
RenderFusion: Balancing Local and Remote Rendering
for Interactive 3D Scenes

Edward Lu*

Carnegie Mellon University
Sagar Bharadwaj*

Carnegie Mellon University
Mallesham Dasari*

Carnegie Mellon University
Connor Smith†

NVIDIA
Previously: Magic Leap, Inc.

Srinivasan Seshan*

Carnegie Mellon University
Anthony Rowe*

Carnegie Mellon University
Bosch Research

Locally Rendered Remotely Rendered RenderFusion

remote

local

remote
local

Figure 1: Rendering quality of local and remote rendering compared to RenderFusion. In this particular scene and viewport,
RenderFusion selects the high-complexity background object to be locally rendered at a lower resolution and the statue and parrot
models to be rendered remotely at a high resolution.

ABSTRACT

Many modern-day XR devices (e.g. mobile headsets, phones, etc.)
lack the computing resources required to render complex 3D scenes
in real-time. Typically, to render a high-resolution scene on a
lightweight XR device, 3D designers arduously decimate and fine-
tune the objects. As an alternative, remote rendering systems can
utilize powerful nearby servers to stream rendering results to a client.
While this is a promising solution, it can introduce a variety of
latency and reliability issues, especially under variable network con-
ditions. In this paper, we present a distributed rendering system that
combines both remote rendering and on-device, “local” rendering
to add robustness to network fluctuations and device workloads. To
maximize user QoE, our approach dynamically swaps an object’s
rendering medium, adjusting for client workload, low frame rates,
and several perceptual characteristics. To model these characteris-
tics, we perform a study under simulated conditions to measure how
users perceive latency and complexity differences between objects in
a scene. Using the results of the study, we then provide an algorithm
for choosing the optimal object rendering medium, based on render-
ing complexity as well as network and latency models, ensuring that
a target frame rate will be met. Finally, we evaluate this algorithm
on a prototype implementation that can provide cross-platform split
rendering using web technologies.

Index Terms: Computer systems organization—Architectures—

*e-mail: {elu2, skalasib, malleshd, srini, agr}@andrew.cmu.edu
†e-mail: cosmith@nvidia.com

Distributed architectures; Computing methodologies—Computer
graphics—Graphics systems and interfaces—Mixed / augmented
reality

1 INTRODUCTION

Real-time rendering systems aim to maximize user experience by
balancing image quality, frame rate, and latency. On compute and
memory-constrained devices, such as mobile phones and mixed
reality headsets, rendering an entire 3D scene “locally” on the de-
vice itself provides low latency interactions at the cost of image
quality. In contrast, remote rendering systems can leverage high-
performance nearby servers to produce high-quality images but
suffer the latency of transferring these images to display devices.
Especially in immersive applications, motion-to-photon latency is
critical for maintaining a good Quality-of-Experience (QoE). Tech-
niques like post-rendering warping can help mask latencies, but it is
often difficult to guarantee performance in remote rendering systems
given the variability of wireless networks. Rather than rendering a
3D scene entirely remotely or locally, we believe that an optimal
system combines both.

While there has been previous work exploring mixing local and
remote rendering (sometimes called “split” rendering) [18, 20, 23,
26, 37], many of these solutions lack robustness to network fluctu-
ations and/or large changes in device workloads when rendering
complex objects locally. In some cases, rendering even a single
high-resolution object on a device with limited memory and process-
ing power can slow down the responsiveness of the entire system,
leading to delayed user interactions. This is especially true for ap-
plications such as viewing complex medical scans, architectural
diagrams, manufacturing parts, and volumetric videos, to name a
few. Specifically, for these use cases, there is a need for an XR

rendering system that can provide graceful degradation, ensuring
that the application can continue to run and feel responsive despite
intense rendering demands. To keep XR devices lightweight and
efficient, the rendering of this kind of content must be offloaded to a
powerful computer in a network-adaptive manner.

In this paper, we propose RenderFusion, a system that dynami-
cally selects objects within a 3D scene to be rendered either on the
local client or on a remote server based on network conditions and
client compute capacity. Our technique renders certain objects on
the headset at various resolutions, while remotely rendering other
objects with higher fidelity, boosting QoE at a fixed frame rate.

Since many choices that impact QoE are subjective, we conduct
a user study to generalize how people respond to post-rendering
warping of remote-rendered frames (with reprojection artifacts as
a side-effect), as well as the impact of interaction latency in split-
rendered environments. To model client capabilities, we benchmark
a few modern display devices to determine estimates for local frame
rates based on scene complexity. Finally, we estimate the impact of
network capacity on image quality (using SSIM) due to compres-
sion artifacts. Using these initial models, we formulate the decision
of which objects to render locally or remotely as an optimization
problem. The optimization models each object’s importance (or
“benefit”) to QoE using a function that combines network link qual-
ity, geometric complexity, object interactivity, and various other
perceptual characteristics. The model considers constraints such as
computational budgets and device frame rates. We call this type of
intelligent object swapping dynamic scene partitioning.

Finally, we also demonstrate a prototype open-source implemen-
tation of RenderFusion that specifically targets WebXR [44] clients
for broader compatibility. We use Unity [39] as a remote rendering
engine that streams to a web browser using WebRTC [46]. Our
WebXR-based scene viewer is cross-platform and can operate on off-
the-shelf desktop browsers, mobile phones, VR headsets (in stereo),
and optical passthrough AR headsets. A Networked Scene Manager
maintains a synchronized local and remote copy of an object-level
scene graph with a decision-making algorithm that decides when
objects should be rendered locally or remotely. The remote server
transmits both color video frames as well as a depth map that the
local client uses for reprojection to mask short-timescale inconsis-
tencies. While there is room to further optimize our decision-making
algorithm, we show that users prefer RenderFusion over entirely
local and entirely remote rendering in a small user study exploring a
live, interactable scene on both AR and VR headsets.
In summary, we make the following contributions:

• We describe RenderFusion for networked XR systems, as well
as create a QoE optimization framework for partitioning ren-
dering based on user study measurements.

• We design and conduct perceptual user studies to determine
acceptable latency thresholds for remote rendering and to show
user preferences towards RenderFusion when compared to
other rendering systems.

