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Abstract—Large variations in the execution times of algo-
rithms characterize many cyber-physical systems (CPS). For
example, variations arise in the case of visual object-tracking
tasks, whose execution times depend on the contents of the
current field of view of the camera. In this paper, we study such
a scenario in a small Unmanned Aerial Vehicle (UAV) system
with a camera that must detect objects in a variety of conditions
ranging from the simple to the complex. Given resource, weight
and size constraints, such cyber-physical systems do not have
the resources to satisfy the hard-real-time requirements of safe
flight along with the need to process highly variable workloads
at the highest quality and resolution levels. Hence, tradeoffs
have to be made in real-time across multiple levels of criticality
of running tasks and their operating points. Specifically, the
utility derived from tracking an increasing number of objects
may saturate when the mission software can no longer perform
the required processing on each individual object. In this
paper, we evaluate a new approach called ZS-QRAM (Zero-
Slack QoS-based Resource Allocation Model) that maximizes
the UAV system utility by explicitly taking into account the
diminishing returns on tracking an increasing number of
objects. We perform a detailed evaluation of our approach
on our UAV system to clearly demonstrate its benefits.

I. INTRODUCTION

One of the key characteristics of CPS is their close

interaction with their environment. UAV surveillance sys-

tems are a compelling example of CPS because they must

perform timely adjustments to propulsion speeds and con-

trol surfaces to maintain flight, process video streams, and

navigate a route avoiding obstacles. Timely execution of

tasks in these types of systems typically relies on real-time

scheduling along with physically independent (and often

over-provisioned) subsystems. Real-time scheduling policies

guarantee task response time bounds based on their worst-

case execution times (WCET) and frequency of execution.

Unfortunately, the use of complex CPS application algo-

rithms, whose execution time depends on environmental

conditions, make the WCET difficult to estimate. This is

the case of the execution time of vision-based object recog-

nition algorithms used for surveillance in UAV systems.

This difficulty has motivated alternative schemes that can

improve the schedulable utilization of the processors with-

out compromising critical guarantees in the system. Zero-

Slack Rate-Monotonic scheduling (ZSRM) is one of these

approaches [1]. ZSRM is a general fixed-priority preemptive

scheduling policy that is defined for a uniprocessor system.

In ZSRM, a criticality value is associated with each task

to reflect the task’s importance to the CPS mission. Thus,

ZSRM is specifically designed for mixed-criticality systems

where tasks have different criticality levels and in the case

of overloads, more critical tasks must execute to completion

even at the total expense of less-critical tasks.

ZSRM allows the system designer to “overbook” CPU

cycles at design time by allocating these cycles to more

than one task from different criticality levels. In particu-

lar, tasks are characterized with two execution times: The

Nominal Case Execution Time (NCET) and the Overloaded
Case Execution Time (OCET). The NCET is the worst-case

execution time of the task under normal execution when not

overloaded. The OCET is the worst-case execution time of

the task when it overloads, say, when the task has to process

an unusually large number of objects in the camera’s field-

of-view. With this characterization, if a more-critical task

needs to overrun its NCET, the task uses its overbooked

cycles. Otherwise, a lower-criticality task will avail of those

cycles.

In avionics systems, flight-critical control tasks are con-

sidered to be safety-critical as they are directly responsible

for the safety of the vehicle. Other tasks are mission-oriented

and are generally considered to be less critical than the

safety-critical tasks.

While the criticality-overbooking in ZSRM provides the

necessary protection of safety-critical tasks in avionics sys-

tem, it proves to be insufficient when additional trade-offs

are necessary within mission-critical tasks. A less-critical

task can contribute more system utility than a more-critical

task depending upon the current operating modes of those

tasks. Different tasks may also overload at different times.

Our objective is to maximize the total system utility under

all operating conditions.

In this paper, we study the resource overbooking problem

of a UAV surveillance system. We use this system to discuss

the limitations of the ZSRM approach and evaluate the

effectiveness of a new policy called ZS-QRAM [2] (Zero-

Slack QoS-based Resource Allocation Model) that performs

utility-based resource overbooking. ZS-QRAM combines
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mechanisms from ZSRM and the Quality-of-Service-based

Resource Allocation Model (Q-RAM) [3]. ZS-QRAM uses

Q-RAM utility functions that map the resources allocated to

a task to the utility that is obtained from the allocation. These

utility functions generally exhibit what is called diminishing
returns, i.e. every additional increment of a resource to a

task returns less utility per unit of resource than the previous

increment. The ratio of the utility increment to the resource

increment is referred to as marginal utility.

