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Abstract—In this paper, we address the problem of range-
based beacon placement given a floor plan to support indoor
localization systems. Existing approaches for trilateration require
three or more beacons to determine a unique position solution.
We show that with prior knowledge of the map and a model
of beacon coverage, it is possible to uniquely localize with only
two beacons. This not only reduces installation cost by requiring
fewer nodes, but can also improve robustness. One of the main
challenges with respect to beacon placement algorithms is defining
a metric for estimating performance. We propose augmenting
the commonly used Geometric Dilution of Precision (GDOP)
metric to account for indoor spaces. We then use this enhanced
GDOP metric as part of a toolchain to compare various beacon
placement algorithms in terms of coverage and expected accuracy.
When applied to a set of real floor plans, our approach is able
to reduce the number of beacons between 22% and 60% (33%
on an average) as compared to standard trilateration.

I. INTRODUCTION

Beacon technologies for indoor localization are rapidly
decreasing in price while simultaneously improving in terms
of ranging accuracy and energy requirements. Commercial
solutions range in cost and performance from Bluetooth Low-
Energy (BLE) modules that use Received Signal Strength
(RSS) to estimate distance to more precise Time of Flight
(TOF) ranging chipsets like [1], Ultra-Wide Band (UWB) [2]
and WiFi [3] radios. Other distance sensing technologies like
laser ranging and ultrasonic TOF systems are both decreasing
in cost and becoming more common in consumer products
like digital range finders and consumer robotics products. In
order to localize solely based on range to beacons, a system
will typically perform trilateration between the receiver/mobile
device/tag and three or more fixed beacons that are at known
positions. The beacon deployment itself is performed manually
where experts working with the system determine the place-
ment of beacons with empirical guidelines for spacing and
coverage.

When deploying beacons, an installer faces the conflicting
objectives of reducing the number of beacons to be placed
and increasing system coverage, accuracy and resilience. The
problem of placement indoors differs from Global Position-
ing System (GPS) in two ways. First, GPS satellites cover
enormous areas, whereas indoor systems require comparatively
dense placement of beacons, making it challenging to reduce
the number of beacons. Second, the satellites are positioned
symmetrically around the earth and a subset of them are
assumed to be within Line-of-Sight (LOS) at all locations.
This simplifies estimating coverage and computing metrics like

Geometric Dilution of Precision (GDOP). Indoor systems often
have irregular propagation models and barriers that complicate
deployment, making it challenging to define a metric to easily
compare beacon configurations.

There are also several practical issues that need to be
considered when deploying nodes indoors. First, the coverage
of a beacon depends on the ranging-technologies which vary in
terms of the maximum range and signal permeability through
walls. For instance, acoustic signals are confined to walls,
while RF signals exhibit high penetration. Second, indoor
spaces have rich semantics that lead to different localization
accuracy requirement across different areas. For instance,
room-level accuracy might be sufficient in certain areas, while
sub-meter accuracy within a large room might be required
for audio guides in museums. Third, physical factors often
constrain the deployment. For instance, it may be preferable
to place beacons with convenient access to power outlets or
where they do not disrupt the aesthetics of the space.

In this paper, we address the question - For a range-based
localization system, given the floor plan, where should the
beacons be placed? In order to answer this question, we first
discuss how we can compare two beacon configurations. A
configuration refers to a unique placement of beacons for a
given floor plan.

One of the key insights in our work is that beacon coverage
information can be used to prune incorrect location solutions
in under-defined beacon configurations. When range measure-
ments are received from two beacons, it normally results in
two possible location solutions. It is possible to resolve which
is the more likely solution if each location is covered by
a different set of beacons. For example, if one of the two
location solutions does not receive a signal that was likely to
be received from a nearby beacon, it indicates that either the
beacon was blocked or the alternate solution is more likely. For
most of our results, we assume an ideal ray-tracing coverage
model since our primary target system is based on acoustic
beacons. However, this concept is also applicable to other
coverage types given a suitable propagation model. We refer
to regions that can be localized in this manner without any
ambiguity as Uniquely Localizable and introduce a function
UL that indicates if a location is unambiguously localized
by the beacons in coverage. We use the percentage of area
uniquely localizable in a floor plan to quantify the quality of
a beacon configuration, purely based on coverage.

