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Abstract—In this paper, we introduce Pulsar, a wireless time
transfer platform that can achieve clock synchronization to better
than five nanosecond between indoor or GPS-denied devices.
Nanosecond-level clock synchronization is a missing capability for
many real-time applications like next-generation wireless systems
that leverage spatial multiplexing to improve channel capacity
and provide services like time-of-flight localization. With fine-
grained synchronization, both clock stability and propagation
delays introduce significant sources of error. Pulsar leverages
a stable clock source derived from a Chip-Scale Atomic Clock
(CSAC) along with an Ultra-WideBand (UWB) radio able to
perform sub-nanosecond packet timestamping to estimate and
correct for clock offsets. We design and evaluate a proof-of-
concept network-wide synchronization protocol for Pulsar that
selects low-jitter links to both estimate the location of nodes and
reduce cumulative synchronization error across multiple hops.

The Pulsar platform and protocol together provide a phase
synchronized one pulse per second (1PPS) signal and 10 MHz
reference clock that can be easily integrated with typical end-
user applications like software-defined radios and communication
systems. We experimentally evaluate the Pulsar platform in terms
of clock synchronization accuracy, Allan deviation between pair-
wise clocks and ranging accuracy to show a clock synchronization
of better than five nanoseconds per hop with an average of 2.12 ns
and a standard deviation of 0.84 ns. The platform is able to
identify and avoid clock error in cases where there is heavy
multi-path or non-Line-of-Sight signals.

I. INTRODUCTION

In this paper, we present Pulsar a wireless time transfer plat-
form able to synchronize devices across a multi-hop network
to within 5 ns per hop. This level of clock synchronization
is often required for applications in scientific experimentation
and next generation wireless systems that use collaborative
multi-antenna techniques. For example, current wireless sys-
tems can use Multiple-Input Multiple-Output (MIMO) antenna
arrays to transmit independent and separately encoded data
signals from more than one antenna for beamforming or to
help collaboratively receive weak uplink signals. Traditionally,
MIMO antennas are located on a single device with carefully
constructed delay paths. Through tight clock synchronization,
it is possible to apply MIMO techniques across multiple
spatially separated base stations. This has the potential to
dramatically improve both wireless coverage and spectral effi-
ciency especially in cases where coverage is limited by inter-
cell interference. Collaborative MIMO (C-MIMO) approaches
are already being adapted in cellular service outdoors, but with

accessible propagation-aware time synchronization, this could
be applied to femtocell and other high-speed wireless found
in indoor environments.

The most common form of nanosecond accurate time syn-
chronization is derived from Global Positioning System (GPS)
signals. Unfortunately GPS signals cannot easily penetrate
buildings and are often distorted by multipath in urban envi-
ronments. The best wired time synchronization solutions like
the Precision Time Protocol (PTP) [1] can achieve accuracies
as low as 25 ns, but these access points require both wires and
expensive switches throughout the network. Wireless PTP sys-
tems are being designed to operate on existing WiFi channel
bandwidths which significantly limits their timing resolution
(802.11ac has a maximum bandwidth of 160 MHz) and
are still predominantly research prototypes that are not com-
mercially available. The Pulsar platform provides an easy-to-
use synchronization system for indoor wireless and scientific
applications that wish to decouple time synchronization from
system details like the underlying communication protocols.

Time synchronization protocols suffer from five main
sources of error that are associated with: (1) transmit time,
(2) propagation time, (3) receive time, (4) residency delay
and (5) clock instability. Transmit and receive timing errors
result from the jitter and offset when timestamping packets.
Residency delay results from messages being in buffers after a
packet has been constructed. In message passing protocols like
the Network Time Protocol (NTP) [2], the majority of error
is associated with asymmetry in round-trip message passing
times. Propagation time is the delay resulting from the time
it takes a signal to travel over the air or through a medium
like wire or fiber. One nanosecond corresponds to the time
it takes light to travel approximately 30 cm. An offset of
100 ns could simply be a 30 meter difference in distance.
PTP uses hardware-level timestamps to estimate propagation
time of network signals. This is extremely difficult in wireless
systems because of the error in timing associated with locking
onto preambles in a noisy channel. Finally, clock instability
is the result of error in the frequency of local oscillators that
can change depending on physical properties like temperature
or crystal aging. A quartz crystal found in a typical electronic
device could drift by as much as 1 µs per second. Even the
best oven controlled oscillators begin to drift on the order
of nanoseconds per second over periods longer than a few



