-
chronization in wireless sensor networks. Many of these
approaches achieve extremely accurate synchronization, but
few evaluate the required energy associated with maintaining
synchronization. The reference broadcast synchronization [3]
(RBS) scheme uses timestamps exchanged between multi-
ple receivers to eliminate transmission delays. This approach
specifically targets the sources of timing jitter associated with
wireless devices and averages over multiple transmissions to
achieve tight pairwise clock synchronization. The flooding
time synchronization protocol [2] and the time-sync protocol
for sensor networks [10] (TPSN) use low-level hardware
timestamping to eliminate these similar sources of timing jitter.
Messages are flooded across the network forming a spanning
tree that periodically compensates for drift. Local clock rates
are adjusted to help reduce drift, which could also be achieved
using our module. Software approaches have also proposed
mixing high-speed and low-speed clocks together to improve
timestamp accuracy in a low-power manner [11]. In Section
III we discuss the trade-offs associated with hardware and
software approaches to clock rate adjustment. In [12], the
authors propose an interesting approach inspired by fireflies
and other biological systems that allows groups of nodes
to achieve synchronicity through rate adjustment of message
passing with their neighbors. In [4], the authors propose a
scheme called Glossy, which utilizes constructive interference
at the symbol level to boost the probability of successful time
synchronization messages. All of these approaches could be
used as part of the initial synchronization mechanism required
by the Syntonistor [1].

Multiple synchronization approaches leverage external
hardware to receive global time broadcasts. The WWVB
atomic clock broadcast from NIST uses a 50kW radio tower
located in Boulder, Colorado to transmit a 60Khz time beacon.
This system encodes wall-clock time using a pulse width
modulated coding scheme with rising edges at the beginning
of each second. This is ideal for outdoor applications within
the tower’s broadcast range, but the radio transmission does
not penetrate far into buildings. We could easily see this
approach being used as an alternative mechanism to our
60Hz receiver for outdoor applications. The Global Positioning
System (GPS) uses precise clock synchronization derived from
satellite transmissions for localization. GPS time receivers have
commonly been used as sources for NTP servers and often use
temperature-controlled oscillators to improve timing stability.
These have even been implemented in software for wireless
sensor networks [13]. Temperature controlled oscillators inter-
nally tune crystals in a similar fashion to what we use in our
approach. Our approach however works well with common
clock configurations with the addition of just a few simple
components. The Radio Data System (RDS) uses the sidebands
on standard FM radio transmissions to encode data, including
the time. These receivers typically consume too much energy
for use on a node-by-node basis in a sensor network, and in the
case of GPS and WWVB require direct line of sight with the
sky. The RT-Link [14] protocol uses a carrier current AM radio
transmitter to send global time beacons to sensor nodes. The

system uses a building’s wiring infrastructure as an antenna to
broadcast an AM radio timing pulse to an external receiver on
all nodes. This solution works well for industrial applications,
but it requires a centralized radio transmitter that is expensive
and often difficult to install. The work in this paper focuses on
how best to couple timing inputs to a hardware system in order
to allow for extended and uninterrupted deep-sleep periods.

III. CLOCK SYNCHRONIZATION

Two clocks are considered synchronized when their devia-
tion from each other is bounded by some known value. Even
if two real clocks are set to identical values simultaneously,
they will slowly deviate due to ”clock drift” resulting from
minor variations in clock frequency. In order for a system to
remain synchronized, a global clock signal must be present
from which each device estimates its internal drift. The work
in this paper builds upon the device described in [1] (called a
Syntonistor) that recovers a common global clock from the
electromagnetic field generated by power lines. Since each
node in the system can lock onto the same global clock source,
the nodes can remain synchronized for long periods of time
without exchanging messages. This work also shows that the
synchronization accuracy in such a system is determined by the
amount of jitter in the global clock source and not neccessarily
the frequency.

In the original system, the Syntonistor device generated a
Pulse-Per-Second (PPS) output that was read by the host sensor
node’s processor to remain synchronized with the network. To
remain synchronized, the host was required to wake up and
record each PPS edge so as to avoid drifting away from the
global time. Even though the Syntonistor itself is quite low-
power (drawing 58uW of power), there is a significant amount
of overhead required to periodically wake up each second and
synchronize two nodes. One possible solution to this problem
would be to connect the PPS line from the Syntonistor to an
external counter, enabling the host processor to keep track of
seconds while in deep-sleep mode. Alternatively, if a counter
is not available, the processor could be scheduled to wake
up before the worst-case clock drift would cause it to miss a
PPS edge. While a significant improvement upon the approach
adopted by the original Syntonistor, this type of approach
still suffers from an energy overhead and makes it difficult
to timestamp asynchronous events. For example, if a node is
in deep sleep for an extended period of time and an interrupt
triggers an event; the node internally could have drifted by up
to the PPS input period. The node would need to wait until the
next period edge to fully resynchronize and then back-compute
the event’s exact timestamp. For low-latency applications this
delay could be problematic.