• We create a reference open-source implementation able to run
on stock web browsers on modern-day XR devices. We show
that this dramatically simplifies creating high-quality WebXR
applications with responsive interactions.

2 RELATED WORK

Local Rendering: Most of today’s 3D web applications adopt a fully
local rendering approach [5, 14, 27, 34] that requires Level Of Detail
(LOD) tuning to reduce the polycount of 3D models and downscale
texture resolutions. This has obvious limitations in quality.

Remote Rendering: To provide high-fidelity content on compute-
constrained devices, several systems [1, 2, 21, 24, 25, 29] (and [15,
40] for streaming to web browsers) have proposed using remote
rendering methods that offload the entire rendering task to high-end

Mobile Headset

Remote Server

Camera Pose,
Controller Pose,
Inputs,
etc.

Remote
Rendering

Engine

Local
Rendering

Engine

H.264 Video
Encoding

Rendered results as video
frames

H.264 Video
Decoding

Async Time
Warping

Composition

Scene Root

Object1:remote

Object2:remote

Object3:local

Networked Scene
Manager

Decision
Making

Algorithm

Frame Rate,
Bitrate,

Latency,
etc.

Figure 2: RenderFusion system architecture.

remote servers. While remote rendering strategies have the potential
for high visual quality, interactivity is often limited by high latencies.

There has been extensive literature on reducing latency with meth-
ods that render and stream environment maps [8], panoramas [10,35],
or 3D tiles [30]. These techniques often fail to accurately capture
depth cues, especially for close-up objects. More recent methods
use image warping techniques that leverage depth maps to generate
novel view points [6, 7, 9, 36]. However, these methods struggle
with dynamic scenes. When objects move, the remote server must
regenerate environment or depth maps, increasing latency. Fur-
thermore, these remote rendering strategies face constraints from
network bandwidth. Insufficient bandwidth results in heavy video
compression, leading to poor QoE for end users.
Split Rendering: Previous split rendering systems fall into two
categories, which we call “per-object local and remote rendering,”
and “collaborative mixed rendering.” Per-object local and remote
rendering designs include Furion [20] and Coterie [26], which split
a scene into either local or remote rendered objects using a static dis-
tance threshold that makes foreground objects local and background
objects remote. However, this approach falters when close-up, high-
polycount objects are in the foreground, causing potential memory
issues or even system halts, especially in browser-based applications.
Alternative solutions [18, 23, 37] use multiple versions of objects
with different qualities to reduce bandwidth, but they suffer from
high interaction latency, or they support only low-fidelity models
to minimize latency. None of these approaches dynamically and
adaptively optimize both object complexity and video quality.

Another broad class of techniques can be found in collaborative
mixed rendering systems [13, 22, 33], that often use locally rendered
objects as a reference to reproject a high-resolution remotely ren-
dered frame to mask network latency. These solutions are unable
to support highly dynamic scenes with interactable objects and an-
imated backgrounds. Some also require sending multiple streams
(more than two views) to fully cover disocclusions.
Dynamic Scene Partitioning: Funkhouser et al. [16] lays the foun-
dation that we use in our system for dynamic scene partitioning,
using an adaptive optimization algorithm for selecting the best LOD
for each object in a scene. This was early work on balancing quality
and render speed of a scene on a client device. We extend this frame-
work to include split rendering with an objective function that now
captures interaction latency and how network quality impacts stream-
ing video. Teler et al. [38] also uses ideas from [16] to constrain
bandwidth usage in a remote walkthrough scene.

3 SYSTEM OVERVIEW

While the techniques presented in this paper can be applied to any
pair of local and remote rendering engines, we specifically target
stock web browsers (especially those with WebXR support) for
broader accessibility of RenderFusion to a wide variety of existing

Remote RGB-D Frame
(Left Eye)

Remote RGB-D Frame
(Right Eye)

Local RGB Frame
(Left and Right Eye

Side-by-Side)

Local Depth Frame
(Left and Right Eye

Side-by-Side)

Resulting Composite
Frame

Resulting Composite Frame
(Left and Right Eye

Side-by-Side)

Raw Remote Video Frame

Figure 3: Example depth composition for stereoscopic devices.

mobile devices, ranging from smartphones to tablets, desktops, and
headsets. Figure 2 shows the system architecture and workflow. At
its core, RenderFusion requires at least two machines:
(1) An XR device that acts as the remote rendering client, receiving
video streams from a server. It runs a web browser using WebGL [19]
for 3D graphics, which can have limited memory and heavy overhead
when calling GPU functions.
(2) A remote rendering server that renders high-resolution 3D con-
tent. Our remote rendering server was built using Unity and we
leverage Unity’s WebRTC package [41] to stream rendered results
as video frames to directly web browsers. Note that while WebRTC
is a popular streaming technology, it is not ideal for applications like
VR that require low latency.

Both local and remote machines are synchronized with a
networked scene, where each renderer has a copy of a meta-
representation of every scene object. Individual object properties can
be updated in a distributed manner, allowing the decision-making
algorithm to signal both machines which objects to render/not render.
In our implementation, we use ARENA [32], which uses a PubSub
messaging broker to send object property updates across clients.

3.1 Operational Overview
RenderFusion cycles through three main phases of operation:
Dynamic Scene Partitioning: This phase consists of an algorithm
that determines where each object should be rendered to maximize
user QoE. Ideally, while a user is traversing a 3D scene, objects au-
tomatically change between local and remote rendering to optimize
the user experience. See Section 4 for our QoE model. We combine
this model with metrics that can be extracted from the browser, such
as frame rate, WebRTC bitrate, latency, etc., to determine local and
remote object assignments.
Rendering: In this phase, the local client and remote server both
produce images. The remote rendering server streams video to the
client using H.264 video compression. In scenes constructed for our
user studies, the lighting in both the WebGL scene and the Unity
scene were roughly matched. It is quite simple for Unity to render
WebGL content in a manner that can be easily composited. However,
it is difficult for WebGL to render using many of the techniques and
shaders available on high-end servers running Unity. We discuss
this in Section 7, but care needs to be taken when mixing content
from different rendering engines to make the result look cohesive.
Composition: This phase merges the results of local and remote
rendering into a coherent frame to be displayed, reconciling for local-
remote object occlusions and temporal discrepancies between local
and remote frames. In our implementation, the remote rendering
server sends both color and depth images to handle object occlusions
(see Figure 3). To synchronize local and remote camera viewports,
we apply post-rendering warping to reproject both incoming remote
images. While post-rendering warping is still an active research area,
we simplify our implementation using Asynchronous Time Warping