For any realistic system with noise in the range measure-
ments, in addition to beacon coverage, the beacon geometry
also affects the location accuracy. One of our main contribu-
tions is that we adapt the concept of GDOP to quantify the978-1-5090-2425-4/16/$31.00 c© 2016 IEEE
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location accuracy provided by the beacons. GDOP is a unitless
quantity that is a function of the geometry between the beacons
and the target, often used to estimate the expected accuracy
of GPS due to the location of satellites [4]. When used as
a metric for evaluating indoor accuracy, GDOP has two main
drawbacks. First, it cannot accurately capture cases where there
are multiple ambiguous solutions. In these cases, a localization
solver could be completely incorrect and yet an evaluation
function would still indicate a confident reading based on
geometry. Second, there are circumstances that cause the
standard GDOP metric to grow towards infinity. This makes it
difficult to normalize over multiple competing configurations.
To overcome the first problem, we define a function GDOPUL
that is a modified GDOP that also incorporates the Unique
Localizability information. For the second problem, we use
a function of the Cumulative Distribution Function (CDF)
of the GDOPUL curve to quantify the quality of a beacon
configuration across the floor plan.

We integrate our evaluation metric into a software toolchain
that is able to evaluate a variety of beacon placement algo-
rithms given a floor plan. The system first pre-process the floor
plan and segments it into regions based on the coverage of can-
didate beacon locations. It then uses a greedy approach to place
beacons in the largest regions first. We then apply algorithms
for placing beacons to optimize for (1) Unique Localizability
UL and (2) both GDOP and Unique Localizability GDOPUL.
The objective in both cases is to place the minimal number of
beacons. In the case of GDOPUL, the algorithm also accounts
for predicted accuracy. We then evaluate this across ten floor
plans and the number of beacons placed by our scheme is
22% to 60% (33% on an average) lesser than when coverage
by three or more beacons is required. In practice, this results
in a large saving in infrastructure and installation cost when
provisioning large indoor spaces with range-based beacons.

In summary, this paper makes four main contributions:

1) We introduce and define the concept of Unique Lo-
calizability and show how we can localize with two
beacons instead of three by exploiting the beacon
coverage information. We introduce GDOPUL, a
modified GDOP metric that incorporates the UL
information.

2) We show how we can quantify the quality of a
beacon configuration based on these metrics, where
the quality is a function of the localization accuracy
across the floor plan.

3) We present an algorithm that provides beacon loca-
tions and compare the number of beacons against
minimal placement.

4) We design a toolchain that implements the algorithm
where the user can provide or draw a floor plan,
and specify the design space, such as the accuracy
requirement, number of beacons available and beacon
coverage information.

II. RELATED WORK

In order to find beacon configurations that minimize the
localization error at a given target location, several authors
have studied optimal beacon geometries that minimize the
Cramér-Rao bound (CRB) [5] or the GDOP [6], [7]. For N ≥ 3
beacons, optimal placement can be obtained when the adjacent
beacons subtend an angle of 2π

N or π
N about the target, and for

N = 2 beacons, optimal placement is when the two beacons
subtend an angle of π

2 about the target [8], [9].
Though the optimal placement for a single target is well

understood, the optimal placement for multiple target loca-
tions, a target trace and a target area for range-only systems
are still open problems. [10] shows that the generalized sensor
placement problem is at least as hard as the k-center problem,
which is NP-complete. They present a solution based on
integer linear programming for triangulation-based system,
but the complexity for trilateration is similar. Due to the
complexity of the problem, most proposed solutions involve
designing heuristics and utilizing optimization techniques. [11]
explores computational-geometry based heuristics for deter-
mining location of beacons given a predefined trace of a robot.
They define a utility metric that is a function of the number
of beacons in range and the convex hull of beacons. They
evaluate the quality of a configuration using the integral of
the utility function. Our work is similar in the respect that we
also account for the coverage of the beacons but differs since
the metric they propose is purely based on coverage and not
accuracy. [12] proposes a heuristic for Quality of Trilateration
that is based on the probability that a location estimate is
within a given radius of the true location. However, this
approach is for a network of nodes where a node localizes itself
with respect to three other nodes given a prior distribution on
the expected inter-node distances. [13] and [14] propose their
own metrics to quantify the quality of a beacon placement,
which is a function of the GDOP over the desired localization
area and ratio of area which cannot be localized as well as
propose a placement algorithms to optimize the metric. [13]
classifies areas that are localizable based on whether the GDOP
is above or below a threshold and use a genetic algorithm
approach for placement. [14] considers the average GDOP
over the areas that are localizable and implements a meta-
heuristic optimization strategy. These approaches are similar
to our work, but do not consider the minimal beacon count
placement for areas and require three or more beacons to
provide coverage.