In this paper, we introduce the FireFly3 WSN platform with
a hardware clock rate adjustment module that is independently
controlled by an improved Syntonistor to adjusts the local
sensor’s notion of time. This means that the sensor node can
remain synchronized for long periods without ever communi-
cating directly with the Syntonistor (or even waking up from
deep sleep). Any firmware running on the sensor node would
transparently benefit from the synchronization infrastructure.
Since the new Syntonistor can continuously adjust the clock
rate, it can also improve synchronization accuracy by reducing
clock rate tracking error.

Real Time

C
lo

ck
 T

im
e

Real Time

C
lo

ck
 T

im
e

Unadjusted Hardware Clock

Unadjusted Hardware Clock

Ideal Clock

Logical Clock

Logical Clock

Ideal Clock

t 0 t 1 t 2

t 0 t 2 t 6

t 3

m0

m1

r 1 m 0
=

1

m2

t’1

t’2

t’3

t 8 t 10 t 12 t 14

r 2 m 1
=

1
r 3 m 2

=
1

t’2

t’4

t’6

t’8

t’10

t’12

Fig. 1. Clock rate adjustment at a low sampling rate

Real Time

C
lo

ck
 T

im
e

Real Time

C
lo

ck
 T

im
e

Unadjusted Hardware Clock

Unadjusted Hardware Clock

Ideal Clock

Logical Clock

Logical Clock

Ideal Clock

t 0 t 1 t 2

t 0 t 2 t 6

t 3

m0

m1

r 1 m 0
=

1

m2

t’1

t’2

t’3

t 8 t 10 t 12 t 14

r 2 m 1
=

1
r 3 m 2

=
1

t’2

t’4

t’6

t’8

t’10

t’12

Fig. 2. Clock rate adjustment at a high sampling rate

Figure 1 shows an example of a hardware clock drifting
with respect to real-world time. In order to highlight the bene-
fits of continuous rate adaptation, we model the hardware clock
as a non-linear function. In reality, since clock performance
varies due to environmental parameters such as temperature
and vibration, clocks exhibit non-linear behaviors over various
time scales. For example, a sensor node that cycles between
hot and cold over a 24-hour period as the sun rises and sets
would appear to have a non-linear clock rate if sampled every
hour. Alternatively, one could imagine the clock used for a
tire pressure monitoring system that is rotating inside a car’s
wheel and being subjected to constantly changing acceleration.
Since oscillators are mechanical devices, this would cause
rapid fluctuations in clock frequency on the order of tens or
hundreds of ppm. The x-axis of Figure 1 shows real world
time. The y-axis shows the clock’s notion of time. An ideal
clock is drawn with the dashed line where the slope (depending
on axis scaling) will be 1. The thin curve above the ideal clock
(exaggerated for illustration purposes) represents a non-linear
hardware clock. Adjustments are made at sampling instances
denoted by the time markers on the x-axis. For example, a
clock correction update occurs at time t0, t1, t2 and t3. We
employ a rate adaptation approach similar to the one described
in [15], where at each time-instant an error slope is computed
and is subsequently used for correction during the next time-
instant. For example, between tn and tn+1 we compute slope
mn and apply a rate rn = 1

mn−1
. The difference between

mn and the ideal clock is the rate error over the last period

0 100 200 300 400 500 600 7000

0.5

1

1.5

2

2.5

3

3.5

4

Clock rate adjustment period (ticks)

R
at

e
er

ro
r

(s
lo

pe
 d

iff
er

en
ce

 b
et

w
ee

n
id

ea
l a

nd
 c

or
re

ct
ed

 d
rif

t r
at

e)

Fig. 3. Tracking error vs sample-rate

0 2000 4000 6000 8000 10000 120000

2000

4000

6000

8000

10000

12000

Real Time (Ticks)

C
lo

ck
 T

im
e

(T
ic

ks
)

Hardware Clock
Ideal Clock
Logical Clock
Error

Fig. 4. Clock rate adjustment period of 10 ticks

of time. We then apply a rate adjustment rn+1 = 1
mn

to
the next time step tn+1 to tn+2 using our tunable hardware
clock. Logical time adjustments can be achieved in software or
hardware. Since the real hardware clock can potentially change
rate during the next sample periods, we see that the adjusted
clock does not perfectly reach the ideal clock line. In Figure 2,
we see an equivalent scenario, but with a shorter sampling
interval, and better tracking performance. In general, intuition
would suggest that faster sampling rates lead to more accurate
tracking and result in less average error. It is interesting to
note that this is not always the case.