In our UAV system, utility-based overbooking allows us

to encode the utility saturation levels of a vision-based

object-detection algorithm. Once marginal utility that is

gained diminishes, allowing this object-detection algorithm

to consume more CPU cycles may yield smaller utility than

the utility lost by degrading (say) a video-streaming task

to its next lower lower frame-per-second setting. Hence,

instead of further degrading the video-streaming task, the

object-detection task can be prevented from consuming more

cycles.

In essence, our ZS-QRAM approach considers overloaded

execution conditions and marginal utility at different task

operating points in order to allocate resources (and thereby

assign operating points) to tasks in the system. The objective

of ZS-QRAM is to maximize the total utility accrued from

these allocations under both normal and overloaded condi-

tions. Under non-overloaded conditions, tasks will have been

assigned the highest QoS operating points that are feasible

with the available resources. Under overloaded conditions,

our approach will select at run-time the tasks to degrade

such that the total system utility is minimally reduced. Many

different combinations of task overloads can occur, and

ZS-QRAM needs to optimize system utility for all these

possibilities.

A. Related Work

In this section, we describe previous work in the area of

mixed-criticality overload scheduling that can potentially be

used in our case study.

Multiple papers have been published related to overload

scheduling. For example, [4] and [5] use a form of criticality

together with a value assigned to job completions. Their

approach is then to maximize the accrued value. In our

case, we combine the accrued value of job completion with

criticality which is not included in their approaches. In

[6], the authors describe an approach to map the semantic

importance of tasks to QoS service classes to improve

resource utilization. They ensure that the resources allocated

to a high-criticality task are never less than the allocation

to a lower-criticality one. In our case, the use of ZSRM in

our approach supports criticality-based graceful degradation

while also maximizing total utility.

The elastic task model proposed in [7] provides a scheme

for overload management. In this scheme, tasks with higher

elasticity are allowed to run at higher rates when required,

Figure 1. Our UAV Quadrotor Platform

whereas tasks with lesser elasticity are restricted to a more

steady rate. In our scheme, we also change rates (periods)

but they are pre-defined and only change at a “zero-slack”

instant [1]. We call this period degradation and the degra-

dation is carried out in decreasing order of marginal utility,

leading to a minimal loss of system utility.

In [8, 9], the authors propose the Own Criticality-Based

Priority (OCBP) schedulability test to find the appropriate

priority ordering for mixed-criticality schedulability. Such a

scheme is aimed at certification requirements. In contrast,

we are focused on an overbooking approach to improve the

total utility of the system.

The rest of the paper is organized as follows. Section II

presents our UAV CPS. Section III discusses the utility-

based maximization approach. In Section IV, we present

the implementation of our approach and evaluate its efficacy

particularly in comparison with standard techniques. Finally,

in Section V, we present our conclusions.

II. THE UAV CYBER-PHYSICAL SYSTEM

A. System Overview

UAVs exemplify cyber-physical systems that consist of

both hard and soft real-time requirements. Low-level control

components required for stable flight have an extremely

low tolerance to timing jitter. Higher-level software required

for mission planning, perceptual sensor processing and co-

ordination tend to have utility-based requirements where

performance degrades given fewer resources. The minia-

turization requirement for small UAVs tends to force both

of these functional sets onto a single underlying compute

platform where resources must be intelligently shared. In

this section, we discuss the details of our UAV platform and

highlight a few of the practical challenges related to resource

scheduling.

Our small UAV platform shown in Figure 1 is based on the

Parrot AR Drone quadrotor [10]. The platform consists of a

468 MHz ARM9 with 128 MB of flash, 128 MB of RAM

and built-in 802.11b wireless communication running Linux
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kernel v2.6.27. This platform is unique in that the low-level

control functionality required for maintaining stable flight

executes in Linux user space, making it an ideal testbed

for scheduling. As part of the Drone-RK project [11], we

developed a hardware expansion board and a software devel-

opment environment that allows users to create autonomous

UAV applications.