[15] looks at the problem of beacon placement while
localizing with range-based beacons with limited field of view.
They propose a heuristic based on the GDOP being below
a certain threshold and propose a placement algorithm for
the same, but they consider only a single room case and the
beacons are placed on the periphery of the room, avoiding any
ambiguity in solution.

The Art Gallery Problem from computational geometry is
closely related to our beacon placement problem. Its goal is to
find the minimal set of guards such that every region in a floor
plan is covered by at least one guard. The range-based beacon
placement problem discussed in this paper differs since we
require coverage by multiple beacons to localize the target, and
the localization accuracy is a function of the beacon locations,
even when sufficient coverage is achieved.

III. QUANTIFYING THE QUALITY OF A BEACON
CONFIGURATION

In this section, we discuss our approach for evaluating
beacon placement in order to compare candidate placements
in terms of expected localization accuracy. We formulate the
problem with the following inputs:

• X = {Xi|i ∈ [1, Nx]}: Set of points in the discretized
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Figure 1. Localizing with two beacons based on beacon coverage set. (a)
Localization ambiguity with two beacons (b) Ideal ray-tracing: Infinite range,
permeability =0 (c) Unit disk coverage: Fixed finite range, permeability=1
(d) Arbitrary coverage: 0<Permeability<1

floor plan, where Xi denotes the (x, y) coordinates of
the ith point, and Nx is the total number of points. In
our implementation, we discretize the real-world floor
plans using a 20cm× 20cm grid.

• P = {Pj |j ∈ [1, Np]}: Set of candidate beacon
locations, where Np is the total number of locations
considered as beacon candidates. In our implementa-
tion, we consider all corners or vertices in the floor
plan as candidate beacon locations.

• CP (Xi)∀i: Set of candidate beacon locations that
provide coverage to each location Xi, CP (Xi) ⊆ P .

Our objective is to find a beacon configuration, or a subset
of the candidate locations B = {Bj |j ∈ [1, Nb], B ⊆ P,Nb ≤
Np}, such that the localization accuracy at Xi,∀i satisfies
certain criteria based on how we define the quality of a beacon
configuration. The set of beacons that provide coverage to
Xi, is denoted as CB(Xi), CB(Xi) ⊆ B. In Section III-A,
we show how we localize with two beacons by using the
beacon coverage information and introduce the concept of
Unique Localization. In Section III-B, we provide the back-
ground and definition of GDOP and describe its significance
in quantifying the location accuracy. In Section III-C, we
combine the concepts of Unique Localizability and GDOP
and propose a new function GDOPUL. The UL, GDOP and
GDOPUL metrics are defined for a single location (Xi). In
Section III-D, we propose heuristic metrics for quantifying the
quality of a beacon configuration which is a function of the
overall localization accuracy provided by the beacons across
the entire floor plan (Xi,∀i). In Section IV, we propose a
beacon placement algorithm built on these concepts.

A. Unique Localizability
In this section, we formalize our two beacon localization

using the concept of Unique Localizability.
Coverage models and localizing with two beacons:

Consider the two-beacon scenario in Figure 1(a), with beacons
B1 and B2, with the receiver’s true location as A. The

location A′ also receives the same range measurements and
thus we cannot disambiguate between A and A′. However, by
making use of beacon coverage information, it is possible to
disambiguate between the two locations under the condition
that the set of beacons providing coverage is different for A
and A′. We explain this with three types of coverage models (1)
ray-tracing (2) unit disk and (3) arbitrary coverage, as seen in
Figure 1(b)-1(d). The coverage of a beacon is technology and
signal-dependent and can vary in terms of range and the pen-
etration/permeability through walls. Figure 1(b) shows ideal
ray-tracing coverage, where the beacon has no permeability
through walls and the range can be considered to be infinite,
or larger than the maximum distance between the beacon and
the walls. This type of coverage is common in acoustic or
ultrasonic ranging systems. In Figure 1(b)(i), we see that the
regions inside the floor plan have CB = {B1, B2} and the
regions outside the floor plan have CB = {}. If the true
location is A and the ranges from B1 and B2 are received,
we can disambiguate the location A from A′ since A′ cannot
receive measurements from B1 and B2. In Figure 1(b)(ii),
all regions are covered by B1 and B2 and in addition, some
regions are covered by B3. Here, though both A and A′ receive
the same ranges from B1 and B2, we can disambiguate them
since A′ would receive a range measurement from B3 as
well. Figure 1(c) shows a unit disk coverage model where
all points within a finite distance of the beacon are within its
coverage. This is common for proximity-based technologies
such as BLE, or a system that provides a range measurement
when the SNR is above a threshold and the SNR is a function
of distance from the beacon. Figure 1(d) shows an arbitrary
coverage model where the range reduces when the signal
penetrates through walls, as is common for several RF-based
technologies. In both Figure 1(c) and Figure 1(d), we can
resolve the location A from A′, and Z from Z ′ since the two
ambiguous locations have a different beacon coverage. In this
manner, if the localization solver incorporates the coverage
information of the beacons, we can localize using two beacons,
instead of three. Though a simple concept, this is the key
insight that results in around 33% reduction in the number
of beacons required across a building floor plan by using
our approach for beacon placement. Note that we currently
only consider the coverage to be deterministic and binary (in
coverage, out of coverage) and not statistical.