To quantify the impact of sampling rate on tracking error,

0 2000 4000 6000 8000 10000 120000

2000

4000

6000

8000

10000

12000

Real Time (Ticks)

C
lo

ck
 T

im
e

(T
ic

ks
)

Hardware Clock
Ideal Clock
Logical Clock
Error

Fig. 5. Clock rate adjustment period of 400 ticks

0 2000 4000 6000 8000 10000 120000

2000

4000

6000

8000

10000

12000

Real Time (Ticks)

C
lo

ck
 T

im
e

(T
ic

ks
)

Hardware Clock
Ideal Clock
Logical Clock
Error

Fig. 6. Clock rate adjustment period of 500 ticks

we simulate our rate adjustment algorithm on a hardware clock
that uses a monotonically increasing function as the underlying
drift model. The key feature that impacts a clock’s ability to
track ideal time is the rate at which the clock deviates as
compared to the clock adjustment sampling-period. In Figure 3
we show the impact of the sampling period on clock drift rate
over time. The x-axis shows the clock sampling period in ticks.
A lower tick sampling value indicates that the clock is being
adjusted more frequently (faster). The y-axis shows the rate
error between adjusted time and real time. Of note here is
the fact that, as the sampling period gets smaller, the tracking
error decreases. This indicates that continuous tracking will
tend to perform better than discrete tracking. However, we
do see certain operating points where faster sampling rates
lead to worse tracking performance. This is an artifact of
sampling when the slope is nearly zero and applying a high rate
correction for the next period. Figure 4 shows the best tracking
performance when the sampling rate is as high as every 10
ticks. Figure 6 shows an example where a slower sampling
rate (per 500 ticks) performs better than that found in Figure 5
which is operating at a faster rate (per 400 ticks). We cannot
guarantee that sampling faster always improves accuracy, but
in general it tends to perform better.

IV. SYSTEM DESIGN

We now describe the hardware architecture and details
of each component in our system. At the core of the
FireFly3 wireless sensor networking platform is an Atmel
ATmega128rfa1 8-bit System-On-Chip (SoC) microcontroller
with integrated 802.15.4 radio. The CPU has 16KB of RAM
and 128KB of flash memory. A 16MHz clock drives both the
radio transceiver and the main CPU when it is in the active
and idle mode of operation. A 32KHz low-power clock is
used to maintain global time and runs continuously even when
the system is in deep sleep mode. In addition to the main
processing and communication unit, there are two additional
novel components used to improve timing: (1) an updated
power-line sensing synchronization circuit and (2) a hardware
clock-rate adjustment circuit. Figure 7 shows a photograph
of the FireFly3 sensor node next to the updated electric field
sensing board. The remainder of this section will discuss the
design choices and evaluation of these two modules.

Fig. 7. FireFly3 sensor node (left) and FireFly3 with Electric Field sensor
stacked on top (right)

Electric Field
Antenna

Electric Field
Output

100K

100K

20M

3K

2K

JFET

13.3K

10µF 134

1uF

1uF

53K

MFT Band-Pass f=60, B=6, Am=-2, Q=10

330

Fig. 8. Electric field detector circuit

A. Electric Field Sensing

In [1] we proposed a synchronization module that locks
onto the 60Hz magnetic fields generated from power lines in
order to capture a common global time reference. The original
design detected magnetic fields using an inductive pickup. This
design was originally chosen because of its high sensitivity and
hence long detection range. Magnetic fields are generated by
the flow of current, which means the circuit will only detect the
signal when appliances are active in a building. On the other
hand, electric fields are generated from a voltage potential.
This means that the module can lock onto a signal even if no
current is flowing. For example, the wires from electrical mains
that go to light switches still generate a detectable electric field
when the light is switched off. It also makes the system less
sensitive to nearby appliances turning on or off since this will
no longer alter the intensity of the signal. The circuit is also
less complex, lower cost (no longer requiring a large coil)
and consumes less power. The main drawback of using an
electric field sensing approach is that the sensitivity is lower
as compared to the magnetic field front-end. In practice, the
sensitivity can easily be increased by adding a longer antenna.

~	
Sensor	 120	

VAC	

d	

12	 Gauge	 Wire	 No	 load	
required	

Fig. 9. Electric field experimental setup

Figure 8 shows the updated electric field sensing circuit.
The main sensor front-end uses a JFET and a small wire
acting as a Hertzian antenna to detect potential differences
across an electric field. The JFET opens or closes based on
the change in force exerted by the electric field. The large-
valued resistor between the gate and ground acts as a runoff
to remove excess charge buildup from constant nearby fields.
The output of the FET is then passed through a second-
order multiple feedback topology band-pass filter tuned to
60Hz. As compared to the design in [1], this additional filter
significantly reduces spurious noise that is not generated by
the appliance. The output of the electric field sensor is passed
to an MSP430G2452 low-power microcontroller with 2KB of
flash, 256 bytes of RAM running at 16MHz. This processor
is responsible for filtering the inputs and running a software
Phase Loop Lock (PLL) to generate a stable output for the
main FireFly3 board to use as a reference (see [1] for more
details).