Figure 2 shows a block diagram of the UAV’s hardware

components. The system is composed of a main single-

computer board running Linux and connected over two

serial ports to micro-controller-powered sensor boards. The

stock sensor board on the AR Drone is responsible for

periodically measuring angle, rate of rotation and altitude

(using ultrasound transducers). The Drone-RK expansion

board contains a GPS receiver, a barometric pressure sensor,

a compass and IR rangefinders. A set of C APIs is provided

so as to allow onboard access to sensor data and the

ability to perform basic navigation operations. The software

framework consists of a low-level flight controller task, a

video capturing task, an actuation task, and two sensing

tasks (one for the onboard navigation sensors and one for

our auxiliary sensors). The periods and execution times of

these task sets are outlined in Table I. The other columns in

the table capture related task utility properties and will be

discussed later. Figure 3 illustrates the data flows between

the tasks in the system.

B. Mixed-Criticality Concerns in UAVs

When designing software to run on our UAV platform, it

became apparent that we require resource isolation to protect

various system components. An early adopter of our system

had the need to increase the amount of CPU allocated to

a vision processing task. As one might expect, they raised

the task priority and quickly saw that under high load the

UAV platform became unstable and could no longer fly

correctly. In other cases, if one adheres strictly to classic

real-time design paradigms like rate-monotonic scheduling

(RMS), the developer ends up in a situation where tasks
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Figure 2. UAV Hardware Architecture
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Figure 3. UAV Task Interactions

receive more CPU cycles solely based on their periods and

not the end utility provided to the system. For example, it is

quite common for a UAV to stream image data as part of a

surveillance application. Image processing typically operates

at a fixed rate derived from its attached camera, but in some

cases it may not require a hard deadline for completion. For

example, image processing tasks to detect objects or avoid

obstacles might operate concurrently at a much lower rate.

Often these tasks are more critical to the UAVs operation,

but are forced to run at a lower priority since they have

longer periods. As a result, if an overload occurs, the lowest-

priority task is the first one to miss its deadline, even if it

is more critical to the system. This is known as criticality
inversion [1] and ZSRM can be used to correct this problem.

C. Utility Inversion

Unfortunately, the notion of criticality inversion does not

capture all the issues that arise in a CPS. In particular, it

does not capture the nature of diminishing returns exhibited

by mission tasks when the latter are allocated additional

resources. This scenario is better described by using the

general notion of utility inversion. Utility inversion is said

to occur when a lower-utility task prevents the execution of

a higher-utility task. The utility inversion of a task is also

represented by the duration that it is blocked by a lower-

utility task. Such utility inversion can occur because the

lower-utility task has higher scheduling priority. This occurs

Process Util1 Util2 C Co T1 T2 ZS
Actuation 1 1 30 30
Sensor Data 0.1 0.1 65 65
Aux Sensor Data 0.5 0.5 50 50
Navigation 11 11 50 49
Object Detection 7 15 40 100 87
Video Streaming 2 4 10 10 120 40 40

Table I
SURVEILLANCE EXPERIMENT TASK SET (TIME IN MS)
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Task NCET OCET Period1 Period2 Util1 Util2
Task 1 25 25 200 200 10 10
Task 2 200 300 800 400 5 6
Task 3 250 500 1600 800 7 8

Table II
BASIC TASKSET

in RMS-based systems when a task with a longer period

yields higher utility than a task with a shorter period. It

is worth noting that the allocation precedence can reverse

when a task consumes more resources and its marginal

utility diminishes. That is, the next resource increment to

the higher-utility task may return a lower marginal utility

than the one obtained if this resource increment is allocated

to a lower-utility task. Such dynamic changes cannot occur

in ZSRM where criticality inversion stays constant over

time. As a result, using ZSRM mechanisms to prevent

criticality inversion can still lead to utility inversion when the

allocation precedence changes due to diminishing returns.

In the next sections, we show how our proposed ZS-

QRAM approach can be used to help address these situations

and maximize total system utility.

III. USING UTILITY TO MAXIMIZE MISSION VALUE

Our utility-maximizing ZS-QRAM approach is designed

for tasks whose different QoS levels are implemented using

different task periods and NCET and OCET as defined in

ZSRM. Task periods are mapped to allocation points along

two utility functions, one based on NCET and another on

OCET. ZS-QRAM first considers NCET utility functions,

and utilizes Q-RAM to do an initial allocation (at design

time) where each increment in the allocation is represented

by an increasingly shorter period1. If a task overloads at

runtime, an overload management mechanism is used to

degrade tasks (by selecting a longer period) to keep the

taskset schedulable. This overload management mechanism

uses task utility functions based on their OCET to select the

tasks that render the least utility per unit of CPU utilization

(marginal utility).

