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ABSTRACT
Non-Technical Loss (NTL) represents a major challenge when
providing reliable electrical service in developing countries,
where it often accounts for 11-15% of total generation capac-
ity [1]. NTL is caused by a variety of factors such as theft,
unmetered homes, and inability to pay which at volume can
lead to system instability, grid failure, and major financial
losses for providers.

In this paper, we investigate error sources and techniques
for separating NTL from total losses in microgrids. Our
approach models the primary sources of state uncertainty
including line losses, transformer losses, meter calibration
error, packet loss, and sample synchronization error. We
conduct an extensive data-driven simulation on 72 days of
wireless meter data from a 430-home microgrid deployed in
Les Anglais, Haiti. We show that the model can be used to
determine uncertainty bounds that can help in separating
NTL from total losses.
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1. INTRODUCTION
As reported by the World Bank Group in 2011 [1], Non-

Technical Loss (NTL) accounts for 15% of total generation
capacity in the Latin America & Caribbean market and 11%
in the Sub-Saharan Africa markets. Together with corrup-
tion and weak regulatory environments, NTL are a major
contributor to the poor state of operations of utilities in de-
veloping countries [2]. NTL prevents utilities from achieving
cost recovery because they cannot fully pay for the cost of
energy generated. This leads to a vicious cycle: inability
to pay for generation results in supply shortages that cause
outages; outages result in customer dissatisfaction, so even
customers who were paying for electricity may be less in-
clined to do so and may self-generate rather than purchase
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electricity from the utility; a smaller customer base results
in even lower tariff collection, and then even greater supply
shortages.

Utilities would benefit greatly from being able to locate
NTL and address the problem with consumers directly. Smart
metering enables utilities to do this on a real-time basis,
whereas conventional metering systems provide utilities with
only a monthly resolution.

Theft is a large component of NTL on both central and
remote microgrids [3]. Most often, theft is carried out by
making an unauthorized connection to the microgrid distri-
bution line. In other cases, theft is carried out by autho-
rized customers who bypass their meters. Monitoring theft
is therefore difficult, especially on systems that serve a few
hundred households. Theft is most often dealt with through
strong local institutions that can impose a credible threat of
penalty. However, penalties are often unenforced, and theft
persists on many systems due to lack of visibility into losses.

In this paper, we discuss the detection of NTL in a rural
microgrid deployment in Les Anglais (LA), Haiti. An ini-
tial version of the microgrid was first described in [4] which
included wireless energy meters on 54 homes. The system
utilized excess capacity from a diesel generator powering a
local cellular tower. Over the last year, we have updated the
microgrid with a commercial version of the system developed
by SparkMeter Inc. The grid now services more than 430
homes powered by a 93kW solar PV array with 400kWh of
battery capacity and an auxiliary diesel backup generator.
We use detailed characteristics of the distribution network,
communication network and data traces collected from the
microgrid to drive our NTL simulations.

One of the novel features of our underlying system is the
use of time synchronized sampling of power data across the
network to aid in separating NTL from total losses. We
determine the state of the microgrid system by comparing
all of our meter readings with a set of totalizers installed
at each generation source. Ideally, the sum of the loads
should match the generation. However, there are multiple
sources of error including (1) line losses (and transformer
losses), (2) metering error, (3) packet loss and (4) temporal
meter sampling jitter. We define this difference as the grid’s
State Error. Using a trace-driven simulation of our network,
we explore the magnitude and implications of each of these
sources of error. We show how the combination of modeling
and synchronous sampling can yield action-able suggestions
about when theft occurs and how much energy is missing.



2. RELATED WORK
Microgrids can be an effective means to provide access to

electricity in areas of the world where it is financially, phys-
ically, or institutionally difficult to extend the reach of the
central grid [3]. They are developed by government agencies,
private developers and NGOs around the world.

Unfortunately, many microgrids fall into non-functioning
states due to any one of a number of factors, including low
levels of tariff collection, poor maintenance, customer over-
usage (which causes brownouts), and unmet growth in de-
mand [3]. In recent years, attempts at modeling microgrid
operations have shown that a number of interventions can
improve microgrid sustainability, such as the use of renew-
able energy to improve cost-effectiveness [5] [6] [7], energy ef-
ficiency [7], and the use of demand side management (DSM)
strategies and technologies [8] [9]. In this paper, we look
holistically at separation of NTL from total losses given a
model of the grid, its metering characteristics, and the com-
munication network used to collect data.