We now evaluate the sensitivity and timing stability of
the new circuit. In [16] the authors measure and model the
magnetic fields produced by various power line configurations
to evaluate the potential health hazard on humans. Their mea-
surements show that the magnetic field strength near overhead
transmission lines can be as strong as 17 milli-gauss and drops
down to a still detectable 3-4 milli-gauss at 60 meters away.
This indicates that in most outdoor urban environments it is
still possible to detect these magnetic fields in and around
buildings. In [17], the authors measure typical magnetic field
values in homes ranging from .001 gauss to 10 gauss near
appliances and as high as 100 gauss in industrial settings. By
contrast, the earth’s natural magnetic field at 60Hz is much
weaker 2 ·10−7 gauss making these artificial signals relatively
simple to detect. Figure 9 shows our experimental setup where
the sensor node is placed at a fixed distance of 1m from a
12 gauge wire that is connected to a 120VAC power line.
Figure 10 shows that the received signal intensity linearly
increases with antenna length. This is to be expected with
Hertzian antenna configurations where the dipole element is
significantly smaller than the target wavelength. The usable
signal noise-floor for detection is about 2mV . Next, we take a
receiver with a short (10 cm) antenna and adjust the distance
of the receiver from the source wire. Figure 11 shows the
signal drop-off with respect to distance. The small antenna
decreases sensitivity allowing us to more clearly see the trend.
In practice, an antenna of length 10-15cm provides relatively
good coverage in most building environments.

Next, we measure the jitter associated with the 60Hz
signal timing from the electric field sensor as compared to
the original magnetic field design. The frequency of an AC

power line typically has a stability of about 5 · 105 [18].
In the past, devices like alarm clocks and home appliances
have used a direct connection to the power-line as a source
for keeping wall-clock time. This local stability is on the
order of a relatively poor quality clock crystal. However, in
order for power to be delivered efficiently across the country,
the phase difference between any two points should remain
fairly constant. [18] shows the differential delay to have a
stability of 1 part in 108 over a 24 hour period. Hence, the
power grid is phase-coherent. In the United States, there are
four main power grids that cover the entire country. Most
buildings are supplied with multiple phases of power. This
in combination with the orientation between our receiver and
nearby dominant magnetic fields, the detected signal will lead
or lag with respect to the original signal resulting in a a phase
offset. This means that our receivers achieve syntonization with
each other. Syntonization is defined as when two clocks are
frequency locked, but they may have a phase offset (hence we
call our receiver a Syntonistor). Since the power lines act as
a global broadcast, even if the frequency shifts, each node in
the network still receives a common global clock tick. This
means that after initialization, all clock rates are identical and
do not drift. This initialization step requires the local exchange
of messages using the protocol described in [1]. This protocol
is based on the Flooding Time Synchronization protocol [2]
and is only required at startup or during an error recovery
operation. Figure 12 shows a histogram of pairwise jitter
between two nodes collected over four hours. We clearly see
that the jitter captured by the electric front-end is significantly
less than the original magnetic receiver. This both simplifies
the PLL design and inevitably generates filtered edges with
lower total amounts of jitter. We attribute this improvement
to the increased stability of the electric field since it is less
influenced by changing current draw and the fact that the front-
end has fewer components on the signal path.

B. Error Recovery

The Syntonistor has the ability to detect when the timing
of the incoming signal unexpectedly increases beyond the
normal jitter threshold. This could happen for various reasons
including a physical change in the environment, a new nearby

5 10 15 20 25 30
Antenna Length (cm)

0

10

20

30

40

50

60

Pe
ak

 S
ig

na
l (

m
V)

Fig. 10. FET antenna length (orthogonal to cable) vs signal with node
positioned 1m from cable.

0.5 1.0 1.5 2.0 2.5 3.0
Distance (m)

0

20

40

60

80

100

120

140

160

180

Pe
ak

 S
ig

na
l (

m
V)

Detection Thershold
Signal

Fig. 11. FET peak signal strength vs distance given 10cm antenna.

appliance getting powered up, or even a power outage. In
response to these sorts of errors, the Syntonistor will raise
its error line which signals to the main sensor node that the
PPS value may no longer be accurate. If the error line remains
high for a long enough period (based on local clock drift), the
node must fall back to an existing software synchronization
technique. For example, the node can periodically pass mes-
sages with a neighbor to update its clock. Once the power-
line signal stabalizes again, the error line from the Syntonistor
will transition from high to low. At this point, the node will
send a message back to the master node requesting a new set
of flooding time synchronization messages. This high to low
transition naturally happens the first time a node is powered
on. One possible optimization is for nodes to only request the
phase offset based on their neighbors. In practice this works
well, however over time this could result in nodes drifting
with respect to the master if groups of nodes go in and out of
synchronization in lock-step.