As an example, consider the taskset in Table II. For

instance, Task 2 can execute with two different periods 800
and 400, with corresponding utilities of 5 and 6.

Figure 4(a) depicts the nominal utility functions that Q-

RAM builds for the taskset of Table II based on their

CPU utilization when they run at their NCET, i.e., NCET
Period .

These functions are then used to perform the initial resource

allocation. Q-RAM follows these functions one task and step

at a time until the resources are exhausted or all the steps

are successful. These allocation decisions happen at design

time and so no penalty is incurred at runtime.

1The reader may correctly observe that algorithmic variants can also be
used to yield different NCET and OCET values at different task operating
points. Such variations are beyond the scope of this paper.

Similarly, Figure 4(b) depicts the overload utility func-
tions that the ZS-QRAM overload management mechanism

uses for our UAV taskset shown in Table II based on their

OCET. These functions would be used to select the tasks to

degrade under overload conditions so as to minimally reduce

the total utility of the system. As a result, in an overload, ZS-

QRAM will execute a sequence of cumulative degradation

steps until the taskset becomes schedulable again. These

steps can be calculated at design time, leaving only a

degradation sequence to be explored at runtime.

Figures 5(a) and 5(b) depict the utility functions and

diminishing returns of the Video Streaming and the Object
Detection tasks for our UAV surveillance system using the

information from Table I. It is worth noting that, in the

overload utility functions of Figure 5(b), the marginal utility

of the video streaming task at 10
120 is larger than that of

the object detection function at 40
100 . As a result, under one

possible overload scenario, while the degradation of the

video streaming period from 40 to 120 is the first step, the

second step (if one were required) would be the degradation

of the object detection.

A. ZS-QRAM Task Model

In this section, we briefly outline the task model that our

system uses. ZS-QRAM models multi-period tasks as modal

tasks. Modal tasks are defined as the ordered sequence: τi =
〈τi,x〉, where each τi,x is a mode of τi and the sequence is

ordered by decreasing marginal utility to be defined shortly.

Each mode2 is defined as

τi,x = (Ci, C
o
i , Ti,x, Ui,x, U

o
i,x)

where

• Ci is the NCET of the task,

• Co
i is the OCET of the task,

• Ti,x is the task period in this mode,

• Ui,x is the utility of the mode when it runs for Ci,x,

and

2A task mode can also be considered to be an “operating point” of a
task using Q-RAM terminology.
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Figure 4. Utility Functions
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• Uo
i,x is the utility of the mode when it runs for Co

i,x.

With this definition, we can calculate the marginal utilties

of the modes. These marginal utilities allow us to build

the allocation sequence using the nominal utility functions

and the degradation sequence using the overload utility

functions. The modal marginal utilities are calculated as

follows.

• Mi,x is the marginal utility of the mode when it runs

for its NCET, Ci. In this case, the task is said to be

in its nominal execution mode and its marginal utility

is known as the nominal marginal utility in that mode.

While other definitions are possible, in this paper, we

define the nominal marginal utility as:

Mi,x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ui,1
Ci
Ti,1

if x = 1

Ui,x−Ui,x−1
Ci

Ti,x
− Ci

Ti,x−1

otherwise

The above definition is used to capture the following

semantics. Marginal utility represents the utility gained

per unit of allocated resource. Resource allocation is

quantified as utilization in the traditional scheduling

sense of C
T (i.e. ratio of worst-case execution time to

period). We also assume that every task derives a utility

of 0 when it is not allocated any resource. Hence, for

any non-zero resource allocation (i.e. utilization), the

first mode of a task τi has the marginal utility given by

the ratio of Ui,1 to its resource utilization. Here, Ui,x

represents the absolute value of utility derived in mode

x. For all other modes of task τi, the marginal utility

at mode x > 1, is given by the ratio of the increase in

utility from the previous mode (x − 1) to the increase

in resource utilization relative to the previous mode.