seconds.
Given these error sources, an ideal wireless time transfer

system would benefit from two main technologies: (1) a stable
clock source to minimize drift and message passing overhead
and (2) a radio that operates across a wide bandwidth to
improve the theoretical range resolution, and one that can
perform accurate timestamping of packets. Pulsar leverages
innovations on both fronts by using a Chip-Scale Atomic
Clock (CSAC) as its primary clock source and a commer-
cially available UWB radio capable of sub-nanosecond packet
time stamping. For the radio, we use the DW1000 UWB
chipset from Decawave [3] that provides a nominal 15.6 ps
timestamp precision of packet transmit and reception through
use of equivalent time sampling on a repetitive pulse train.
The combination of stroboscopic sampling and the fact that
UWB uses short pulse durations, make these radios ideal for
precise timestamping and ranging applications. The DW1000
is designed primarily for time-of-flight (TOF) ranging appli-
cations and can provide centimeter level distance corrections
when given line-of-sight. We use these distance estimates to
account for speed-of-light propagation delays. Second, the
Pulsar includes a Quantum SA.45s CSAC that provides a
short-term stability (Allan Deviation) of 2.5 ∗ 10−10 with an
averaging period (τ ) of 1 s. The CSAC is connected directly to
the UWB radio and an ARM processor using a programmable
low-jitter phase-locked loop (PLL). The high stability and low
drift of the CSAC not only improves the DW1000 in terms of
frequency locking performance, but it enables synchronization
and ranging over longer intervals which improves multi-hop
performance.

One of the main challenges in our system is utilizing
DW1000 timestamps in a manner that allows for precise clock
conditioning. The digital subsystem of the DW1000 runs at
38.4 MHz which means that all I/O is discretized to 26 ns.
A significant contribution of this work is that we provide
a simple hardware mechanism for pushing synchronization
accuracy below this I/O discretization level. We utilize a PLL
to synchronously clock the radio and processor subsystems
while using the CSAC PPS signal as a common event for
time stamping. Since the PLL provides frequency locking but
cannot phase aligned to the input clock from the CSAC, the
radio and clock have an unknown phase offset up to the
26 ns time discretization. We are able to improve error by
using a phase measurement sub-system to measure the error
between the PPS signal and the outputs from the PLL. We
then compensate for this phase error in software to achieve
below 5 ns of accuracy. The final output of our system is a
synchronous PPS signal along with a phase locked 10 MHz
output that is a standard for synchronizing communication
equipment like Software-Defined Radios (SDR).

In propagation-aware time transfer systems the device lo-
cation and timing accuracy are tightly coupled. In protocols
like NTP and PTP, time is distributed along the edges of
a tree. Prior work has shown that not all links and clocks
should be treated equally [4]. One of the benefits of the
broadcast nature of wireless communication is that multiple

nodes within a network can perform pair-wise ranging with
each other to capture information about the topology with a
greater number of links as compared to wired systems. As
part of Pulsars synchronization protocol, we have a graph
realization and a low-jitter link selection step where the system
collects range measurements between nodes to capture the
topology of the network. Graph realization and link profiling
helps find routes that minimize jitter caused by non-line-of-
sight (NLOS) communication. This graph also provides the
physical location of nodes that is a critical component to many
wireless applications.

In summary, the contributions of this paper are: (1) a
novel hardware platform that is able to perform wireless time-
of-flight propagation-aware clock synchronization at better
than 5 ns resolution per communication hop that can be
easily integrated with existing SDR systems, (2) an end-to-
end analysis and evaluation of timing uncertainty provided by
the platform and (3) the design of a propagation-aware clock
synchronization algorithm.

II. RELATED WORK

In this section, we discuss related work in clock synchro-
nization and look at mechanisms for accurate ranging, which
can be used to remove propagation delay errors. We also
discuss related work from the wireless MIMO community.

A. Clock Synchronization Approaches

Significant effort has addressed establishing a common
notion of wall-clock time. The Network Time Protocol [2]
(NTP) uses round-trip message delay averaging to set times.
We adopt many similar concepts to NTP like clock discipline
and network-delay estimation. Various message passing ap-
proaches have looked at minimizing access, transmission and
reception time in wireless systems. The reference broadcast
synchronization [5] (RBS) scheme uses timestamps exchanged
between multiple receivers to eliminate all transmission delays
with the exception of propagation delays. This approach
targets the sources of timing jitter associated with wireless de-
vices and averages over multiple transmissions to achieve tight
pairwise clock synchronization. The Pulsar platform adopts a
similar approach using beacon messages, except that it adjusts
for propagation delays. The flooding time synchronization
protocol [6] and the time-sync protocol for sensor networks [7]
use hardware timestamping to eliminate these similar sources
of timing jitter. Messages are flooded across the network
forming a spanning tree that periodically compensates for drift.
Local clock rates are adjusted to help reduce drift, which could
also be achieved using our module. In their original form,
propagation delay was not significant compared to achieved
accuracy. Both approaches could be applied to the Pulsar
platform and would improve their performance due to its fine-
grained timestamps.

Multiple synchronization approaches leverage external hard-
ware to receive global time broadcasts. The WWVB atomic
clock broadcast from NIST uses a 50 kW radio tower located
in Boulder, Colorado to transmit a 60 Khz time beacon. This



is ideal for outdoor applications within the tower’s broadcast
range, but the radio transmission does not penetrate far into
buildings. The signal also suffers from high levels of jitter
with offsets due to the long transmit distances. The Global
Positioning System (GPS) [8] uses precise clock synchro-
nization derived from satellite transmissions for localization
and timing. This is achieved using the Time-Difference-of-
Arrival (TDOA) of radio messages to estimate location as
well as synchronize receiver clocks with an atomic clock
driven infrastructure. Unfortunately, GPS does not penetrate
buildings and requires at least three satellites in order to
compute precise time (a single satellite gives crude time on the
order of micro-seconds since it cannot determine distances).
GPS time receivers have commonly been used as sources to
discipline NTP servers and often use temperature controlled
oscillators to improve timing stability. These have even been
implemented in software for wireless sensor networks [9].