(ATW) [43]. While ATW can mask the effect of network latency,
it introduces visual discontinuities after reprojection as shown in
Figure 4b. To mask these artifacts, we employ several techniques:
(1) In VR, we apply a closest-color in-fill (see Figure 4c). We ran
a perceptual user study to model the noticeability of this specific
type of artifact across a variety of simulated network delays (see
Section 5). (2) For optical AR devices (which currently have small
fields of view), we simply show real-world passthrough at any gaps
caused by ATW (see Figure 4f). Note that ATW artifacts are more
pronounced when viewed on 2D displays compared to stereoscopic
devices, where they primarily occur in the user’s periphery and may
even be partially blocked by the device’s eyepiece, as shown in
Figures 4e and 4f. (3) On 2D displays, we can fill in discontinuities
with ultra-low LOD (or vertex-colored) locally rendered background
models like in Figure 4d.

While it is possible to mask discontinuities by overscanning the
remote frame, this is not necessarily practical. We found that we
would need to overscan by at least 25% in all directions to effec-
tively mask artifacts on 2D screens (albeit with slow user rotations).
This would require either sacrificing resolution by cropping remote
frames, or sending more than 200% of our current video size, which
can increase bandwidth usage, decrease video quality, and increase
composition time, as the client needs to read and operate on a much
larger texture. Instead, we bias our system for higher frame rates.
Nonetheless, the exploration of partial, adaptive, and/or predictive
overscan techniques is left to future work.

3.2 Implementation
The RenderFusion local client delivers 3D content using the A-
Frame [14] virtual reality framework and the three.js [34] library.
Our implementation adds a remote rendering layer on top of the
ARENA web client. We developed custom WebGL shaders for
depth composition, ATW and making sure the displayed aspect ratio
of the remote frame aligns with that of the local frame.

While Unity already has an open-source remote rendering li-
brary [40], we develop our own package using Unity’s WebRTC
library for finer-grained control over the streaming stack1. This
enables us to dynamically synchronize WebGL and Unity camera
poses, match projection matrices, embed frame identifiers into each
video frame, and seamlessly integrate with ARENA libraries [4].

In order to send depth information to the client for more accurate
last-stage reprojection (i.e. ATW), we linearize Unity’s depth texture
at each pixel, converting it into an 8-bit value that spans the camera’s
near and far clipping planes. This value is duplicated into three
channels of an RGB video frame. Currently, we only support 8-bit
depth to avoid H.264 video encoding artifacts. However, there exist
other approaches that can provide better depth resolutions [17, 31].

Additionally, to synchronize color and depth frames, we employ
a custom post-processing shader that combines both frames into a
single stitched RGB-D image to be streamed as video. For devices
with a single display (e.g. desktops and mobile phones), we render
RGB and depth side-by-side. For devices with stereoscopic displays
(e.g. headsets), we render the stitched RGB-D frame of the left eye
in the left half of the frame and the stitched RGB-D frame of the
right eye on the right half (see Figure 3). Encoding stitched RGB-D
using H.264 does not seem to introduce any noticeable artifacts.

4 A MODEL FOR DYNAMIC SCENE PARTITIONING

In this section, we describe a decision model that allocates different
parts of the scene to local and remote rendering engines such that
the user benefit is maximized while meeting local resource usage
constraints and maintaining high frame rates.

When an object is rendered locally, we can choose to render it
with its full polycount or resort to a decimated low polycount variant.

1https://github.com/arenaxr/arena-renderfusion

https://github.com/arenaxr/arena-renderfusion

(a) Remote RGB frame for reference (no
reprojection has been applied yet).

(b) ATW applied to the remote frame. Intro-
duces discontinuities (black regions).

(c) A color in-fill is applied to mask discon-
tinuities.

(d) An ultra-low LOD background image is
composited to mask discontinuities.

(e) Reprojected remote frame through eye-
piece of VR headset (simulated).

(f) Reprojected remote frame through eye-
piece of optical AR headset (simulated).

(g) Reprojected remote frame when network
bitrate is low.

(h) Reprojected remote frame composited
with local frame.

Figure 4: Results of applying ATW when remote and local cameras are not at the same pose. In all figures, all objects are rendered remotely,
except for (h), which shows an outcome of RenderFusion. In (h), the background is local to reduce artifacts; helmet and blue cube are remote.

Representation Local Resource
Usage Visual Quality Response

Latency
HL High High Low
LL Low Low Low
R Very Low High High

Table 1: Summary of representations.

An object in a scene has three potential representations: highpoly
local (HL)—the object rendered locally at its highest polygon count,
lowpoly local (LL)—a geometrically decimated version of the object
with a low polygon count rendered locally, and remote (R)—the
object rendered on the remote server at its highest polygon count
and then streamed as video frames to the device.

Each representation has its own costs and benefits. A HL repre-
sentation of an object produces accurate renders of the object while
also responding to user movements and actions with low latency.
However, it consumes significant local resources; using the HL repre-
sentation for many objects in the scene without careful consideration
might result in reduced frame rates and poor user experience. On the
other hand, LL representations afford low response latencies and con-
sume fewer local resources. However, LL representations provide a
lower level of detail and can affect users’ visual perception of the
scene. R provides high-quality renders and consumes minimal local
resources on a per-object basis, but it comes at the cost of increased
response times. Table 1 summarizes the three representations.