• Mo
i,x is the overload marginal utility of the mode when

it runs for Co
i , and the task is said to be running in its

overloaded execution mode. Analogous to the case of

nominal marginal utility, the overload marginal utility

is defined as:
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Figure 5. UAV Utility Functions

Task Mode C Co T U/Uo M Mo

τ1 τ1,1 25 25 200 10 80 80

τ2
τ2,1 200 300 800 5 20 13.3
τ2,2 200 300 400 6 4 2.6

τ3
τ3,1 250 500 1600 7 44.8 22.4
τ3,2 250 500 800 8 6.4 3.2

Table III

Mo
i,x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uo
i,1

Co
i

Ti,1

if x = 1

Uo
i,x−Uo

i,x−1
Co
i

Ti,x
− Co

i
Ti,x−1

otherwise

This definition mirrors that of the nominal marginal

utility, except that overloaded execution parameters are

used instead of nominal execution parameters.

The modes in a task τi are ordered by decreasing length of

period (Ti,x) such that Ti,x > Ti,x+1. Marginal utilities are

restricted to follow the same order, i.e., Mi,x > Mi,x+1 ∧
Mo

i,x > Mo
i,x+1. These conditions construct concave utility

functions (with monotonically-decreasing marginal utility),

which correspond to the simplest utility functions handled

by Q-RAM.

Table III presents the taskset from Table II as modal tasks

along with their marginal utilities.

B. ZS-QRAM Operation

As mentioned earlier, Q-RAM is used first to assign a

mode τi,x for every task, with system schedulability verified

at each allocation step. Then, given the operating modes for

all tasks, a ZSRM-like zero-slack instant, zsi, of each task

is computed at design time [1]. In our current situation, the

zero-slack instant is the last instant at which the system can

be degraded to ensure that τi,x does not miss its deadline.

To simplify the discussion of our algorithms, we de-

fine two functions: Γi(Π:taskset), and Γo
i (Π:taskset). These

functions return the interfering sets (in the nominal and

overloaded execution modes respectively) of tasks for the

selected modes assigned to the tasks in Π. These tasksets are

defined in a similar fashion to ZSRM replacing criticality by

utility at the task mode level3.

ZS-QRAM preserves its schedulability guarantee across

overloads with two overload management mechanisms: pe-

riod degradation and task suspension. Both these mecha-

nisms are designed to be triggered based on the zero-slack

instant of the admitted modes.

Task suspension happens when the zero-slack instant of

a task mode τi,x elapses and it has executed for a time less

than or equal to Ci. In this case, all task modes τj,y with

3For a formal treatment and a discussion of the calculation of the zero-
slack instant, please see [2].
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a marginal Mo
j,y < Mo

i,x are temporarily suspended. If the

current job of τi,x completes without exceeding Ci, then all

modes τj,y resume their execution but they are stopped if

they try to execute for longer than Ti,x.

Period degradation is triggered if the zero-slack instant of

a task mode τi,x elapses and its execution time exceeds Ci,

i.e., task τi,x goes into overload. In this case, all task modes

τj,y|Mo
i,x > Mo

j,y are degraded to a mode τj,z|Mo
i,x ≤Mo

j,z .

The period degradation triggered by τi,x can also degrade

τi,x itself. In this case, the degradation happens at its zero

slack instant.

Note that, even though we have two overload management

mechanisms, a task mode τi,x only has the two execution

modes described in Section III-A. This is because, suspend-

ing or degrading the lower marginal utility modes reduces

preemption time. In other words, suspension works as a

temporary period degradation that reduces the preemption

on mode τi,x. This temporary degradation may become

permanent if τi,x overruns Ci. For formal proofs of these

algorithms, please see [2].

IV. SYSTEM IMPLEMENTATION

We created three implementations of the ZS-QRAM over-

load manager. The first one was implemented as a resource

reservation in Linux/RK [12], a resource kernel. This imple-

mentation has precise reservation accounting but it requires

modification to the Linux kernel. This presented an incon-

venience for our UAV platform due to difficulty obtaining

the kernel sources (customized for the AR Drone). As a

result, we created a second version that was implemented as

a kernel module that does not require kernel modifications.

The third version is a daemon-based scheduler that works

on any version of Linux.

A. Linux/RK Reservation

Our Linux/RK implementation of ZS-QRAM performs

enforcement in two stages. First, if the zero-slack instant is

shorter than the response time of the nominal-case execution

time, a marginal-utility-as-criticality enforcement is used.

This means that the marginal utility of a task is used as

its criticality and all the tasks with lower criticality are

suspended. Secondly, we use the execution time enforcement

of Linux/RK to trigger a system-wide period degradation

when the task has executed beyond its NCET. In particular,

we degrade all the modes τj,y in the system that have an

Mo
j,y smaller than the Mo

i,x of the enforcing task mode τi,x.