Previous efforts have shown a number of protocols and
time synchronization specific to IEEE 802.15.4 networks.
In high multi-path environments, the channel coherence and
time resolution is theoretically limited to 200 ns by the
5 MHz bandwidth of the channels [10]. UWB radios like
the DW1000 work around this problem by using channels
that are 500 MHz or 1 GHz. Clock synchronization schemes
like Glossy [11] rely on symbol level constructive interference
to perform better than micro-second synchronization. Reverse
flooding [12] is similar to Glossy, and additionally compen-
sates for propagation delays. One benefit of this scheme is that
it does not require the maintenance of spanning trees in the
network. While impressive, the achieved performance again
highlights the limitations resulting from I/O discretization
(42 ns or 1 clock cycle on their system). The results presented
seem optimistic (likely experiments in low multipath areas) in
a multipath environment due to the theoretical time resolution
limit. Due to a differences in the physical layer, these schemes
cannot be easily applied to UWB radios. By utilizing a
larger signal bandwidth along with the tightly coupled clock
distribution system allows Pulsar to improve upon these state-
of-the-art systems by a factor of more than 20 (5 ns vs
∼ 100 ns). Due to a differences in the physical layer, this
scheme cannot be easily applied to UWB radios.

In [13] the authors present an approach that uses known
locations of beacons (using GPS) to back compute propaga-
tion times. This approach could utilize the Pulsar platform
and given their required time scales, would likely see a
significant improvement in terms of the number of supported
nodes. Time-of-flight aware time synchronization [14] takes a
similar approach for propagation-time estimation as to what
we propose; using a sub-GHz CC1101 radio for internal
synchronization but with a more sophisticated algorithm. Like
most existing platforms in the WSN community, they operate
in the 200-1500 µs range. However, it uses similar primitives
and the protocol can be applied to the Pulsar platform in the
future.

In [15], the authors study using nearly simultaneous re-
ceptions of various sources, both natural and man-made, for

synchronization. For example, optical pulsars (from which we
adopt our name) can broadcast flashes of light simultaneously
visible to large regions of the earth. These reception times
are known to be nearly simultaneous to all viewers and hence
can be used as synchronization points. The best performing
wireless time synchronization to date has been achieved at
NIST [16] and is able to synchronize clocks optically down
to one femtosecond over 100 ms across a 4 km free space link.
Designed primarily for ultra-precise scientific experiments,
this impressive system is a research prototype that is large,
fixed, expensive and fragile. It also requires direct optical LOS
which is difficult to achieve in indoor spaces.

B. Software-Defined Radios and Collaborative MIMO

There have been multiple proposed approaches for tight
clock synchronization from the wireless community. [17]
proposed using power-line communication (PLC) as a back
channel for wireless synchronization. The system is able to
achieve an average synchronization accuracy of 225 ns with
as high as 400 ns. While ideal for small area clock distribution,
PLC requires repeaters to go across circuits and can be sus-
ceptible to noise that is difficult to eliminate. SourceSync [18]
presents a system that is able to harness sender diversity
through tight time synchronization using an SDR. The system
is able to achieve better than 20 ns time synchronization, but
is limited to a single collision domain and like many SDR-
based approaches requires modifying the underlying MAC
protocol to include synchronization capabilities. AirSync [19]
and JMB [20] use similar approaches with SDRs that again
modify the underlying MAC which makes it difficult to adapt
to standard protocols. In contrast, our approach provides an
external input at 5 ns per hop across a network with the
sole purpose of providing synchronization. This decouples
the time synchronization from the underlying wireless MAC.
The results from JMB also emphasize the importance of time
synchronization in C-MIMO: every 0.1 radian (64 ns) of
phase error between the transmitters decreases the SNR at the
receiver by 2 dB, which correspondingly affects the system
throughput.
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Fig. 1. Pulsar hardware photograph
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Fig. 2. Pulsar Block diagram with interconnects.

III. PLATFORM DESIGN

In this section, we discuss our hardware design and then
address our specific sources of synchronization error. We look
at how each source of error can be reduced given our proposed
architecture. Our platform is open-source with the all of the
hardware and code available on Upverter1 and GitHub2.

A. Pulsar Hardware

The Pulsar platform, shown in Figure 1, is 18 cm by
12.5 cm. The block diagram of the Pulsar board in Figure 2
shows five main components: (1) the CSAC, (2) a frequency
synthesizer, (3) a UWB radio, (4) an ARM processor and
(5) a clock phase measurement unit. The entire Pulsar board
consumes a peak of 200 mA at 3.3V, most of which is
consumed by the radio and the CSAC heating element. The
output of our system is a one pulse per second (1PPS) signal
along with a phase locked 10 MHz clock which will be
synchronized across the entire network of nodes.