Experimental validation of ray-tracing: We adopt a
2D ray-tracing coverage model that most closely matches
an acoustic ranging system. Figure 3 shows experimentally
obtained results using ultrasonic beacons [16] ranging to a
phone, in two different real-world deployments in buildings
on our university campus. Figure 3(a) and Figure 3(b) show
the coverage of a single ultrasonic beacon with measurements
taken uniformly across the entire floor plan. The beacon under
test is shown as a blue square. Locations that received a mea-
surement from the beacon are shown with a circle, with radius
proportional to the received range measurement. The locations
in LOS and NLOS are shown in green and red respectively.
In practice, the ultrasonic signals reflect off walls resulting in
NLOS measurements, but the ideal ray tracing model assumes
no NLOS measurements are received. Although the ray tracing
assumption is not perfect, there are techniques to distinguish
LOS from NLOS measurements, which we can apply before
solving for the final location [16], [17].
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B1	 B2	
CB:	{B1,	B2,	B3}	

B3	

A	

A’	B1	

B2	

CB:	{B1,	B2}	

B1	 B3	
CB:	{B1,	B2,	B3}	

B2	

A	

A’	

B1	 B2	

B1	

B2	

Configura4on	

2	

3	

4	

5	

GDOP	Coverage	 GDOPUL	

1	

CB:	{B1,	B2}	

CB:	{B1,	B2}	

CB:	{}	

(a) Rectangle floor plan

Configura)on	

2	

3	

GDOP	Coverage	 GDOPUL	

1	

B1	 B2	

B3	

B1	 B2	

CB:	{B1}	

CB:	{B1,	B2}	

CB:	{B1,	B2}	

CB:	{B1,	B3}	

CB:	{B1,	B2,	B3}	

A	

A’	
B1	

B2	

(b) L-shaped floor plan

Figure 2. Comparison of multiple beacon configurations. Legend for
Coverage column is in Table I

Unique Localizability: We define a location to be
Uniquely Localizable if in the absence of noise, it can be
localized without any ambiguity, when range measurements
are received from the beacons that provide coverage to the
location. We define the function UL(Xi, CB(Xi)) ∈ {0, 1}
which has a binary output, as:

UL(Xi, CB(Xi)) =


1,#CB(Xi) ≥ 3

1,#CB(Xi) = 2, CB(Xi) 6= CB(X
′
i)

0,#CB(Xi) = 2, CB(Xi) = CB(X
′
i)

0,#CB(Xi) ≤ 1

where #CB denotes the cardinality of the set CB and
X ′i is the reflection of Xi about the line joining the two
beacons in the set CB(Xi). Note that X ′i is defined only when
#CB(Xi) = 2. We subsequently, use the notation UL(Xi)
instead of UL(Xi, CB(Xi)).

Table I shows the color coding for the beacon coverage
that we have used in Figure 2 and Figure 5. The fourth
column shows the value of the binary UL function. Note
that the algorithm does not distinguish between Class 2 and
3 points, but they are shown here for visual purposes. Class
2 points have the ambiguous location outside of the floor
plan and Class 3 points have the ambiguous location inside
but covered by different beacons. We see from the second

Class	 Color	code	 Descrip.on	 UL	
1	 #CB(Xi)	≥	3	 1	
2	 #CB(Xi)	=	2,	CB(X’i)	=	{}	 1	
3	 #CB(Xi)	=	2,	CB(X’i)	≠	CB(Xi),	CB(X’i)	≠	{}	 1	
4	 #CB(Xi)	=	2,	CB(X’i)	=	CB(Xi)	 0	
5	 #CB(Xi)	=	1	 0	
6	 #CB(Xi)	=	0	 0	