If the zero-slack instant is greater than the response time

of the NCET, only period degradation takes place and no

marginal-utility-as-criticality enforcement is necessary.

A system-wide marginal utility is maintained at all times

representing the minimum marginal utility mode that is

allowed to be active. This is used to keep track of period

degradations that happen one on top of the other. For

instance, consider a period degradation of all modes with

marginal utility lower than 5 just after another degradation

operation that degrades all modes with marginal utility lower

than 3. When the degradation of marginal utility 5 ends, it

returns to the system-wide marginal utility 3 keeping all

modes with lower marginal utility degraded.

B. Non-Intrusive Kernel Module

Our non-intrusive kernel module was inspired by [13].

It uses high-precision kernel timers and a kernel thread to

reschedule the processes attached to reserves. Because we

do not intercept the context switching of processes inside

the kernel, we do not have precise accounting of the CPU

time consumed by each process. Instead, we only use the

zero-slack timer for period degradation.

A zero-slack timer implements the zero slack enforce-

ment. However, in order to implement a more precise utility-

as-criticality enforcement with imprecise accounting, we

take a different approach. Specifically, at the zero-slack

instant, we perform period degradation immediately as if the

task would have already executed beyond its C time. Then,

when the degraded tasks have the opportunity to run and

signal their completion (by calling the special system call

wait_for_next_period()), we restore the original

period (as if no period degradation had occurred) if we can

verify that they completed before the original period and the

system-wide marginal utility is low enough to re-enable its

non-degraded mode.

C. User-Level Scheduler

A final implementation option is to create an entirely user-

space scheduler to manage our taskset. This approach is

similar to that of the kernel-module except that instead of

relying on a system timer callback, we use a high-priority

daemon process to perform scheduling and send signals to

each waiting process. If the daemon process executes at the

highest priority of all of the managed tasks, then it can

suspend itself for specific periods of time and then signal the

wakeup of any pending tasks. It can provide a primitive form

of enforcement by decreasing the priority of any executing

tasks at the zero-slack instant to the lowest level in the

system. Due to the use of signals and the user-level daemon

thread, it incurs a higher overhead.

Scheduler Kernel Module User Space
Build Requirement kernel build kernel src none
Overhead minimal +1 ctx swap +2 ctx swap
Timing HR timer kernel tick kernel tick
Enforcement full zs instant zs instant
Accounting full none none
Protection full rt taskset rt taskset
Sustainability difficult easy easiest

Table IV
LINUX REAL-TIME SCHEDULING OPTIONS
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D. A Comparison of Different Implementations

Table IV shows a comparison of the different scheduling

options that could be adopted for legacy Linux systems.

Modifying the scheduler requires the least amount of over-

head and provides the best performance and the highest

level of runtime assurance (protection and accountability).

However, it relies on being able to work with the latest

Linux kernel versions. In our case, this was not possible

since the correct kernel sources were not available. The

kernel module approach is the next best option and does

not require building a new kernel. It does however require

access to kernel source, which is required under the Linux

GPL license. The kernel module incurs approximately one

extra context swap of performance overhead as compared to

using a modified scheduler. In terms of protection, it cannot

always strictly guarantee that higher-priority tasks within

the system do not starve the real-time taskset. In practice,

it is a reasonable assumption that users will not launch

miscellaneous tasks that gain real-time scheduling priorities

and starve the execution of the ZS-QRAM tasks. The final

option of using a user-space scheduler is similar to that of

the kernel module with the additional overhead of having

to context swap in an entire process to perform scheduling

computations. With a 1ms OS timer, having two context

swaps per scheduling operation could represent significant

overhead.

Based on our constraints, we opted to use the kernel

module-based scheduling approach for our study.

E. Utility Maximization in the UAV Mission-Critical Layer

In order to maximize system utility, ZS-QRAM ensures

that the last task to miss its deadlines is the one that provides

the most utility. In other words, in an overload, the overload

management of ZS-QRAM degrades the periods of the tasks

starting with the one with the smallest marginal utility, then

the second smallest, continuing until the degraded taskset

(and workload) becomes schedulable again. As a result, at

any given time, the active tasks are the ones that provide the

largest utility per unit of resource.

In order to measure the benefit of ZS-QRAM, we devel-

oped a metric called Utility Degradation Resilience (UDR).