C. Hardware Clock Rate Adjustment

Most time synchronization techniques rely on rate adjust-
ment to slowly change the system’s notion of time without
introducing logical discontinuities that might occur if time

16200 16400 16600 16800 17000 17200
Period (microseconds)

0

1

2

3

4

5

Fr
eq

ue
nc

y
(%

 o
f T

ot
al

)

Electric Field
Magnetic Field

Fig. 12. Jitter in electric field compared to magnetic field (original
Syntonistor) front-end

ATmega128RFA1	

XIN	

XOUT	
DAC	

~	
60Hz	 E-‐Field	 Front	 End	

MSP430	

i2c	

PPS	
Error	
Sync	

XIN	

Fig. 13. Hardware Clock Rate Adjustment Block Diagram

suddenly changed. This can be accomplished in both software
and hardware. On the FireFly3, we provide a simple circuit that
allows both the main FireFly3 processor as well as external
devices to tune the low-power 32KHz crystal used for long-
term time keeping.

Oscillator circuits contain a crystal, load capacitors and a
feedback loop to generate a periodic electrical signal that is
used as a clock input to processors. Typically the feedback
loop is internal to the MCU while the crystal and load capac-
itors are connected externally (load capacitances are typically
specified by the crystal manufacturer). Depending on the load
capacitance applied to the crystal, it is possible to push or
pull the crystal frequency shifting it slightly up or down. This
property is often utilized in high-speed digital tuning circuits to
adjust clock frequencies. In our design, we introduce a variable
voltage controlled capacitor (varactor) along with an ultra-
low-power digital-to-analog converter (DAC) to allow runtime
tuning of the crystal hardware. Unlike most external rate
adjustable clock circuits, this approach can be integrated within
the normal feedback control-path of the oscillator without
requiring external buffering chips. This significantly reduces
both the cost and power requirements of the circuit.

Figure 13 shows a block diagram of how the Syntonistor
interfaces with the FireFly3’s MCU. The physical hardware
for the varactor and DAC are located on the core FireFly3
module. The MSP430 and the electric field front-end are co-
located on the syntonistor add-on board. The FireFly3 provides
a dedicated port allowing the syntonistor to access the control
lines for the DAC enabling it to adjust the host processor’s
clock rate. The system is designed such that the FireFly
node will operate normally with a fixed crystal frequency
if the Syntonistor is not present. The input to the varactor
is provided by the MCP40D18 DAC from Microchip, which
provides 7-bit resolution and consumes 1uW of power when
idle. In order to evaluate the degree to which we are able
to push and pull the clock, we use a test program on the
FireFly3 node that outputs a square wave at a known frequency
(in this case 100Hz) using the 32KHz clock. We capture
1000 period values for each DAC input setting using a logic
analyzer connected to a PC[19]. Figure 14 shows the average
frequency change with respect to the DAC input. Values of
0 and 127 at the DAC’s extremes cause the clock to fail

0 20 40 60 80 100 120
DAC input

-40

-20

0

20

40

Fr
eq

ue
nc

y
de

lta
 (p

pm
)

Fig. 14. Crystal frequency change vs DAC input

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Temperature (°C)

dF
/F

 (p
pm

)

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

0

-20

-40

-60

-80

-100

-120

-140

Fig. 15. Sustainable operating region

and hence do not have a corresponding measurement. One
can clearly see that the circuit has the ability to adjust the
crystal’s frequency by more than 75 ppm. Figure 15 shows
how this range maps to the crystal’s temperature-to-frequency
relationship based on the manufacturer’s data sheet. It is worth
noting that the circuit has the ability to temperature compensate
the clock over a range of -8 to 58 degrees Celsius. Since
the ATmega128RFA1 has an internal temperature sensor, it is
possible to perform temperature-based clock adjustment even
without the syntonistor hardware since the DAC and varactor
are part of the main FireFly3 node.