The CSAC is a Microsemi SA.45s module that outputs a
10 Mhz signal with a short-term stability (Allan Deviation)
of 2.5 ∗ 10−10 over a one second averaging period with a
long-term aging of less than 9 ∗ 10−10 per month, and a
maximum frequency change of 5 ∗ 10−10 across a temper-
ature range of -10 to 35 degrees Celsius. The CSAC has
the ability to be disciplined from an external high-precision
PPS source (PPSin synchronization) improving its phase and
frequency performance to within 1 ns and 1 part per (pp)
1012 respectively. In our experiments, we pre-calibrate the
clocks from a single GPS source. The CSAC has a variety of
I/O including PPSin, PPSout, an analog tuning input for phase
adjustment and a digital interface over serial. It can digitally
servo at up to a maximum frequency steer of four pp 108

through a serial interface or the analog tuning input. Since
it would take an extremely long time to servo PPS outputs
into alignment, we feed a GPIO pin from our main processor
into the PPS input of the CSAC as part of an initialization

1https://upverter.com/WiselabCMU/eab20f02c4d4f096/Pulsar-V2/
2https://github.com/WiseLabCMU/pulsar-code

process (manual PPSin synchronization). Internally, the CSAC
uses an oven controlled crystal oscillator (OCXO) that is
disciplined at 1 Hz by a resonance cell containing rubidium
87 that is heated into a vapor. The vapor is illuminated with
light from a semiconductor laser diode which is naturally
modulated at 6.834 GHz. Once the laser drives the atoms
into an oscillating state, they absorb less light, which allows
the system to determine if the light is modulated at the same
frequency as the atomic source. Based on the light intensity,
an inner control loop servos the OCXO frequency. Using the
excitation of rubidium atoms as a reference is what provides
the long-term frequency stability.

The 10 MHz output from the CSAC is connected to a
LMX2561 low-jitter frequency synthesizer from Texas Instru-
ments and to a hardware counter on the main ARM processor.
The frequency synthesizer is used to convert the 10 MHz
signal into a 38.4 MHz signal that can drive the UWB
radio and other related subsystems. The LMX2561 contains
a fractional PLL that can be programmed to generate any
frequency from 10 MHz to 1344 MHz with very low phase
noise. In systems that lack a tunable clock source (like a
CSAC), the PLL can also be used to tune an incoming clock
signal. Introduction of a PLL into a clock system results in
the loss of absolute phase information regarding the output
signal with respect to other signals (e.g. 1PPS and 38.4 MHz).
Fortunately, stable PLLs will introduce a phase offset which
is held constant during lock and we can use this insight to
measure and compensate for the error.

At startup, the PLL and CSAC are configured by an NXP
Kinetis ARM K22F Cortex-M processor running at 120 MHz.
The ARM processor has a variety of connections to control
all of the Pulsar’s subcomponents as well as interconnect with
external devices using a RPI2 compatible header. The main
processor has 512 KB of Flash, 128 KB of SRAM, an FPU
and on-board DSP.

As previously mentioned the DW1000 UWB radio has the
ability to timestamp packet arrival with a resolution of 15.6 ps
through equivalent time sampling of a pulse stream that is part
of the message preamble. UWB is an excellent communication
source for ranging applications since the pulses can be made
to be extremely narrow in time and hence wide in frequency.
From radar literature, we know that range resolution is derived
from a time bandwidth product. The DW1000 has a synchro-
nization line (SYNC) that can be used to reset an internal
40-bit counter that increments at 64 GHz or deterministically
trigger a radio transmission. This SYNC input can be used to
reset the system time-base for the radio messages.As is the
case with most digital radio platforms, the SYNC pin will
only be read on the next rising edge of the 38.4 MHz clock
driving the I/O subsystem of the radio. This introduces up
to 26 ns of error unless the source driving the SYNC line is
phase aligned with the 38.4 MHz. To achieve synchronization
accuracies below the I/O discretization level of the radio’s
digital system, we feed the raw CSAC PPS signal into the
SYNC line (but only reseting the time-base when required) and
then use a clock phase measurement unit (CPMU) to determine

https://upverter.com/WiselabCMU/eab20f02c4d4f096/Pulsar-V2/
https://github.com/WiseLabCMU/pulsar-code
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Fig. 3. Timing in the Pulsar platform for phase offset estimation

the phase error between the PPS input and the next 38.4 MHz
clock edge. Knowing this phase error allows us to correct the
DW1000 time stamps to within a few nanoseconds. This phase
error only needs to be computed once at startup and can then
be removed as a static offset from the received time stamps in
software. In our current hardware implementation, we perform
the CPMU measurement externally and feed the phase error
back into the main ARM processor over serial. The CPMU
may be implemented on-board using an FPGA or time-to-
digital converter ICs like the Texas Instruments TDC7200.

B. Sources of Error

A variety of errors accumulate in the timing system, which
make nanosecond clock synchronization difficult. Some of
these errors can be identified, some statistically filtered out
while others are completely unobservable and dependent on
the system architecture. A critical part of this work is to iden-
tify and mitigate various sources of timing errors encountered
during synchronization.

Frequency offset and stability errors are the easiest to iden-
tify and correct. Receiver-only systems (like the one we de-
scribe in Section IV-D) can be used to calibrate for frequency
offsets by locking on to signals with known time differences.
Frequency stability is a fundamental error source modeled
using Allan deviation described later in Section III-B1.