The task of our dynamic scene partitioning model is to choose one
of the three representations for each object in the scene. We devise a
decision model that maximizes the user benefit while constraining
local resource usage and maintaining high frame rates. The dynamic
scene partitioning problem is formalized as follows:

max ∑
o∈O

A(o)B(o,r) (1)

s.t. ∑
o∈OL

Polycount(o)≤ MaxLocalPolycount (2)

Let O be the set of all objects in the scene. A tuple (o,r), where
o ∈ O and r ∈ {HL,LL,R} denotes an object o represented using
the representation r. B(o,r) is the benefit in user experience by
representing an object o using representation r in the scene. Let OL
be the set of all objects that are rendered locally. This includes all
objects whose representation is either HL or LL.

A(o) is the solid angle subtended by the unoccluded parts of the
object at the user’s 3D coordinates. Factoring in A(o) ensures that
we give more importance to objects that appear larger to the user.

Polycount(o) is the number of polygons in object o.
MaxLocalPolycount is the maximum number of polygons that can
be rendered locally without suffering a hit on the framerate while
also considering local memory constraints. In Section 4.1, we de-
scribe how we estimate MaxLocalPolycount. The function B(o,r)
depends on several factors such as human perception of quality,
latency to the remote server, bandwidth availability, etc. Section 4.2
describes the function B in detail.

We continually monitor device and network performance metrics
and run the dynamic scene partitioning model every 3 seconds. We
recognize that the factors that influence the decision model such as
network bandwidth and latency are dynamic and can change within
the interval of 3 seconds. However, we find that this cadence is
sufficient for all practical purposes.

4.1 Maximum Local Polygon Count
When allocating objects to be rendered locally, we need to con-
sider both memory and compute limitations at the local device. On
lightweight devices, local memory is not large enough to store all
scene objects at their highest polygon count. Similarly, local com-
pute resources cannot render all objects at their highest polygon
count at high enough frame rates. Note that both of these limitations
relate to the total polygon count of the locally rendered objects in
the scene. Therefore, Constraint (2) constrains the total polygon
count of all locally rendered objects.

MaxLocalPolycount is chosen such that all polygons fit in mem-
ory and the local device can render MaxLocalPolycount number of
polygons at a framerate of at least 60 FPS. Note that if the individual
polycount of every object is greater than MaxLocalPolyCount, the
optimization switches all objects to be remotely rendered. If the
total polycount of all objects is less than MaxLocalPolyCount, the
optimization will render everything locally at high resolution.

To view the effects of object polycount on device frame rate,
we benchmark four devices: a Value Index tethered to an Intel
NUC11BTMi7 with an RTX 3070, an M1 Macbook Pro, a Magic
Leap 2 (ML2), and a Meta Quest Pro (MQP). Since WebGL uses
rasterization, object size can also affect performance. To under-
stand the relationship between object polycount, size, and frame
rate, we synthetically generated objects of varying polycounts by
randomizing vertex positions within a 2×2×2 unit cube. Note that
this produces more of a lower bound on MaxLocalPolyCount, since
triangle distribution here is much denser than typical 3D models,
leading to more overdraw (three.js does not implement occlusion
culling out the box). We placed these objects one by one in front of
the camera at a distance of 50 units, moving them towards the cam-

0 4 8 12 16 20 24 28 32 36 40
Triangles (in millions)

50
45
40
35
30
25
20
15
10

5

Di
st

an
ce

 fr
om

 c
am

er
a

Value Index (NUC11 w/ RTX 3070)

0 2 4 6 8 10 12 14 16 18 20
Triangles (in millions)

M1 MacBook Pro

0 1 2 3 4 5 6 7 8 9 10
Triangles (in millions)

Magic Leap 2

FPS
0

20

40

60

0 1 2 3 4 5 6 7 8 9 10
Triangles (in millions)

Meta Quest Pro

FPS
0

30

60

90

Figure 5: Effect of object polycount and distance on device frame rate. A blank/white slot denotes that the browser halted. Note that the x-axis
is different across subfigures. The Quest browser implements WebXR’s updateTargetFrameRate, so the max refresh rate was set to 90 Hz.

r = HL r = LL r = R

Interactivity BI 1 1 1 if latency < lt , 0 otherwise.
lt is calculated using a user study.

Accuracy BA 1 BLL
A shown in Figure 8a. BR

A shown in Figure 8b.

Latency Distortion BL 1 1

1
v if latency < l′t , 0 otherwise.
v = length of intersection
of the object with the screen edge.
l′t is calculated using a user study.

Table 2: Summary of sub-functions B f

era by 5 units every 10s. Figure 5 shows the results. Note that the
MQP’s framerate falls off faster than other devices, most likely due
to a need to maintain 90 FPS. Because of this, we do not perform our
VR experiments on an MQP, but instead approximate the experience
of viewing VR content on a mobile client using the Index.

While several other scene properties such as lighting, materials,
shading, etc. can affect local device resource usage, we simplify our
implementation by assuming total polygon count to be the limiting
factor. However, our model can be fine-tuned to accommodate any
other factor that affects rendering performance on the local device.

4.2 User Benefit Function
The benefit to user QoE by including an object o with representation
r in the scene, B(o,r), depends on a large number of factors and is
highly dependent on user perception and the contents of the scene
itself. Here, we describe some of the factors that we consider in our
model along with some of our simplifying assumptions. We discover
the impact of some of the factors on user experience through user
studies, which are described in detail in Section 5.

We decompose the function B(o,r) into a number of sub-
functions, Bi, corresponding to various influencing factors, i. We
normalize each of these sub-functions between 0 and 1 and then
calculate B(o,r) as a product of all the sub-functions. That is,
B(o,r) = ∏i Bi(o,r). In the next few subsections, we describe each
influencing factor and how we estimate the effect of each influencing
factor on the corresponding user benefit sub-function Bi. Table 2
summarizes the calculation of Bi’s for different representations.

4.2.1 Interactivity BI

All objects that the user directly interacts with need to have very low
response latencies. Objects that are locally rendered have minimal
response latency. Therefore, we set BI(o,HL) = 1 and BI(o,LL) = 1.
The response latency of remotely rendered objects depends on the
latency between the remote server and the local device. We set
BI(o,R) = 1 when latency is less than a threshold, lt . Otherwise,
we set BI(o,R) = 0 to ensure all interactive objects are rendered
locally when the remote latency is high, either using the HL or LL
representation. We estimate the value of lt from data collected from
user studies (described in Section 5).