Table I. COVERAGE CLASS LEGEND

column of Figure 2(a) that configurations 1, 2, 4 and 5 have
all locations to be Uniquely Localizable either due to coverage
by three beacons or in case of two beacons, the ambiguous
location is outside the floor plan. In ideal scenarios, any of
these configurations will provide exact location estimates and
the configurations with fewer beacons then would naturally be
desirable. However, in realistic scenarios, these configurations
would not all provide the same location accuracy across the
floor plan. When range measurements are noisy, the location
accuracy is dependent on the error in ranging as well as
geometry between beacons and the receiver, as elaborated in
the next section.

B. Geometric Dilution of Precision
A useful guideline to quantify the location accuracy is the

Cramér-Rao bound (CRB), the lower bound on the variance
in the location that can be achieved by an unbiased location
estimator [5]. The results presented in this section are derived
from [6], [7], [18]. For 2D trilateration systems, it has been
shown [6] that the variance of the positional error σ2(Xi)
at location Xi, as defined by σ2(Xi) = σ2

x(Xi) + σ2
y(Xi),

corresponding to the CRLB when an unbiased estimator is
used is given by:

σ2(Xi, CB(Xi)) =

∑Nb

k=1 σ
−2
r,i∑Nb−1

k=1

∑Nb
j=k+1 σ

−2
r,kσ

−2
r,jA

2
kj

Akj = |sin(θk − θj)|

where σ2
r,k is the variance in range measurement of beacon

k, Nb is the number of beacons in CB(Xi), θk is the angle
between Bk and the Xi.

Under the assumption that the range measurements are
independent and have zero-mean additive Gaussian noise with
constant variance σ2

r , this reduces to:

σ(Xi, CB(Xi)) = σr ×
√

Nb∑Nb−1
k=1

∑Nb
j=k+1Akj

σ(Xi, CB(Xi)) = σr ×GDOP (Xi, CB(Xi))

The GDOP [4] is a function of the angles between the
target Xi and beacons CB(Xi), and is given by :

GDOP (Xi, CB(Xi)) =

√
Nb∑Nb−1

k=1

∑Nb
j=k+1Akj

The CRB is directly proportional to the GDOP and as
seen in Section II, several authors have used GDOP to quan-
tify the location accuracy. We subsequently use the notation
GDOP (Xi) instead of GDOP (Xi, CB(Xi)). The third col-
umn GDOP in Figure 2 shows the GDOP map of the six
floor plans. The GDOP is the worst (highest) along the line
joining two beacons, and is in general better (lower) when
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Figure 3. Experimental characterization of coverage and range error for
acoustic beacons in real-world deployments

the regions are covered by more beacons. As a numeric
example, for ranging system with standard deviation of the
range measurements of 10cm, if two beacons subtend an angle
of 90◦ at a target location, the resulting GDOP is 1.414 and
the 2-D location estimate would have a standard deviation of
14.14cm.

Experimental validation of zero mean constant variance
ranging noise assumption: Figure 3(c) and Figure 3(d) show
the distribution of the LOS and NLOS ranges of an acoustic
ranging system [16] on two floor plans, for 5-6 beacons with
at least 500 range measurements taken uniformly across all
regions in the floor plan. We observe that when the beacons
are in LOS, the range measurements have nearly zero bias
and almost constant variance. There is no appreciable change
in variance of the range measurements with distance up to
10m. This is likely due to the the SNR being sufficiently high
that the distance from the beacon does not affect the ranging
accuracy.

C. A modified GDOP metric for indoors
We now formalize our modified GDOP metric to use

Unique Localizability, which is given by:

GDOPUL(Xi) =

{
GDOP (Xi), UL(Xi) = 1

NaN , UL(Xi) = 0

The fourth column of Figure 2 shows the GDOPUL

metric. For most configurations, it is the same as the GDOP
metric. But for configuration 3 of Figure 2(a) and configuration
2 of Figure 2(b), where there exist Class 4 locations with the
two-beacon ambiguity problem, the GDOPUL is not defined
where Unique Localization cannot be achieved. These cases
are now numerically handled to avoid providing a confidence
on the location estimate when ambiguity exists in the solution.