Phase errors are more complex to estimate and correct,
stemming from the difficulty in establishing a common refer-
ence point across the multiple clock domains found in typical
electronic systems. Phase is also highly susceptible to various
types of propagation delays in the signal path that do not affect
frequency estimates. Figure 3 describes the various phase error
sources in our system.

The main quantity of interest is the time offset (∆tPPS)
between two 1PPS signal lines on different nodes. If the
radio clocks on the nodes are to be started perfectly in
synchronization with the 1PPS line (δtCPO = 0 for both nodes)

then timestamps for a message i provide an estimate of the
1PPS offset:

∆tPPS:uncorrected = t′′i:TX − t′i:RX

This estimate does not consider propagation delays due
to time-of-flight (∆tTOF) that can be computed and com-
pensated for through message passing as described later in
Section IV-A.

As shown in Figure 3, as the clock radio does not start
at the same instance as the start of the 1PPS line for two
reasons: (a) electronic signals take finite time to rise before
the radio’s CMOS logic can detect them and (b) the digital
I/O on the UWB radio only samples on the positive edges
of it’s 38.4 MHz I/O clock. We call the combined error
due to these effects the clock phase offset (CPO) which is
represented by δtCPO for each node. The PLL used to bridge
our 10 MHz CSAC clock domain and 38.4 MHz UWB radio
clock domain, locks the relative phase between them in a 25-
to-96 ratio, but we lose information about the absolute phase
difference between them which was previously provided by
the 1PPS line in the 10 MHz domain.
t′i and t”i are timestamps for message i on the reference and

child nodes respectively. Assuming ideal timestamping on both
nodes, Figure 3 (a) gives us the following

∆tPPS = t′i:TX − t′′i:RX + ∆tTOF + δt′CPO − δt′′CPO

We design our synchronization protocol to operate on a
spanning tree across the network to simplify distribution to
intermediate nodes. We combine the 1PPS offsets computed
from upper layers of the tree with δt′CPO into a single variable
∆tglobal that can be passed to the lower layers. This results in
the final offset estimation expression as:

∆tPPS = ∆t̄PPS:uncorrected + ∆t̄TOF + ∆t̄global − δt̄CPO + εt

= ∆t̄PPS:corrected + εt (1)

where εt is the error in estimation.
1) Allan Deviation: The traditional characterization of os-

cillator stability is a plot of Allan deviation, defined using a
series of relative frequency estimates between a clock and a
reference [21] [22]. Each point on the Allan deviation (σy)
graph denotes the expected standard deviation in the relative
clock frequency (y) for a given sampling interval (τ ).

σ2
y(τ) =

1

2

〈
(ȳi − ȳi−1)2

〉
i

(2)

An Allan deviation plot helps understand the limits of an
oscillator, with respect to frequency and phase stability. This
can then be used to select an optimal message passing rate
(τupdate).

We measure Allan variance using two nodes placed in
close proximity (approximately 1.5 m) with line-of-sight of



each other. The radio is configured with the default band-
width that improves timestamping performance as described
in Section V. A GPS calibrated Pulsar board is used as a
transmit-only reference node with various receiver nodes. In
Figure 4, we compare receiver nodes clocked by a regular
Quartz crystal, a temperature-compensated crystal oscillator
(TCXO) and another CSAC. Message transmit and receive
timestamps are collected over a period of 10 hours and used
to estimate fractional frequencies as described in Section IV-A.
Allan deviation for good clocks (exponential phase noise and
Gaussian frequency noise [22]) does not vary much over short
intervals. This can be leveraged for estimation if messages
are not equally spaced in time. Since the measurements are
performed with the complete Pulsar system, they also include
any additional errors added by the RF synthesizer, UWB radio
and processor.

Allan deviation plots for good oscillators are smooth with
two distinct parts: the negative slope phase line at lower inter-
vals and the positive slope frequency line at higher intervals.
Phase noise is added by PLLs, time-discretization, interrupts
(in case of software timestamps), timestamping algorithms etc.
and shifts the phase line upwards. This can be observed since
we see that the CSAC-clocked Pulsar’s phase line is higher
than the datasheet value due to phase noise added by other
components and the reference CSAC. Frequency noise may
be added by factors like temperature variation, motion, errors
in frequency locking, etc. The intersection point of these two
lines is an oscillator characteristic called the Allan Intercept.
The effective update time for a clock synchronization protocol
must be less than or close to the interval period of the Allan
intercept for the best performance synchronization. For our
Pulsar experiments, this is set to one second.

C. Pulsar Firmware

The firmware on the Pulsar platform is responsible for con-
figuring the hardware peripherals, tracking peripheral failures
as well as arbitrating the message passing and synchronization
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protocol. We provide a set of FreeRTOS v8.2.3 task routines
and driver functions.