4.2.2 Accuracy of Representation BA

BA captures the perceptual similarity between the rendered repre-
sentation of the object and the original object. Figure 6 shows the
comparison between the three different representations of the object.
The reduction in visual quality for the LL representation comes from
geometric simplification in the LOD model. On the other hand, the R

representation can sometimes suffer a loss of visual quality because
of video compression artifacts.

(a) r = HL (b) r = LL (c) r = R (under low bitrate)

Figure 6: Visual accuracy at different representations.

The value of BA for each representation r is calculated as follows:
r = HL: This is the most accurate representation of the object

possible, so we set BA(o,HL) = 1∀o ∈ O.
r = LL: The accuracy of representation depends on the level of

detail in the low polygon representation of the object. If f is the
number of polygons in the LL representation of the object and F is
the number of polygons in the HL representation, then the decreases
reduces as the ratio f

F decreases.
Figure 7a shows the relationship between SSIM [45], a perceptual

similarity metric, and the ratio f
F . Each line in the figure represents a

different object. To generate this data, we rendered multiple objects
in the 3D rendering software, Blender [11]. We used the Decimate
Modifier [12] in Blender to reduce the polygon count of an object
from F to f . Each object was decimated with different ratios f

F . The
rendered images were then compared with the full polygon count
render to calculate SSIM. While SSIM increases as f

F increases
for each object, the rate of increase varies across different types of
objects.

0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

f / F

S
S
IM

(a) Polygon count ratio vs SSIM (b) Video bitrate vs SSIM.

Figure 7: Effect of reduction in polygon count and video bitrate on
perceptual similarity. Each colored line corresponds to an object.

We simplify this relationship by modeling SSIM as a bivariate
function, BLL

A (f ,F). The function predicts SSIM from the ratio f
F

and the full polygon count F by running inference on a Decision

0 0.5 1

50k

100k

150k

200k

0.85

0.9

0.95

1

f / F

Po
ly

go
ns

 (
F)

(a) BLL
A

1M 2M 3M 4M 5M

50k

100k

150k

200k

0.85

0.9

0.95

Bitrate (bps)

Po
ly

go
ns

 (
F)

(b) BR
A.

Figure 8: Functions estimating BA for low-polygon count (LL) and
remote (R) representations of objects.

Tree Model [28] trained on the data collected using Blender im-
ages. The Decision Tree model has a mean absolute error of 0.013
SSIM. Figure 8a shows the value of BLL

A at different values of f
F and

polygon count F .
r = R: When an object is remotely rendered and the resultant

video is streamed, its visual quality depends on the available band-
width between the server and client. A high bandwidth allows
streaming the video at a high enough bitrate where the difference
between the remote rendered and the local rendered representation
of the full object is imperceptible. However, streaming the remotely
rendered video at a low bitrate introduces video compression arti-
facts, thereby reducing the accuracy of representation.

Figure 7b shows the relationship between bitrate and SSIM for
a few objects. To generate this data, we used Blender to render a
3 second video for each object. The video includes a preview of the
object from all angles. The rendered video was then compressed
to smaller bitrates using ffmpeg [3]. Each compressed video was
compared against the original render to calculate SSIM. We see that
SSIM increases with bitrate for each object, but the rate of increase
is different across objects.

We simplify this relationship by modeling it as a bivariate function
BR

A(b,F), where b is the bandwidth measured between the server
and client and F is the number of polygons in the original object. We
then train another Decision Tree to model the relationship between
bitrate, polygon count F , and SSIM. The value of BR

A for different
bitrates and polygon counts are shown in Figure 8b.

4.2.3 Latency Distortion BL

As described in Section 3.1, we use ATW to mask the effect of
latency between the remote server and the local device. However,
ATW causes smearing effects for objects on the edge of the user’s
view as shown in Figure 4c. The smearing effect gets worse as
latency increases. Therefore, BL depends on latency l. Furthermore,
the amount of smearing that the user sees also depends on the length
of the intersection of the object with the edge of the user’s view,
v. We define BL(o,R, l,v) = 1/v if latency l < l′t . That is, at low
enough latencies, one can use a remotely rendered version of the
object even when it is at the edge of the screen as the smearing effect
caused by ATW is acceptable to users. We proportionally reduce
the benefit, BL, by the size of the intersection of the object with
the screen’s edge as larger objects cause more smearing. We again
estimate the value of l′t from the study described in Section 5.

Network latency does not affect locally rendered objects, so
BL(o,LL) = 1 and BL(o,HL) = 1.

5 LATENCY THRESHOLD USER STUDY

To get a rough idea of how additional latency introduced by remote
rendering can impact user experience and to find reasonable latency
thresholds for our optimization, we designed a user study to uncover
user perceptual preferences at a variety of artificial latencies.
Environment: To finely control network latency, we implemented a
web-based remote rendering VR simulation environment that closely
resembles our runtime implementation and allows us to artificially

0.00
0.25
0.50
0.75
1.00

%
 ra

nk
in

gs
 >

4

Q1: ATW Visual Artifact Noticeability Q4: Controller Lag Noticability

0.00
0.25
0.50
0.75
1.00

%
 ra

nk
in

gs
 >

4

Q2: System Usability Given Artifacts Q5: System Usability Given Lag

0 20 40 60 80 100 120 140
Additional Latency (ms)

0.00
0.25
0.50
0.75
1.00

%
 ra

nk
in

gs
 >

4

Q3: Visual Experience Compared to Ideal

0 20 40 60 80 100 120 140
Additional Latency (ms)

Q6: Interaction Responsiveness Compared to Ideal

Figure 9: Psychometric functions for the percentage of positive
ratings for all questions, obtained from latency threshold user study.