D. Quality of a beacon configuration (Q)
With our modified GDOP metric, we can now compare

beacon configurations like those found in Figure 2(a) and
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Figure 4. Comparing configurations using quality of beacon configuration
QGDOPUL

Figure 2(b). We utilize this in our toolchain which has two
modes of operation where it can either optimize for Unique
Localizability or optimize for both Unique Localizability and
GDOP.

Case 1: UL-based metric QUL: In this case, we attempt
to place beacons such that all regions in the floor plan are
Uniquely Localizable without considering the localization
accuracy. This could be required in an ideal scenario with
no ranging noise where the geometry of the beacons does
not affect the localization accuracy, or when the location
estimate is averaged over a large number of measurements,
resulting in low variance. We define the quality of the beacon
configuration B across the floor plan X , as the percentage of
area that is Uniquely Localized.

QUL(X,B) =

∑Nx

i=1 UL(Xi, CB(Xi))

#X
× 100

where UL(Xi, CB(Xi)) is the binary function that indicates
if a location Xi is Uniquely Localizable when covered by the
beacons CB(Xi), as defined in Section III-A and #X is the
cardinality or number of points in the floor plan.

In Figure 2(a), QUL is 100% for configurations 1, 2, 4
and 5 and 28.7% for configuration 3. In Figure 2(b), the
three configurations have QUL as 74.6%, 48.3% and 100%
respectively.

Case 2: UL and GDOP-based metric QGDOPUL : The
GDOPUL metric in Section III-C is defined for a single
location Xi. In order to quantify the quality of the beacon
configuration across all locations in the floor plan, we use
a heuristic based on the Cumulative Distribution Function
(CDF) of the GDOPUL curve across all locations, as shown
in Figure 4. For instance, to compare configuration 1 and con-
figuration 2 of the rectangular room, where both configurations
have three beacons, we see from Figure 4(a) that 60% of the
floor plan has a GDOP less than 1.7 under configuration 1, and
GDOP less than 3.0 under configuration 2. Alternately, 100%
of the floor plan has a GDOP under 3.0 in configuration 1 but
only 60% of the floor plan has a GDOP less than 3.0 under
configuration 2. Hence configuration 1 is better since it has
low overall GDOP than configuration 2. For configuration 3,
where a large part of the floor plan is not Uniquely Localizable,
we can see from the CDF plot that only around 27% of
the floor plan is localized. We can see from these curves
that configuration 1 is better than configuration 2 which is
better than configuration 3. However, it is not obvious how
configuration 4 and configuration 5 compare since the CDF
curves intersect. If the goal is to have 60% of the floor plan
with lower GDOP, configuration 5 is better, but if the goal
is to have 90% of the floor plan with lower GDOP, then
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Figure 5. Beacon Placement Process (Legend for coverage in (c),(f) is in
Table I)

configuration 4 is better. In our toolchain, the designer can
specify the requirement, but by default we use the area under
the GDOPUL CDF curve. To compute the area, we need to
provide an upper limit on the GDOP. For the plots shown,
the upper limit is conservatively chosen to be 8.0, which
corresponds to an angle of 1.8◦ between two beacons and
a target. This is equivalent to considering the regions with
GDOP worse than 8.0 to not be localizable. For the L-shaped
room in Figure 2(b), we see from Figure 4(b) that among
the configurations with 2 beacons, configuration 1 is better
than configuration 2 even though configuration 2 has better
coverage, and configuration 3 with 3 beacons outperforms both
these configurations. The same metric can be used even if the
target area is a predefined path or a finite set of locations across
the floor plan. In these cases, the CDF would be computed only
over the desired target locations.

IV. BEACON PLACEMENT ALGORITHM AND TOOLCHAIN

In this section, we present two beacon placement algo-
rithms based on the concepts described in Section III. The
implementation is illustrated by Figure 5 for a floor plan that
represents two rooms connected by a corridor. The inputs
provided are the floor plan, coverage model of the beacons
and the set of candidate beacon locations. The floor plan and
obstacles are represented as multiple polygons. We also built
a MATLAB-based tool where the user can draw floor plans
to aid in prototyping. Figure 5(a) shows the floor plan with
candidate beacon locations shown by black circles.

The algorithm has two modes of operation based on
whether we want to optimize based on QUL or QGDOPUL .
Our tools provide several design options to the user such as
placing beacons until a finite number of beacons are placed
or placing beacons until some stop criteria is satisfied. This

stop criteria could be in the form of accuracy requirements
across the floor plan, for instance GDOP ≤ 4.0 for 90% of
the regions. The stop criteria we have used for both modes
of the algorithm is achieving Unique Localization across the
entire floor plan.