A set of watcher tasks are responsible for initializing each of
the CSAC, RF Synthesizer and UWB radio. They keep track of
events like peripheral lock, reset and halting, and informing
dependent tasks of these events. The radio monitor task is
also responsible for synchronizing the radio clock with the
CSAC PPS so that they share a synchronized time-base. The
CSAC watcher task is additionally responsible for bootstrap-
ping PPS alignment corrections in the current implementation
of our protocol. A messaging task waits for all required
peripherals to lock before starting message passing between
nodes as required by the protocol. A disciplining task and
some synchronization tasks are responsible for computing and
applying all necessary phase and frequency corrections (except
the PPS bootstrap, which is delegated to the CSAC watcher
task). Phase and frequency offset estimates are provided to
higher level applications through a Serial interface to internally
correct for them. Finally, a command task accepts inputs from
the user over Serial to change mode of operations.

IV. PROPAGATION-AWARE CLOCK SYNCHRONIZATION

One of the most challenging aspects of nanosecond syn-
chronization is the need to estimate propagation delay. The
protocol described below both estimates range to subtract TOF
delay as well as disciplines local clocks.

A. Messaging with Timestamps

The DW1000 UWB radio on the Pulsar platform provides
three time-sensitive messaging functions: (a) transmit as soon
as possible and record timestamp, (b) transmit at a deter-
ministic future time and (c) receive and timestamp message.
Figure 5 describes combinations of these messaging primitives
for estimating (and thus allowing for the corrections of)
various metrics used in clock synchronization. In our notation,
a message i is a beacon message sent by a reference node
while R(i) is the response sent by its child.

1) One-Way Messaging: Described in Figure 5 (a), a ref-
erence node sends messages to a child node. These messages
could be sent with predetermined transmit times or as soon
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Fig. 6. A proof-of-concept nanosecond clock synchronization protocol: (a) Nodes are arranged in a tree topology, (b) TDMA schedule is generated for
communication and (c)(d) the per-hop messaging scheme

as possible. One-way messaging is sufficient for propagation-
agnostic time synchronization protocols like RBS [5].

Multiple one-way message timestamps can compute frac-
tional frequencies with respect to a reference node (yi) which
can then be used for frequency locking stationary devices.

yi =
f child
i

f reference
i

=
t′′i:RX − t′′i-1:RX

t′i:TX − t′i-1:TX
(3)

If the radio clocks were started on a known 1PPS signal
edge (using the time-base reset functionality of the radio
described in Section III-A), one-way messaging can also be
used for propagation-agnostic estimation of the 1PPS line
offset between a pair of communicating nodes.

∆tiPPS:uncorrected = (t′i:TX − t′′i:RX) modN (4)

where N is the number of clock ticks between two 1PPS
edges (nominally the clock frequency).

2) Two-Way Messaging: Two-way messaging as shown in
Figure 5 (b) requires both reference nodes and child nodes
to transmit and receive messages. The transmit and receive
timestamps from frequency-locked nodes are sufficient for sta-
tionary inter-node time-of-flight (and hence, range) estimation.

∆tiTOF =

(
t′R(i):RX − t′i:TX

)
−
(
t′′R(i):TX − t′′i:RX

)
2

(5)

The error analysis in two-way messaging is well studied in
literature [23]. A larger number of messages can be exchanged
between the nodes in a generalized N-way messaging scheme,
which then attempts to estimate and compensate for higher
moments of clock error.

B. Timing Tree Construction

Previous work has shown that particular links or certain
clocks exhibit abnormally high levels of variance [4]. As
shown later in Section V, UWB radios exhibit increased and
often non-Gaussian error in NLOS configurations. For this
reason, it is critical to select links within the network that have
low-levels of jitter. As part of our network setup, we have a
mode that exchanges pair-wise messages between each node in
order to capture the link graph and an initial estimate on link
variance. We process the graph data using Sparse Full Semi-
Definite Programming (SFSDP) relaxation for Sensor Network

Localization Problems package in Matlab which generates a
graph structure of the network. This provides both position
and node geometry. Each link on the graph is weighted based
on its variance over 100 messages. There many ways to select
a spanning tree across the graph that minimizes cumulative
variance. Though not the focus of this paper, we show in
Section V that in practice there are cases where minimal hop
count, which is often used in PTP, leads to comparatively poor
synchronization. It is worth noting that unlike most wireless
link assessment problems, timing variance is relatively easy to
compute over a series of message exchanges.

C. Protocol

For clock synchronization, we propose a proof-of-concept
protocol based on PTP that utilizes the messaging schemes
described in Section IV-A. Our algorithm has the following
prerequisites:

1) A tree-like time distribution network has been created
with multiple reference-child relationships as shown in
Figure 6(a). The importance of generating a good tree
is described in Section IV-B.

2) Based on the network generated previously, a feasible
TDMA schedule has been generated for inter-node com-
munication as shown in Figure 6(b) using approaches
similar to [24]. A set of beacon message and its re-
sponses are combined together to reduce potential errors
due to motion, temperature variance etc.

3) The update rate of the algorithm (τupdate) has been
determined using the clock parameters and the Allan
deviation curve for the nodes.

For simplicity, we assume that each node has a list of
relevant communication links, update rates and TDMA slots,
and these do not change during the process of synchronization.
The content of each message is shown in Figure 6(c)
and Figure 6(d).

The reference node algorithm is described below. ∆texternal
and ∆tref

global are updates from external synchronization and
upper-levels of the tree respectively, if applicable.