3. GRID MODEL
We perform our experiments using data collected over a

72-day period of time from the LA microgrid deployment.
All of the meter readings are synchronized and accompa-
nied by logs of wireless communication traffic along with a
detailed description of the physical grid topology. In the
first stage of the LA microgrid deployment, there was a pe-
riod of a few weeks when data from 48 houses was being
collected at 1Hz. We use this high-speed data to extrap-
olate what would happen as the jitter in sensor sampling
increased. The full network reports data from 430 homes
every 15 minutes with each meter sampling globally within
approximately 10 milliseconds. Figure 1 shows an example
of the power consumed over time of one home as well as the
entire grid.

We employ GridLAB-D as the engine to calculate the
power flow as well as our line loss statistics, using the topol-
ogy of the LA grid (i.e. how the houses, power lines, service
drops are connected to one another) as an input. The power
line traces are captured from an annotated satellite photo;
the wire properties are derived from the vendor data sheets;
the pole locations are obtained from the project records;
the house locations are imported from the GPS log. Our
model assumes that houses are connected to the nearest util-
ity pole. While this not true for every house on the physical
grid, it is an adequate approximation for the purpose of
simulation. With this topology information, as well as the
synchronized measurement at each timestamp, we are able
to generate a GridLAB-D input file (.glm) that models the
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Figure 1: Example power trace over a week for a
single house (top) and entire grid (bottom)
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Figure 2: Les Anglais grid topology

instantaneous LA power grid. Next, GridLAB-D calculates
the power flow for that timestamp and saves the results into
an XML file. Finally, the XML file is analyzed to give us the
line loss summary and powerflow at each node in the grid.

The topology of the LA grid is shown in Figure 2, in
which different colors represent different subdivisions: the
thick (pink) lines represent the three-phase Medium Volt-
age (MV) lines with a nominal voltage of 7.2kV. The other
subdivisions are single-phase Low Voltage (LV) lines with
a nominal voltage of 120V. The LV subdivisions are con-
nected to the MV lines via split-phase transformers and to
individual houses via service drops.

3.1 Line Losses
In order to understand the impact of line loss on energy

theft detection, the power flows of the LA grid are simulated
under multiple loading scenarios, with the assumption of
nominal line voltages. There are 1102 meters of MV wiring
in the grid, however, loss in the MV lines is negligible given
their low gauge and high voltage. The LV lines, having
an AWG of 2 and a total combined length of 4210 meters,
are the primary source of line loss. We also incorporate
transformer loss into our simulations; typically, one-third of
loss is found in transformers and the rest in wiring.

We simulate multiple loading scenarios while varying the
number of houses connected to the grid. The first scenario
represents the current LA grid, where there are 430 houses
connected by 6835 meters of service drops; the second sce-
nario restricts the number of houses connected at each pole
to be smaller or equal to 3, where 272 houses are connected
by 4631 meters of service drops; the last scenario is the case
that each pole can only connect 1 house, where there are
104 houses and the length of service drops is 1886 meters in
total.

The power flows for the scenarios described above are sim-
ulated every 15 minutes for 24 hours - there are 96 simula-



Figure 3: Simulated trace-based aggregate line loss

tions for each scenario. The line loss and the total load in
the grid for each of these simulations are plotted in Fig-
ure 3, where each point stands for a simulation. From the
plot, we observe that (1) the more houses connected in the
grid, the higher the percentage of line loss to the total load;
(2) under the same configuration, the relationship between
line loss and the total load appears quadratic.

3.2 Metering Error
Metering standards like IEC 61036 specify multiple classes

of meter accuracies that can range from 0.2% to 2.5% in
terms of maximum error at a given power factor. After
calibration, we see our meters generally exhibit Gaussian
error. In the LA grid, each meter is 2.0% accurate with a
typical load limit of 30 W. At maximum load each house
would expect to see 0.6 W of error. Assuming a summation
of Gaussian distributions, the magnitude of the noise will
grow as the root mean square of the total which is relatively
small even for a large number of nodes. For this reason, the
aggregator’s error is critical in that it will directly bound
the system’s ability to detect NTL.

3.3 Packet Loss
Lost meter packets play an important role in measuring

the state of the system. If a meter does not report a value
in a particular cycle, there are numerous error correction
options including: (1) ignore the sampling period, (2) use a
previous value for the dropped reading, (3) predict the value
based on a model or (4) assume the worst-case consumption
of the missing meter. For example, if a single meter value is
missing we must increase our tolerance for detecting NTL by
the expected consumption in that home during the period.
Many missing meter readings compounds the problem.