Step 1: Initialization
• Discretize the floor plan to generate X .
• Apply the beacon coverage model for each Pj to gen-

erate CP (Xi), the set of candidate beacon locations
providing coverage of each point on the floor plan.

• Perform clustering on X such that all Xi that have the
same beacon coverage, CP (Xi) belong to one cluster.

• For each cluster, assign:
◦ Localization Status = 0
◦ Size = number of points in cluster

• Initialize Selected Beacons = {}
Figure 5(b) shows the clusters generated by ideal ray-tracing
coverage with five of the largest clusters labeled.
Repeat Steps 2-4 until Localization Status of all clusters=1.
In every iteration, one beacon is placed.

Step 2: Select cluster
Among the clusters with Localization Status = 0, select the
cluster with largest Size

Step 3: Select subset of candidate locations
Among all candidate beacon locations, select the subset
CP (Xi), where Xi is any point in the cluster. Note that all
points in the cluster are covered by the same candidates.

Step 4: Among the subset of candidates, select the
candidate that maximizes criteria
• The selection criteria depends on whether we are

optimizing for UL or GDOPUL. Further, since these
metrics are not defined for single-beacon case, we
have a different criteria when Nb, the number of
beacons already covering the cluster is zero.

(1) UL and Nb=0: Select candidate with maximum coverage.
(2) GDOPUL and Nb=0: Select candidate with maximum
average distance from other candidate locations for this cluster,
to provide good geometry.
(3) UL and Nb 6= 0: Select candidate that maximizes the
quality of beacon configuration QUL or the percentage of area
Uniquely Localized.
(4) GDOPUL and Nb 6= 0: Select candidate that maximizes
the quality of beacon configuration QGDOPUL or the area
under the CDF of the GDOPUL curve.
• Add selected candidate beacon location to the set

Selected Beacons.
Figure 5(c) shows the placement of beacons in the UL
mode with the coverage classes shown and Figure 5(d) shows
the placement of beacons in the GDOPUL mode with the
GDOPUL values shown. As can be seen, the selection of the
first beacon (to localize the cluster labeled 1 in Figure 5(b))
and subsequent beacons is different for both the algorithms.
Step 5: Re-evaluate clusters
• It is possible that a cluster is partially localized by

the ambiguity being resolved when the new beacon is
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placed. In that case, split it into two clusters before
the next step. Assign Size and Localization Status for
the new clusters.

• For all clusters: If all the points in the cluster satisfy
the stop criteria (achieving Unique Localizability),
assign Localization Status of cluster=1.

As we can see from Figure 5(c), the entire floor plan is
localized with only 4 beacons while optimizing for Unique
Localization. However, the beacons are clustered close together
and GDOP of the final beacon placement, shown in Figure 5(e)
is poor. On the other hand, Figure 5(d) shows the placement
while optimizing for GDOP as well, and places two additional
beacons.The final configuration has a good GDOP and cover-
age across the floor plan, as seen in Figure 5(d) and Figure 5(f)
respectively. If the design requirement was to only place 4
beacons, the first 4 beacons would have been placed, with the
corridor area not localizable but good GDOP in the two rooms.

V. EVALUATION

We evaluated our beacon placement algorithm in simula-
tions on 10 floor plans, which are listed in Table II. The first
five are smaller floor plans constructed to represent different
geometries that could occur within larger floor plans. The next
four are real-world floor plans in buildings on our university
campus, and the last is a floor plan drawn using our toolchain.
The Rectangle and L-shape floor plans are shown in Figure 2,
the Two-rooms floor plan is shown in Figure 5 and the
remaining seven floor plans are shown in Figure 7.

The first column of Table II, 3-beacon (Minimal) denotes
the minimal number of beacons if all regions are to be covered
by at least 3 beacons as required by trilateration. The second
column UL (Minimal) denotes the minimal number of beacons
required under the proposed scheme where we localize with
2 beacons. The results for both of these columns are obtained
by brute-force by iterating through every possible beacon
configuration. Note that this is not practical for larger floor
plans. We see that the proposed scheme results in reducing
the number of beacons by 22-60% (33% on an average) for
these floor plans. The most significant improvement is seen
for the Spokes floor plan, shown in Figure 7. This is not
typical of indoor spaces but we selected this to show when the
proposed scheme is most effective. The floor plan is generated
such that all points are in LOS of the left bottom and right
bottom corners. We can extend this floor plan to generate
infinite spokes, and the 3-beacon scheme would require infinite
beacons, whereas the proposed UL scheme would require only
2 beacons.