1: Perform a radio time-base reset on the 1PPS edge
2: Update ∆tglobal = ∆texternal + ∆tref

global + δtCPO

3: Listen for valid child node responses and record tRef
i:TX to

the beacon message buffer
4: Send a beacon message at time tRef

i:TX in the allotted slot
5: go to step 2
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Fig. 7. Timestamping jitter over various distances and with obstacles.

The child node algorithm operates in two stages (and an
optional third bootstrap stage described in Section IV-D). The
first stage is listen-only and handles frequency estimation
and locking. σ̄y is standard deviation in fractional frequency,
σy(τupdate) is from the Allan deviation curve and α is an empir-
ically determined constant. The second stage sends response
messages for phase estimation and locking to the reference.

Frequency estimation and lock
1: Perform a radio time-base reset on the 1PPS edge
2: Listen for beacon messages from reference node, record

the receive timestamp (tCj
i:RX), extract relevant information

from beacon message (tRef
i:TX, tRef

R(i):RX), compute yi and pass
information to discipline task.

3: if σ̄y ≤ ασy(τupdate) then go to step 4 else go to step 2
Phase estimation and lock
4: Send a response message in the allotted slot and record

the transmit timestamp (tCj
R(i):TX)

5: Estimate ∆t̄TOF, δt̄CPO, ∆t̄PPS, yi as described in Sec-
tion III-B & Section IV-A and pass these to the clock
discipline task

Phase Correction Bootstrap
6: if Bootstrap is enabled and ∆tPPS > ∆tPPS:threshold then
7: Set the clock to manual PPS synchronization mode
8: Trigger PPSin at the closest 10 MHz clock edge
9: go to step 1

10: else go to step 2
This approach only disciplines the clock on the child

node, as compared to more sophisticated protocols which
may discipline both the reference and child clocks. If a
node is to function as a relay (both reference and child
simultaneously), it would start in child mode and wait for
frequency lock (σ̄y ≤ ασy(τupdate)) to release its reference
task. If phase alignment is also enabled, then we wait until
both frequency and phase are within predetermined bounds
(∆tPPS ≤ ∆tPPS:threshold, a predetermined value, in addition to
the frequency lock condition) before releasing the reference
task.

D. Clock Disciplining

Controlling clock frequency is an essential requirement
for phase estimation (and correction) in our protocol. Our
current implementation uses a PID feedback loop designed
around fractional frequency estimates and corrections. This

is sufficient for frequency correction, but not necessarily for
phase correction. The discipline task on a child node waits for
new yi estimates and applies the following correction.

yCj
steer = FPID (yerr = yi, yset = 1, [Kp,Ki,Kd]) (6)

Based on implementations in NTPv4 [25], this could be
modified into a hybrid PLL + FLL controller that can correct
for both phase and frequency offsets. Since the maximum
frequency steer in the CSAC is limited to 2 pp 108, a worst
case PPS offset of 1 s would take more than 3 years to
correct. Thus, we add a bootstrap section to the child node
algorithm (steps 6 to 10) for phase correction that forces large
corrections instantly using manual PPSin synchronization. All
phase-measurements are reset after this operation and must be
measured again.

V. EVALUATION

In this section we benchmark the timestamping accuracy
of our UWB radio, evaluate link quality for spanning tree
generation in our testbed and perform a single-hop evaluation
of our clock synchronization and phase estimation protocol
with comparisons to a modified reference broadcast implemen-
tation. All evaluations for Pulsar are carried out on channel 2
(3774 to 4243.2 MHz) of the DW1000 UWB radio with
the slowest data rate of 110 Kbps, a preamble length of
1024 symbols and a pulse repetition frequency of 64 MHz.
These parameters are chosen to focus on good timestamping
performance at the expense of low data rate.

A. Timestamping Jitter

In order to model our system performance, we evaluate
the quality and consistency of DW1000 timestamps to de-
termine their error contribution to our clock synchronization.
A reference Pulsar node is used in transmit-only mode with
a previously frequency calibrated child node in always-listen
mode. Beacon messages are periodically sent by the reference
node containing embedded transmit timestamps (t′i:TX). Re-
ceive timestamps (t′′i:RX) are computed on the child node upon
successful reception. We evaluate the spread of t′′i:RX − t′i:TX

to estimate timestamp jitter in the combined system. Figure 7
shows the probability-normalized distribution of timestamps
for a pair of static nodes separated by various distances
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and in different configurations. Differing distances do not
drastically affect timestamping accuracy (σ7.52m = 0.40 ns
& σ17.69m = 0.45 ns) which stays accurate to under 0.5 ns.
However, timestamping consistency drops significantly once
received signal quality goes below a minimum signal energy
threshold due to non-line-of-sight or the nodes being too
far away. Poor links may be unavoidable in a large-scale
network, but these are heavily detrimental to synchronization
performance. We thus determine that it is essential to identify
and prune poor links in the clock synchronization network.
Decawave application notes suggest using channel metrics
such as first-path power and received signal power to help
identify NLOS links.