The MSP430 on the syntonistor internally generates a Pulse
Per Second (PPS) filtered signal based on the 60Hz electric
field front-end. We can use this as a reference signal to trim
the clock on the FireFly3 assuming the MSP430 is also able to
read the FireFly3’s clock. Since we ideally want the circuit to
adjust the FireFly3 clock even while the FireFly3 is asleep,
this requires a hardware interconnect. By carefully placing
the varactor on the input side of the crystal feedback circuit
(where it can exert more of an impact on frequency) it is
possible to tap the driven output line of the ATmega128RFA1
processor and feed this into the low-frequency clock input of
the MSP430. The output channel of the MSP430 can then
be connected through a large resistor to ground. This config-
uration allows the MSP430’s asynchronous low-power clock
register to accumulate ticks directly from the FireFly3’s clock.
The MSP430 can then run a simple control loop that counts the
number of expected 32KHz clock ticks within each PPS signal
synthesized from the 60Hz power line. For example, within one
second, the MSP430 expects to see 32,768 clock ticks from the
FireFly3 node. Collected over a long enough period of time,

0.0001 0.0002 0.0003 0.0004 0.0005
DAC Update Rate (seconds)

0

5

10

15

20

25

D
AC

 A
ve

ra
ge

 P
ow

er
 (u

W
)

Fig. 16. DAC power vs sampling rate

Component Typical Power (µW) Max Power (µW)
NE3503M04 0.5 10.0

OPA2369 0.84 1.0
OPA333 10 30

MCP4018 1.1 22
MSP430G2452 5 19.8

Total 17.44 82.8

TABLE I. THIS TABLE SHOWS A BREAKDOWN OF AVERAGE POWER

CONSUMED BY THE MAIN HARDWARE COMPONENTS IN THE

SYNTONISTOR AND CLOCK ADJUSTMENT CIRCUIT.

the drift between the two clock sources becomes apparent. For
example, if the syntonistor counts 327,685 counts over a 10
second period (referenced from the 60Hz signal), then it can
compute that the FireFly3 clock is running too quickly (we
expect 327,680) and needs to be slowed down. We implement a
simple binary threshold control law on the syntonistor to track
these values. The firmware image for the MSP430 consumes
1540 bytes of flash and 176 bytes of RAM.

Next, we evaluate the energy impact of the new Syntonistor
circuit design. The previous magnetic field sensing system
consumed on average 58uW . Our new design removes the
INA front-end and replaces it with a lower-power op-amp
that saves around 30uW . We also have an additional DAC to
control the crystal’s rate. The updated components and their
associated power consumptions are listed in Table I. The DAC
consumes 1.8uW of power when idle and up to 22uW of
power when active. The DAC requires 22uS to change state.
Depending on how often updates are made to the crystal’s rate,
the overall power of the DAC is shown in Figure 16. The static
consumption of the MSP430 processor when running with the
analog front-end components was measured to be about 15uW .
Including the DAC, the entire system consumes on average
about 17.4uW which is 60% less then the original design.
Since the electric field does not need to resonate, it can startup
within micro-seconds instead of hundreds of milliseconds as in
the previous design. This makes it conceivable that the entire
front-end circuit could be duty-cycled to wakeup just before it
expects one of the 60Hz edges. In the future, this optimization
could further reduce power consumption.

~	 Firefly	 3	

Logic	
Analyzer	

~	 Firefly	 3	

PPS	

PPS	

60	 Hz	

60	 Hz	

PC	

Synt.	

Synt.	

Fig. 17. Pairwise performance experimental setup

V. SYSTEM EVALUATION

We now evaluate the performance of the FireFly3 platform
in terms of drift-rate, asynchronous sampling-error and sleep-
energy.

In order to accurately monitor drift over an extended period
of time, we utilized a variant of our original experimental
setup used to measure the push-and-pull ability of our hard-
ware clock. Figure 17 shows two FireFly3 nodes with GPIO
output lines directly connected to a logic analyzer that can be
monitored by a PC. The GPIO pins are set to toggle based
on an interrupt driven by the 32KHz low-power clock. This
is the clock typically used on sensor nodes by the operating
systems and event schedulers since it operates when the node
is in deep sleep. The 32KHz clock is used to generate a
10 second square wave. The Syntonistors then independently
adjust the rate of the 32KHz clock based on the 60Hz power
line signal. In this experiment, we do not use the PPS signal
from the Syntonistor to adjust the FireFly’s time. Instead we
rely exclusively on the rate adjustment circuit to keep them
at similar rates. Using the logic analyzer we can precisely
measure the jitter between each rising edge to within 40
nanoseconds (the logic analyzer samples at 25MHz). Over a
period of 24 hours we see that without the Syntonistor, the
nodes drift by 1.2 seconds which corresponds to a crystal
precision of 14ppm. With the Syntonistor active, the two
nodes drift by only 864 microseconds which corresponds to
a 0.01ppm clock. In this example, both nodes are within close
physical proximity to one another. However in practice, one
node might be far enough away that it will be exposed to
different temperature or acceleration environments, which will
significantly impact the non-corrected drift, but will have little
impact on the corrected version.