In the LA microgrid, over 72 days with a 15 minute pe-
riod, 94.03% of the meter polling periods returned all of the
meter values. Note that the gateway continuously polls any
missing meters until the start of the next period allowing for
ample low-level retry opportunities (overall packet reception
rate was >99.6%). Figure 4 shows the packet distributions
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Figure 4: Network packet loss

associated with the network failure cases. The left graph
shows how often consecutive periods failed to collect data
from all meters. For example, there were 21 cases where
the dropped data was only for a single period (15 minutes),
14 cases where it continued for two periods (30 minutes),
and so on. The three large blackouts were due to scheduled
grid maintenance. The right graph in Figure 4 shows the
distribution of how many meters would fail to reply given a
period that includes dropped messages. We see that most
drops include only a few meters, but there are occasions
when large areas of the network are unreachable. Given the
reliability of the network and the potential for large numbers
of meters to not respond, we adopt a scheme which ignores
polling cycles with missing meter readings. In practice this
seems sufficient, and could easily be improved with the use
of previous values to replace missing data points.

3.4 Meter Sampling Jitter
Our method of NTL detection is fundamentally based on

comparing a single sample taken by a totalizer and a summa-
tion of many distributed samples taken by wireless meters.
In such a scheme, the times at which the meter samples
were taken can have a significant effect on the final result.
In order to understand this, we quantify the impact that
this sampling jitter has on the state error calculation.

Figure 5 shows the results of a state error simulation which
contains a controlled amount of sampling jitter and no other
sources of error. Instead of being perfectly synchronized,
meter samples are randomly selected (with a uniform dis-
tribution) from inside a synthetic jitter window, which has
a width measured in seconds. As the jitter window is in-
creased, the samples are de-synchronized. For instance, in
Figure 5 we see that when sampling within a 30-second jitter
window, the median state error is 0.29%; whereas, sampling
within a 15-minute window, which is done by most conven-
tional meters, results in a median state error of 1.18%.

4. NTL SIMULATION
In this section, we employ our model and collection of me-

ter data from the Les Anglais microgrid to simulate the state
error in the system. State error is observed whenever there
is a mismatch between the generated power measured by
the totalizer and the summation of all loads seen by the me-
ters. Our simulator incorporates all of the primary sources
of error into its calculations: line losses (0.5-1.5%), meter-
ing error (0.2-2.0%) and sampling jitter (0-2.5%). Line losses
are calculated using GridLAB-D, as described in Section 3.
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Figure 5: Impact of jitter on state error



400 420 440 460 480 500 520
state error (Watts)

0
20
40
60
80

100
120
140
160
180

N
um

be
r o

f s
am

pl
es

430
480
530
580
630
680

Po
w

er
 (W

)

Time of Day

0
20
40
60
80

100

Po
w

er
 (W

) 

22:00 3:20 8:40 14:00 19:20

22:00 3:20 8:40 14:00 19:20

Theft

state error
detector threshold

NTL Detected (above threshold)

Missed NTL
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state error over 24 hours (top-right) with injected NTL (bottom-right).
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Figure 7: Performance of NTL detector

The power consumption and the sensing error of the meters
were modeled as Gaussian random variables, while sampling
jitter was simulated using our synthetic jitter window.

In order to illustrate the utility of approximating the sources
of error, a simple proof-of-concept NTL detector was imple-
mented on top of the simulator. The detector is based on
a threshold calculated from a typical value of line loss and
a small buffer. In our tests, line loss was set to 1.5% of
totalizer power and the buffer was set to the 2-sigma devi-
ation from the mean of typical state error, a distribution of
which is shown in Figure 6 (left). The detector was then run
against a simulation where an additional household, shown
in Figure 6 (bottom-right), was injected as NTL. A detec-
tion time-series is displayed in Figure 6 (top-right), where
any point at which the state error is above the threshold
represents the detection of potential theft. A scatter-plot
representation of detection over a week of data, seen in Fig-
ure 7, shows that the detector tends to over-estimate large
quantities of NTL and cannot accurately identify NTL less
than 38W. We see that the detector has a low false-positive
rate of 0.2% when there is no NTL. Filtering data over time
could reduce false-positives at the cost of detection latency.

5. CONCLUSIONS
In conclusion, this paper presents a case study that eval-

uates how modeling and synchronous sampling can be used
to estimate the NTL within a microgrid. We show that
line loss, sampling jitter and sensing error contribute signifi-

cantly to the noise present in a metering system. We see that
by modeling these sources of error we are able to reliably
detect theft on the order of 0.4% (38W out of 9kW load)
given our 430 home microgrid with fewer than 0.2% false
positive rate. We believe that this approach will provide an
extremely valuable tool for grid operators and are continu-
ing to investigate mechanisms that learn system parameters
at runtime to decrease the error detection tolerances. In
the future, we intend to investigate localizing theft through
multiple distributed aggregators.
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