The third column shows the number of beacons placed
while optimizing for UL and the fourth column shows the
number of beacons placed while optimizing for the GDOPUL.
We see that the UL algorithm places the same number of
beacons as the minimal in most cases, with 1 or 2 additional
beacons in some cases (on average 5% more beacons than
minimal). The GDOPUL algorithm usually places the same
number of beacons as UL, in worst-case it places 2 more
beacons. In Figure 7, we show the resulting GDOP map of the
final beacon placement with the algorithm in the GDOPUL
mode. Due to lack of space, we have not shown the minimal
beacon placement and result of UL algorithm for these seven
floor plans but the number of beacons for both are shown in
Table II.
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Figure 6. Validation of algorithm’s greedy approach and stop criteria

Figure 6 shows the effect of the design choices we have
used in the algorithm. Figure 6(a) validates the greedy ap-
proach we have adopted, where we iteratively select beacons to
localize the largest cluster. For each of the floor plans, we can
see the % of area Uniquely Localized as an additional beacon
is added. For instance in Map 4, 90% of the area is localized
with 11 beacons and an additional 5 beacons are required
for the remaining 10% of the area. For practical purposes,
it may be sufficient to have coverage in 90% of the region,
since often tracking or filtering would be used in the location
solver. Figure 6(b) shows the final CDF of the GDOPUL when
the algorithm is in the GDOPUL mode. The final quality of
beacon configuration varies across floor plans since the stop
criteria is all regions being Uniquely Localizable. We could
also have specified a different criteria based on GDOP, such
as 90% of the floor plan having a GDOP less than 4.0. We
see that across the floor plans, the Multi-room floor plan has
the overall highest quality of beacon configuration but our
algorithm placed 2 beacons more than the minimal number
required. The worst quality of beacon configuration is for
multi-corridor floor plan and we can see from Figure 7 that
the two end corridors have a high GDOP.

In summary, the proposed scheme based on Unique Lo-
calizability places between 22% to 60% (33% on average)
fewer beacons than a typical trilateration-based scheme. The
proposed algorithm in UL mode usually achieves the minimal
placement and on an average places 5% more beacons than
minimal, but 29% fewer beacons than typical. The proposed
algorithm in GDOPUL mode places on an average 14% more
beacons than minimal, 23% fewer beacons than typical, and
provides a much better quality (GDOP) of beacon placement.
The final quality of beacon placement and the number of
beacons required varies with the floor plan geometry. The
quantitative results apply even for larger floor plans at building-
scale since they can be represented as a union of smaller floor
plans.

VI. CONCLUSIONS

In conclusion, this paper proposes a beacon placement
technique and a new metric to compare different indoor
placements. Our approach requires a map of the interior space,
along with a propagation model for beacons that provide range
data that can be used to estimate coverage regions of a beacon
location. We show how it is possible to localize with two
beacons instead of three beacons and introduce the concept
of Unique Localizability. We introduce a new formulation of
GDOP that incorporates the Unique Localizability information
and use these metrics to compare and optimize beacon place-
ments in indoor environments. We integrated our proposed
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Figure 7. Beacon Placement result and corresponding GDOP for subset of
the floor plans with algorithm optimizing for GDOPUL.

Floor Plan Beacon Placement Method
3-beacon
Minimal

UL
Minimal

UL
Algorithm

GDOPUL

Algorithm
Rectangle 3 2 2 2
L-shape 4 3 3 3
Spokes 5 2 2 2
Two-rooms 6 4 4 6
Multi-room 9 6 8 8
Multi-corridor 7 5 5 5
Map 1 11 8 8 9
Map 2 12 8 9 10
Map 3 9 7 7 8
Map 4 21 15 16 16

Table II. NUMBER OF BEACONS PLACED

Quality of Beacon Configuration metrics into a toolchain
that can automatically place or refine beacon locations in
order to improve accuracy, coverage and/or beacon number.
The tool exports a GDOP and coverage map for the final
beacon configuration that can be used to visualize expected
performance across a floor plan. We believe that these types
of automated provisioning tools are going to become critical
if indoor localization services become pervasive. In the future,
we intend to extend our system to different beacon propagation
models like UWB transmissions and validate at scale in real
deployments.
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