Next, we compare the energy difference between three
different approaches for synchronization using the Syntonistor.
The first is a ”Fixed periodic” approach where the main
processor wakes up every second to resynchronize with the
PPS output of the Syntonistor (this was the original scheme
from [1]). We then propose an enhanced version of this scheme
where the host processor conservatively estimates its drift with
respect to the Syntonistor PPS output and schedules itself to
wake up only near boundaries when it could lose track of the
PPS count. For example, if the host processor is drifting at
a rate of 50ppm with respect to the Syntonistor clock, it can
safely sleep for 2.5 hours without worrying about drifting by
more than a single PPS timer tick. For extended periods of deep
sleep, the system can use a drift and resynchronize approach
to keeping track of time. We call this approach ”rate adaptive”

0.001 0.01 0.1 1 10 100 1000 10000 100000
Sleep Time (seconds)

0

20

40

60

80
Av

er
ag

e
Po

w
er

 (u
W

)

HW Clk Adj
Rate Adaptive
Fixed Period

Fig. 18. Impact of rate adjustment on energy

0 0.01 0.1 1 10 100 1000 10000 100000
Sleep Time (seconds)

0
1x10-10
1x10-9
1x10-8

1x10-7
1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r (
se

co
nd

s)

HW Clk Adj
Rate Adaptive
Fixed Period

Fig. 19. Asynchronous sample time error vs sleep interval

Syntonistor tracking. The general idea is that the processor
must wakeup to sample an event, set an interrupt for the next
PPS edge, go to sleep to conserve energy, wakeup just before
the edge and adjust its clock. Our final approach uses hardware
clock rate adjustment where the CPU can essentially just sleep
for extended periods.

In our first comparison, we investigate the impact of each
approach on total energy overhead while sleeping for an
extended period of time. With the fixed periodic approach,
the system has to frequently wake up to resynchronize. Even
if this is connected with an interrupt routine triggered by the
PPS clock, it still requires 5-10ms for the main CPU to wake
up and resynchronize. In the more intelligent rate adaptive
approach, the wake up overhead becomes less significant as
the sleep period increases. Waking up once every 2.5 hours
maintains an extremely low duty-cycle. We will later see
that this has a negative impact on asynchronous timestamping
of events. With the hardware clock rate adjusted approach,
the energy consumption is always relatively static. Figure 18
shows an analytical comparison of the average power required
to maintain (the most accurate level of clock adjustment)
consumed by the three approaches as the desired sleep time
increases. We see that beyond about 30 seconds the rate
adaptive approach and the hardware approach are essentially
equivalent. Below 30 seconds, the rate adaptive approach must

frequently synchronize until it eventually becomes equivalent
to the fixed periodic approach at small time scales. Below
a 1 second sleep interval, the system wakes up once per
second periodically to maintain accuracy which is why the
power remains constant. Both rate adaptive and hardware-
assisted adjustment significantly out perform the fixed periodic
approach at longer time scales. In these evaluations, we assume
50ppm clock crystals that must remain synchronized to within
1 second of the Syntonistor’s PPS output so as to stay in phase
with the signal.

Next, we evaluate the ability for the system to accurately
timestamp asynchronous events while the processor has been
in deep-sleep for an extended period of time. If an event occurs
while the CPU is sleeping, it must be timestamped based on
the best available information after wake up. Figure 19 shows
the drift error with respect to sleep interval under different
approaches. Note, that both axes are log-scale. In the fixed
periodic update approach, the node would have synchronized
in the worst-case one second in the past, which is why we
see it perform the best over long sleep periods. This is of
course at the cost of expending significantly more energy.
The hardware clock rate adjustment approach is linear based
on its 0.01ppm clock drift rate. Initially, this outperforms
the periodic approach since its internal clock is 50ppm, but
eventually the periodic resynchronization accounts for this drift
and outperforms the hardware clock rate scheme at about 1.6
hours. The rate adaptive approach suffers the most since it
could have drifted by up to half a PPS period over an extended
period of time before it resynchronizes. The plateau at 2.7
hours is the result of the resynchronization interval used to
catch drift. We could imagine combining rate adaptation with
the hardware clock rate adjustment and earlier wake up periods
in a manner where designers could tune accuracy and energy
to better meet application requirements.

VI. LIMITATIONS

The main limitation to this approach is that additional
hardware adds to both the cost and energy consumption. For
example, if one were to take the improved electric field front-
end and remove the DAC used for clock rate adjustment
the energy would be further reduced. For extended sleep
periods the software rate adaptive approach could provide
similar performance. It would also be possible to back-compute
timestamp arrivals based on future synchronization points to
overcome the poor asynchronous timestamping error. However,
this would result in increased latency. In general, the cost
overhead of adding the additional hardware is minimal and
it provides an elegant solution that outperforms software-
based approaches in certain scenarios and simplifies overall
software design. We believe for a real-time wireless sensor
networking platform, both of these hardware components could
play significant roles in building robust systems in the future.

Another limitation of using a global broadcast reference
for synchronization is that the system is only internally syn-
chronized. This means that external devices will have their
own (different) notion of time. Since the power line is not
particularly stable over short time periods (differential stability
is high, but not necessarily local stability), this means that
external devices need to periodically communicate with the
infrastructure to maintain time synchronization.