apply any delay and quality to remote and local frames2. Users
performed experiments on a Value Index VR headset tethered to an
Intel NUC11BTMi7 running a WebXR-enabled Chrome browser
on SteamVR [42]. We chose to use a tethered headset because it
allows for rendering higher complexity objects, simulating high-
quality remote renders. The baseline motion-to-photon latency of
the Index (and the ML2) is roughly 16.6ms, which we estimate as
the time it takes for a displayed frame to reflect the outcome of a
controller click, assuming 60 FPS and negligible click transmission
time. Due to the inherent limitations of local rendering latency, when
we mention that our system has Xms latency, we are referring to
Xms of additional latency introduced by the remote rendering.
Participants: We recruited 24 participants (2 female, 22 male), aged
between 18 and 51. Their experience ranged from mixed reality
researchers to VR gamers to complete beginners. Those who had
never worn a headset before were given a short primer on how to
wear the headset and operate the controllers.
Experiment: Each user experienced induced latencies from 0 to
140ms at intervals of 20ms, in an order determined by a balanced
Latin square. This range aligns closely with the latencies we ob-
served in the actual system across most devices (see Figure 11).
Before beginning, participants were shown the system with 0ms
of additional latency and told that this trial shows the ideal system.
They were allowed to perform the task any number of times as prac-
tice before beginning the trials. Including the trial at 0ms, a total of
eight trials were conducted. Before each trial, the participants were
asked to pay attention to “visual smearing” and controller delay. At
the end of a trial, participants were asked a questionnaire related
to the notability of ATW artifacts and latency, with their responses
being a ranking from 1-7. These questions are listed below:

1. How noticeable was the visual artifacts on the side of the
screen? (7 being very noticeable)

2. How likely would you use a system with such visual artifacts?
(7 being you would definitely use again)

3. How would you rate the visual experience compared to the
ideal system? (7 being nearly identical)

4. How noticeable was the lag when using the controllers to pick
up and move the sword? (7 being very noticeable)

5. How likely would you use a system with such a lag? (7 being
you would definitely use again)

6. How would you rate the interaction responsiveness of the sys-
tem compared to the ideal system? (7 being nearly identical)

2https://github.com/EdwardLu2018/

renderfusion-playground

https://github.com/EdwardLu2018/renderfusion-playground
https://github.com/EdwardLu2018/renderfusion-playground

0 2 4 6 8 10
Avg. Execution Time (ms)

ML2

Mac M1

Valve Index
(NUC11)

Misc. Overhead
Local Rendering
Composition

Figure 10: Execution time of RenderFusion on various platforms.

0 25 50 75 100 125 150 175
RTT (ms)

ML2

Mac M1

Valve Index
(NUC11)

mean
median

Figure 11: RTT of remote rendering on various platforms.

Task: Participants were asked to stay within our 5m×5m lab space.
The VR environment is the same as that in Figure 4, with a high
polycount castle as the background with a variety of low polycount
objects with menu bars and instructions. Virtual 3D models of the
Index controllers were placed in VR in the environment, alongside
white lasers projecting from them to aim and pick up objects. The
controller inputs (trigger clicks and pose changes) were artificially
delayed according to the induced latency of the trial. Our simula-
tion environment is open-sourced and we encourage future work to
further explore the effects of ATW and controller delay on QoE.

During each trial, participants were asked to match the orientation
of two swords: one transparent sword at a fixed target location
and one draggable non-transparent sword, which would respawn
randomly around the user when a match was achieved, sometimes
causing participants to turn around and experience ATW smears.
Our decision to use swords was deliberate; swords are thin and can
be difficult to pick up with point-and-click VR controllers. Dragging
the sword requires carefully aiming the laser at the object, holding
the controller trigger, and moving the controller, which can become
increasingly difficult to do at high speeds when latency increases
and visual smearing caused by ATW becomes worse. Users were
asked to repeat the task as many times as they could within 60s.

Results: Since the task is fairly repetitive, users naturally became
better at the task regardless of latency, so we ignore the total number
of sword placements in the discussion of the results.

Figure 9 shows the results. Note that for Q1 and Q4, lower rank-
ings indicate more positive results, whereas for the other questions,
higher rankings correspond to more positive results. Since the rank-
ings are a function of human perception, our data was modeled as
a continuous psychometric function of latency. From the plots, we
see that rankings become less positive as latency increases. ATW
artifacts seem to have more importance to a user’s overall experience
than controller delay, given the steeper decline of the fitted functions.

To assess the perceptible latency relative to 20ms, we conducted
a binomial test on the relative rankings for each question. To handle
ties, we include half the number of ties for both positive and negative
observations. We did not compare with 0ms, since we don’t expect
real-world network latencies to ever be 0ms. For each question,
we report the latency closest to 20ms where there was a significant
difference in user rankings (p < 0.05). For Q1, that latency was
60ms, Q2: 100ms, Q3: 100ms, Q4: 120ms, Q5: 120ms, Q6: 120ms.
We calculate the average of these latencies to determine a valid
threshold for l′t (the minimum latency until ATW smearing artifacts
are noticeable) and lt (the minimum latency until object interaction
delay is noticeable). Q1, Q2, and Q3 correspond to l′t , so the cutoff
is 86ms. Q4, Q5, and Q6 correspond to lt , so the cutoff is 120ms.
Again, note that these values represent additional latency introduced
by remote rendering, and are added to the baseline local latency to
form the total motion-to-photon latency for remote rendering.

6 EVALUATION

The environment we used for our evaluations in this section is shown
in Figure 1 and our demo video. We asked users to stay within our
5m×5m lab space. In VR, users see a virtual photogrammetry scan
of the physical lab with several 3D objects of varying complexi-
ties (ranging from 12 to 20M triangles, some having multiple 4K
textures). In AR, the background model is hidden, showing the
real-world lab instead. When all objects are locally rendered at their
highest resolution, this scene is unable to load on a web browser
without halting on any mobile headset we tried (ML2, Quest Pro,
etc.). When all objects are locally rendered at reduced resolution,
then the scene loads and runs at 60 FPS on all devices we tried, at
the cost of quality. The environment contains three objects that are
draggable by clicking and aiming with a controller and one object
that changes color when clicked on. The remote server was run on a
Linux workstation with an RTX 4090 running an NVENC H.264 en-
coder for remote frames. WebRTC video size was set to 3840×1080
pixels (two stitched 1080p images for RGB and depth). The local
and remote machines were connected to the same LAN. We ran
our dynamic scene partitioning algorithm on the remote server, en-
suring minimal overhead on the client. However, our algorithm is
lightweight and can be executed on the client if necessary.