B. Timing Tree

In order to evaluate network synchronization, we tested our
ranging protocol on a seven-hop network deployed across a
300 m2 area of a campus building. Figure 8(a) shows the node
locations with communication links that are colored based on
the variance of ranging jitter. The topology was generated
using graph realization with an error in 3D of less than 0.1 m
per node as compared to laser ground truth. We manually
aligned the node cluster to fit the map. The connection between
node 2 (master) and 6 has abnormally high variance. Many
synchronization protocols would use minimal hop-count as the
primary metric for picking a path, but in this case would lead
to higher synchronization error for nodes 6 (σ = 0.34 m) and
7 (σ = 0.34 m). Instead, a variance-based routing scheme
would pick node 1 as a relay for 6 (σ = 0.03 + εhop m) and 7
(σ = 0.04+εhop m). Thus, we note that it is important to look
at the timestamp variance while generating the timing tree.

C. Clock Synchronization

Finally, we evaluate the pairwise clock synchronization
performance of two Pulsar boards. Our objective is to estimate
the offset between the 1PPS lines between two synchronized
nodes. We run our experiment on two nodes that are separated
by approximately 3.6 m with Line-of-Sight between each
other. Ground truth is collected by connecting the 1PPS lines
from the Pulsar nodes to a Saelae logic pro analyzer, that
digitally samples the signal lines at 500 MSps over a period of

ten minutes. For our baseline comparison, we compare against
a reference broadcast implementation [5] with propagation-
delay compensation on our platform. A third node acts as the
reference broadcaster. Timestamps from response messages are
used for delay and phase estimation. Figure 8(b) shows the
optimistic pairwise synchronization accuracy of protocols like
RBS and FTSP, which use similar primitives. The histogram
demonstrates the effects of I/O discretization (two distributions
separated by 1/38.4 MHz ≈ 26 ns) and an unknown clock
phase offset (distributions are not centered at zero and 26 ns).

Next, we evaluate our proposed protocol with both I/O dis-
cretization and propagation compensation. For this experiment,
two nodes operate in a reference-child tree topology. The child
node runs a calibrated PID loop for frequency discipline as
described in Section IV-C with α = 2 determined empirically.
The protocol synchronization update rate τupdate = 1 s.
The raw PPS offset is computed using transmit and receive
timestamps recorded from beacon messages. Message passing
as described in Section IV-C helps us determine the time-of-
flight between the two nodes. The missing clock phase offset
parameter is currently measured on an off-board oscilloscope
or CPMU module once per run (clock phase offsets are stable
as long as all PLLs remain locked). Our final system achieves
the pair-wise error distribution in Figure 8(c) which shows
our final synchronization accuracy to be better than 5 ns.
The mean (µ = 2.12 ns) and variance (σ = 0.84 ns)
achieved are within the error bounds expected from various
components such as the ground truth measurement on the
Saelae logic analyzer, the timestamping inaccuracy introduced
by the DW1000 chip, the jitter introduced by the PLL and the
frequency errors in our clock source.

VI. LIMITATIONS AND FUTURE WORK

The Pulsar system has two main limitations. First, CSACs
are currently still relatively expensive, power hungry and do
not operate across a wide temperature range. The current
system costs approximately $1600 in single quantities ($1500
of which is the clock), consumes a peak of 1 W of power
and must be kept between -10 and 35 degrees Celsius. The
CSAC cost is predominantly a result of economies of scale
and will likely decrease significantly over the next few years



if adopted in mass-market products. We also believe that it
is possible to achieve nearly the same level of accuracy by
increasing the message passing rate with a high precision
Oven Controlled Oscillator [26] (that costs less than $100
per clock). Second, multi-path signals caused by RF blocking
obstacles will cause increased timing jitter as well as incorrect
length estimates. With UWB it is possible to detect packets
with high timestamp variance, but currently the only solution
is to filter out those links or alert the user to reposition the
nodes. We believe that this could be improved through more
intelligent selection of timing routes or other forms of dis-
tributed synchronization. The drawbacks of our current proof-
of-concept synchronization protocol are the need to maintain
spanning trees for time distribution, the clock synchronization
errors accumulate per hop and the timing quality degrades
with increasing depth in the network. One could apply more
sophisticated synchronization protocols to this platform in the
future.

VII. CONCLUSIONS

This paper presented Pulsar, a clock synchronization plat-
form for wireless clock synchronization of indoor devices. The
platform combines UWB ranging radios with a stable CSAC
timing source that improves upon the state-of-the-art in terms
of accuracy. UWB radios are used to estimate TOF ranges
between nodes such that the speed of light delays can be
estimated and accounted for as part of the synchronization
protocol. The CSAC provides long-term stability on the order
of 1 µs of pairwise drift per 1.2 days and directly clocks the
radio and a PPS output system to provide a phase aligned 1PPS
and 10 MHz output signals. We show that Pulsar provides
better than 5 ns pairwise synchronization. We also evaluate
a synchronization protocol that highlights how the physical
link topology can play an important role in synchronization.
As technology evolves, we believe that it will become in-
creasingly viable in terms of cost and energy for systems to
possess atomic clock stability and fine-grained timestamping
capabilities. The Pulsar platform provides an initial means to
explore the wide range of next generation wireless applications
that will be possible with these future timing systems.
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