VII. CONCLUSION AND FUTURE WORK

Accurate timing is an important component for distributed
systems that are designed to provide high levels of QoS sup-
port. In wireless sensing systems this can be used to improve
fine-grained event ordering and communication scheduling.
In this paper, we presented the FireFly3 WSN platform that
improves timing through use of an external synchronization
module and a hardware clock-rate adjustment circuit. We
present an improved circuit design that is able to synchronize
with the 60Hz electromagnetic fields emitted from power
lines. This signal can be used as a global clock source for
the network. We then introduced a novel hardware clock
rate adjustment system that allows for low-power clock rate
adjustment of the main FireFly3’s processor externally even
while it is in a deep-sleep mode. This enables more precise
instantaneous timestamping of asynchronous events when the
node is in deep-sleep and saves energy that would otherwise
have been wasted on periodic wake up overhead. Even without
the Syntonistor, the hardware clock rate adjustment can be used
in conjunction with the main processor’s temperature sensor
to perform temperature-based clock rate adjustment. We show
that our new platform has a clock stability of 0.01ppm and
consumes on average 22uW in deep-sleep while maintaining
synchronization. In the future we would like to investigate
the potential for new kinds of low-power MAC protocols that
capitalize on out-of-band drift-rate adjustment. We also believe
that the average power can be further reduced by duty-cycling
how the Syntonistor samples the sensor front-end.

ACKNOWLEDGMENT

We would like to thank Ge Yang for his work on the
MSP430 PLL software and Thomas Schmid for his valuable
discussions related to this work.

REFERENCES

[1] A. Rowe, V. Gupta, and R. R. Rajkumar, “Low-power clock synchro-
nization using electromagnetic energy radiating from ac power lines,”
in Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’09, (New York, NY, USA), pp. 211–224,
ACM, 2009.

[2] M. Maroti and B. Kusy and G. Simon and A. Ledeczi, “The flooding
time synchronization protocol,” Proc. ACM Sensys, 2004.

[3] J. Elson and L. Girod and D. Estrin, “Fine-grained network time
synchronization using reference broadcast,” USENIX OSDI, 2002.

[4] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Proceedings of
the 10th IEEE International Conference on Information Processing in
Sensor Networks, IPSN ’11, pp. 73–84, Apr. 2011.

[5] L. Lamport, “Time, clocks and ordering of events in distributed sys-
tems,” Communications of the ACM, 1978.

[6] D. Mills, “Internet time synchronization: The network time protocol,”
IEEE Transactions on Communications, 1991.

[7] Z. S. Gusell, R., “The accuracy of clock synchonization achieved by
tempo,” IEEE transactions on Software Engineering, 1989.

[8] F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-
ing, 1989.

[9] O. W. Kopetz, H., “Clock synchonization in distributed real-time
systems,” IEEE Computer, August 1987.

[10] S. Ganeriwal and R. Kumar and M. B. Srivastava, “Timing-sync
protocol for sensor networks,” Proc. ACM Sensys, 2003.

[11] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power
time synchronization an oxymoron no more,” in Proceedings of the
9th ACM/IEEE International Conference on Information Processing in
Sensor Networks, IPSN ’10, (New York, NY, USA), pp. 151–161, ACM,
2010.

[12] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal,
“Firefly-inspired sensor network synchronicity with realistic radio ef-
fects,” in SenSys ’05: Proceedings of the 3rd international conference
on Embedded networked sensor systems, pp. 142–153, 2005.

[13] C. Z. S. R. S. M. Schmid, T., “Temperature compensated time synchro-
nization,” in IEEE Embedded Systems Letters, 2009.

[14] Rowe A., Mangharam R., and Rajkumar R., “RT-Link: A Time-
Synchronized Link Protocol for Energy-Constrained Multi-hop Wireless
Networks,” SECON, 2006.

[15] F. Schmuck and F. Cristian, “Continuous clock amortization need
not affect the precision of a clock synchronization algorithm,” in
Proceedings of the ninth annual ACM symposium on Principles of
distributed computing, (New York, NY, USA), pp. 133–143, ACM,
1990.

[16] Olsen, R. G., Deno, D., Baishiki, R. S. , “Magnetic fields from
electric power lines theory and comparison to measurements,” IEEE
Transactions on Power Delivery, 1988.

[17] Deno, D. , “Sources and Structures of Magnetic and Electric Fields in
the home,” 23rd Hanford Life Science Symposium, 1984.

[18] M. H. Allan, D., “Time transfer using nearly simultaneous reception
times of a common transmission,” 26th Annual Symposium on Fre-
quency Contro, pp. 309–316, 1972.

[19] “http://www.saleae.com/logic,”