UDR measures the capacity of the resource allocator and

overload management mechanisms to preserve the total

utility of the system as tasks run beyond their NCET and

trigger a load-shedding mechanism that degrades the utility

of the system.

UDR is measured in a similar fashion to ductility [14] in

ZSRM. It is defined as a matrix that evaluates all possible

overloading conditions and the resulting consequences over

the deadlines of the different tasks. However, instead of

accruing only unit values when a task meets a deadline, we

accrue the utility of the task. This is formally defined as:

〈On, On−1, . . . , O1〉
. . .

〈On, On−1, . . . , O1〉

⎛
⎝

DnUn, Dn−1Un−1, . . . , D1U1

. . .
DnUn, Dn−1Un−1, . . . , D1U1

⎞
⎠

(1)

where:

• Oi is a zero-or-one variable that indicates whether the

task with the i highest utility overruns, where larger i
means higher utility,

• Di is a zero-or-one variable indicating whether the task

mode with the i highest utility meets its deadlines, and

• Ui is the utility of the i highest utility task mode.

Applying this metric to the Video Streaming (τ1) and

Object Detection (τ2) tasks from our UAV taskset (Table I),

when scheduled with ZS-QRAM, we obtain an UDR matrix

as follows.

〈1, 1〉
〈1, 0〉
〈0, 1〉
〈0, 0〉

⎛
⎜⎜⎝

1 ∗ 7 0 ∗ 4 1 ∗ 2
1 ∗ 7 0 ∗ 4 1 ∗ 2
1 ∗ 7 1 ∗ 4 0 ∗ 2
1 ∗ 7 1 ∗ 4 0 ∗ 2

⎞
⎟⎟⎠ (2)

The overloading vectors correspond to tasks 〈τ2, τ1〉
and we enumerate all possible overloadings of the modes

(τ2,1, τ1,2, τ1,1) of the possible periods available to the tasks.

That is, the first row is when both τ2 and τ1 overload, the

second one when only τ2 overloads, the third when only

τ1 overloads, and the fourth when no task overloads. The

consequences of the overloads on the system when using

ZS-QRAM are as follows. For the first overloading row,

τ2,1 meets its deadline, but task τ1 is degraded from mode

τ1,2 to mode τ1,1, which meets its deadline. The second

overloading row also degrades task τ1 in the same fashion

as in the previous row. In the third overloading row, ZS-

QRAM allows τ1,2 to overrun meeting its deadline because

τ2 did not overrun. Finally, in the fourth overloading row,

no task overloads and, hence, both τ2,1 and τ1,2 meet their

deadlines. It is worth noting that only one mode per task

can be counted as meeting its deadlines.

We project the UDR matrix into an UDR scalar by simply

adding the resulting utility of the tasks. That is, we add up

all the cells in the matrix. In the case of Matrix (2), the total

utility resilience obtained is 40.

In order to appreciate the value obtained from UDR

Matrix (2), let us now present the result of a bad overload

management policy. This represents the behavior of the

rate-monotonic scheduling (RMS) policy under overload

conditions. This policy may favor low-utility tasks under

different overload conditions instead of high-utility tasks,

leading to the following UDR matrix:

〈1, 1〉
〈1, 0〉
〈0, 1〉
〈0, 0〉

⎛
⎜⎜⎝

0 ∗ 7 1 ∗ 4 0 ∗ 2
0 ∗ 7 1 ∗ 4 0 ∗ 2
1 ∗ 7 1 ∗ 4 0 ∗ 2
1 ∗ 7 1 ∗ 4 0 ∗ 2

⎞
⎟⎟⎠ (3)
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Figure 6. Experimental Setup

In this case, the resulting total utility resilience is 30.

F. The UAV Surveillance System Experiment

We now demonstrate the effectiveness of ZS-QRAM in a

UAV surveillance mission. The mission is composed of the

following three tasks: (1) a navigation task where the drone

follows a wall along a corridor while using the IR sensors

to avoid obstacles (2) a video processing task that uses the

downward-facing camera to detect objects of interest, and

(3) a lower-utility video streaming process that relays data

from the forward-facing camera to a remote station.