6.1 System Overhead and Round Trip Time
In Figure 10, we show benchmarks of rendering times on a variety of
platforms used in our user studies. In RenderFusion, the client does
quick calculations of A(o) (the solid angle subtended by an object,
used in the decision-maker), device frame rate, and network statistics,
and streams this data to the remote server. In the figure, Misc.
Overhead refers to the total execution time of these calculations.
Local Rendering refers to the time it takes to render a local frame.
Composition is the total time it takes to read the incoming remote
frame, perform ATW, and composite it with the local frame.

We see that for this particular scene, Composition incurs a larger
overhead than rendering the local objects, but the total execution
time for all devices remains under 8.3ms. This means that despite
the additional processing, RenderFusion can achieve at most 120
FPS on all devices we tested, though most browsers cap it at 60 FPS.

We also show the round trip time (RTT) of various devices when
communicating with the remote server in Figure 11. RTT is defined
as the total time it takes for a client to send the server its pose and
receive the associated rendered frame. It includes network latency,
server video encoding time, and client decoding time. Note we
handle remote frames asynchronously as they arrive, so high RTTs
do not necessarily impact frame rate.

6.2 Perceptual Evaluation
We assessed the effectiveness of RenderFusion by performing a per-
ceptual user study with 15 participants (4 female, 11 male) aged 18
to 45 who had varying experiences with XR. We evaluated Render-
Fusion in both VR (using the Valve Index) and AR (using the ML2).
We conducted preference tests where users compared the rendering
quality and latency of our system with two alternatives: one where
the rendering was done locally at a lower resolution and another
where it was done remotely at a higher resolution. Users were also
offered the choice to indicate that the two systems being compared
were “similar” if they could not discern any differences between
them. Since some state-of-the-art systems like Furion or remote
IBR techniques lack open-source implementations for web browsers,
our comparison was limited to pure local and remote rendering sys-
tems. To assess RenderFusion’s performance in challenging network
conditions, we used the Linux tc tool to artificially add a 100ms
delay to the network. Each trial allowed participants to interact
with objects, evaluating overall graphical quality and interaction
latency with RenderFusion enabled and disabled. We maintained
anonymity for the current rendering methods and network condition

Graphical
Quality

Interaction
Latency

Overall
Preference

0%

25%

50%

75%

100%

40%

100% 93%

47%

0% 0%
13%

0% 7%

Typical Network
Ours Remote Similar

Graphical
Quality

Interaction
Latency

Overall
Preference

60%

100% 100%

27%

0% 0%
13%

0% 0%

100ms Additional Network Delay
Ours Remote Similar

(a) VR user preferences when shown RenderFusion (Ours) vs Remote Rendering.

Graphical
Quality

Interaction
Latency

Overall
Preference

0%

25%

50%

75%

100% 100%

0%

87%

0% 0% 7%0%

100%

7%

Typical Network
Ours Local Similar

Graphical
Quality

Interaction
Latency

Overall
Preference

87%

20%

80%

13% 7%
20%

0%

73%

0%

100ms Additional Network Delay
Ours Local Similar

(b) VR user preferences when shown RenderFusion (Ours) vs Local Rendering.

Graphical
Quality

Interaction
Latency

Overall
Preference

0%

25%

50%

75%

100%

27%

100% 100%

0% 0% 0%

73%

0% 0%

Typical Network
Ours Remote Similar

Graphical
Quality

Interaction
Latency

Overall
Preference

27%

100% 100%

7% 0% 0%

67%

0% 0%

100ms Additional Network Delay
Ours Remote Similar

(c) AR user preferences when shown RenderFusion (Ours) vs Remote Rendering.

Graphical
Quality

Interaction
Latency

Overall
Preference

0%

25%

50%

75%

100% 87%

20%

93%

7% 13% 7%7%

67%

0%

Typical Network
Ours Local Similar

Graphical
Quality

Interaction
Latency

Overall
Preference

100%

0%

87%

0%

27%

7%0%

73%

7%

100ms Additional Network Delay
Ours Local Similar

(d) AR user preferences when shown RenderFusion (Ours) vs Local Rendering.

Figure 12: Results of perceptual user study. Height of bars indicates the percentage of users who preferred the associated schema, or could not
tell the difference between the two schemas.

being tested and exposed each user to all operating points, in an
order determined by a balanced Latin square.

The VR results can be seen in Figures 12a and 12b. Notably,
under typical networks, participants did not notice a difference in
graphical quality in VR between remote rendering and RenderFu-
sion. However, with 100ms delays, the impact of ATW artifacts
in VR became more prominent, possibly causing users to prefer
the visuals of RenderFusion’s low polycount background with no
smearing over a high-quality remote background with smearing. Fur-
thermore, users perceived RenderFusion’s interaction latency to be
superior to that of remote rendering under both network conditions.
When comparing RenderFusion to local rendering, users favored
RenderFusion’s rendering quality and could not tell a difference in
latencies between the two rendering schemes. Lastly, the figures
illustrate that the majority of VR users preferred RenderFusion over
remote and local rendering overall.

The AR results are shown in Figures 12c and 12d. Participants
in AR did not seem to notice any graphical differences between
remote and RenderFusion, since the low-quality, virtual background
is no longer visible in AR, but replaced by the real-world lab through
passthrough. Similar to in VR, users preferred RenderFusion’s lower
latency interactions when compared to remote. Users felt that Ren-
derFusion’s quality surpassed that of local rendering, likely due to
RenderFusion’s higher resolution, remotely rendered foreground
objects. They did not notice any latency difference between Ren-
derFusion and local. Like in VR, users in AR exhibited an overall
preference for RenderFusion compared to both remote and local.

7 DISCUSSION AND LIMITATIONS

One limitation of RenderFusion, due to being a WebXR client, is the
lack of advanced lighting effects. Ideally, object swapping should
appear seamless, but moving an object from a non-physically based
local renderer to a physically based remote renderer, and vice versa,
for instance, can be jarring. Re-lighting a local object can become
complicated, depending on the polycount and number of lights in
the remote scene. To avoid this, we ensured that lighting on both We-
bGL and Unity was approximately matched and that there were no
reflective materials or shadows. As a result, this limits the rendering
capabilities of the remote rendering engine. An avenue for future
work could be to explore local-remote composition techniques that
take into account lighting, reflections, shadows, etc. Nevertheless, it
is possible to carefully design scenes where complexly-lit remote
content would seamlessly blend with simply-lit local content. For in-

stance, if all a user needs is a local UI element that controls advanced
remote content, that is definitely possible with RenderFusion.