Figure 6 shows our experimental setup. The drone is

instructed to automatically takeoff starting at one end of

the course. Using IR sensors on the front and side, the

drone follows the wall as it hovers over the white features

that can be detected by the downward facing camera. Wall

following is achieved using a PID controller while the front-

facing IR detectors is responsible for obstacle avoidance. In

this example, if an obstacle is detected, the drone simply

lands. While these control loops are running, the front-

facing camera is collecting, compressing and transmitting

video data over an 802.11 link to a monitoring PC. As the

number of features increase, we expect to see an increase

in the object-tracking task’s CPU demand. This increase

needs to be isolated from the wall following and low-level

control tasks (Actuation, Sensor Data, Aux Sensor Data, and

Navigation). Otherwise, the system will become unstable.

To achieve isolation, we assign a significantly higher utility

to these tasks as compared to the other two. The video

streaming task is of a less-critical nature and hence if more

CPU demand is required for downward object tracking,

a reduction in streaming frame-rate would be acceptable.

Table I shows the utilities of each of these tasks and their

appropriate zero-slack instants. It is important to note that
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Figure 8. Streaming and object detection process using RMS

the streaming task operates at a higher rate and hence it will

be assigned a higher scheduling priority by RMS. However,

since it has a lower utility, it will be degraded to its longer

period when the zero-slack instant of the object detection

task is reached.
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Figure 9. Streaming and object detection process using ZS-QRAM
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Figure 7 shows the average execution time required per

frame in relation to the number of features. As can be seen

in Figure 6, the course that the drone navigates consists

of clusters with an increasing number of objects followed

by blank regions in between. As the drone encounters an

increasing number of objects, the execution time of the

feature detector increases. Figure 8 shows a plot of the

number of frames per second along with the number of

objects tracked as the drone traverses the course using RMS.

We see a snapshot towards the end of the run where the

drone flies over the last two clusters of obstacles. The second

cluster has more features which is why we see a larger

second peak in the graph. Since each additional tracked

object tends to increase the task execution time, once the

drone detects about 25 objects, the object detection task

begins to exceed its allotted execution time of Ci. This first

causes the object detection task to drift in time, meaning that

the expected rate of sensor updates decreases. One can notice

this effect by looking at the spacing between updates on

the detected features line. This leads to the system missing

frames and hence detecting fewer objects. This is reflected in

the dip seen at time 31 seconds. Figure 9 shows a similar plot

running ZS-QRAM. Note that since these are two distinct

runs, the value may not be exactly identical, but the trends

should be similar. Towards the end of the run, we see that

the number of tracked features increases to about 25 when

the streaming task is degraded. The utility of the streaming

task is lower as compared to the feature detector and hence

we see a period degradation (with the corresponding change

in priority) to allow higher overall utility. After the feature

detector completes, it re-enables the non-degraded period of

the streaming task which returns to 25 frames per second

for one cycle. With ZS-QRAM, we see not only consistent

sensor computation timing but also a higher total number of

objects being detected during the duration of the run. This

CPS prototype illustrates how ZS-QRAM reallocates CPU

cycles during an overload to keep the total utility of the

system as high as possible without affecting critical tasks.

V. CONCLUSIONS

In this paper, we address the problem of large variations

in the execution times of algorithms that are often found

in cyber-physical systems. For example, computer vision

and other image-processing tasks in real-world environments

will demand potentially substantially more execution time

when the sensor’s field of view contains multiple artifacts.

In other words, the characteristics of the physical environ-

ment can determine the resource demands placed on the

cyber-components. We proposed a utility-based approach

called ZS-QRAM (Zero-Slack QoS-based Resource Allo-

cation Model) to allocate resources to tasks such that the

benefits accrued to the system are maximized while CPS

safety constraints are satisfied. In particular, we showed how

the use of Q-RAM utility functions [3] and overbooking

at design time can be combined with a utility degradation

scheme at runtime to yield the highest system utility at

any level of overloading. We also presented the Utility
Degradation Resilience (UDR) metric that is used at design

time to measure the capacity of the system to accrue utility

under overload conditions. Using UDR, we were able to

quantify and evaluate the difference between ZS-QRAM

and traditional rate-monotonic scheduling when used in an

UAV system. Finally, we conducted experiments where we

measured the performance of object detection and video

streaming tasks of our UAV system when a large number of

objects in the Field-of-View (FoV) of the camera used by the

former makes the latter overrun its nominal execution time.

These experiments allowed us to verify the practical effects

of our approach that degrades the frame rate of the video

stream in order to enable the processing of the plethora of

objects in the FoV. Such an adaptation is performed without

disturbing the safety-critical tasks which are isolated from

the mission-critical tasks.
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