Our system also does not have a solution for highly interactive,
high-resolution objects (currently, they are shifted to remote). We
assume interactable objects are mostly low polycount or have a
low polycount variant, but certain applications—e.g., grabbing (as
opposed to just viewing) high-resolution medical imaging data—
have models that cannot be low polycount forever. For these, we
recommend swapping these objects to be locally rendered at a low
resolution when being manipulated and then swapping them back to
being remotely rendered when they are finished being manipulated.

Targeting web browsers limits us to only monitoring device met-
rics obtainable through JavaScript APIs. Looking ahead, we envision
a native RenderFusion implementation that can monitor CPU and
GPU usage, optimizing for power consumption as well.

Currently, RenderFusion can only support a single user per Unity
instance since objects need to be made invisible in the scene when
swapped from remote to local. With a static configuration of objects,
RenderFusion is only limited in terms of clients by the rendering
capacity of the server and the network bandwidth. It may be possible
to run Unity in a headless mode where tens of instances can be
executed per server depending on GPU requirements.

8 CONCLUSION

In this paper, we present RenderFusion, a system that dynamically
interchanges a 3D object’s rendering medium to optimize for user
QoE and device frame rate. We describe models for per-object
benefits towards good QoE and show that we can optimize for these
benefits to intelligently determine which object should be rendered
where at runtime. Additionally, we perform user studies to model the
effect of ATW reprojection artifacts and controller delay on remote
rendering QoE. Using our models, we implement an open-source
web implementation, able to run on stock web browsers and WebXR-
supported devices. We show that, when compared to traditional,
locally rendered systems and fully remotely rendered systems, users
prefer the mixed rendering option RenderFusion provides.

ACKNOWLEDGMENTS

This work was supported in part by the NSF under Grant No. CNS-
1956095, the NSF Graduate Research Fellowship under Grant No.
DGE-2140739, and Bosch Research. Any opinion, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Gaminganywhere. https://gaminganywhere.org/. Accessed:
June 10, 2023.

[2] Geforce now. https://www.nvidia.com/en-us/geforce-now/.
Accessed: June 10, 2023.

[3] ffmpeg, 2023. Online. Accessed: April 2023.
[4] ARENA. Arena unity library. https://github.com/arenaxr/
arena-unity/. Online. Accessed: March 2023.

[5] BabylonJS. Babylon.js. https://www.babylonjs.com/. Online.
Accessed: June 2023.

[6] P. Bao and D. Gourlay. A framework for remote rendering of 3-d
scenes on limited mobile devices. IEEE Transactions on Multimedia,
8(2):382–389, 2006.

[7] P. Bao, D. Gourlay, and Y. Li. Deep compression of remotely rendered
views. IEEE transactions on multimedia, 8(3):444–456, 2006.

[8] A. Boukerche and R. W. N. Pazzi. Remote rendering and streaming of
progressive panoramas for mobile devices. In Proceedings of the 14th
ACM international conference on Multimedia, pp. 691–694, 2006.

[9] C.-F. Chang and S.-H. Ger. Enhancing 3d graphics on mobile devices by
image-based rendering. In IEEE Pacific Rim Conference on Multimedia,
pp. 1105–1111, 2002.

[10] S. E. Chen. Quicktime vr: An image-based approach to virtual envi-
ronment navigation. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pp. 29–38, 1995.

[11] B. O. Community. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[12] B. O. Community. Decimate modifier, 2023. Online. Accessed: April
2023.

[13] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu,
and M. Musuvathi. Kahawai: High-quality mobile gaming using gpu
offload. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’15, p. 121–135.
Association for Computing Machinery, New York, NY, USA, 2015.
doi: 10.1145/2742647.2742657

[14] K. N. Diego Marcos, Don McCurdy. A-frame framework (v1.4.2),
April 2023.

[15] Epic Games. Pixel streaming in unreal engine.
https://docs.unrealengine.com/5.2/en-US/

pixel-streaming-in-unreal-engine/, May 2023.
[16] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for

interactive frame rates during visualization of complex virtual environ-
ments. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pp. 247–254, 1993.

[17] S. N. Gunkel, R. Hindriks, K. M. E. Assal, H. M. Stokking, S. Dijkstra-
Soudarissanane, F. t. Haar, and O. Niamut. Vrcomm: an end-to-end
web system for real-time photorealistic social vr communication. In
Proceedings of the 12th ACM Multimedia Systems Conference, pp.
65–79, 2021.

[18] H. Kato, T. Kobayashi, M. Sugano, and S. Naito. Split rendering of
the transparent channel for cloud ar. In 2021 IEEE 23rd International
Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE,
2021.

[19] Khronos Group. Webgl 2.0 specification. https://www.khronos.
org/registry/webgl/specs/latest/2.0/. Online. Accessed:
April 2023.

[20] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices. In
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, MobiCom ’17, p. 409–421. Association
for Computing Machinery, New York, NY, USA, 2017. doi: 10.1145/
3117811.3117815

[21] F. Lamberti and A. Sanna. A streaming-based solution for remote
visualization of 3d graphics on mobile devices. IEEE transactions on
visualization and computer graphics, 13(2):247–260, 2007.

[22] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wol-
man, and J. Flinn. Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications,
and Services, pp. 151–165, 2015.

[23] M. Levoy. Polygon-assisted jpeg and mpeg compression of synthetic
images. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pp. 21–28, 1995.

[24] Y. Lu, S. Li, and H. Shen. Virtualized screen: A third element for
cloud–mobile convergence. Ieee Multimedia, 18(2):4–11, 2011.

[25] Magic Leap. Magic leap remote rendering. https:

//developer-docs.magicleap.cloud/docs/guides/

remote-rendering, May 2023.
[26] J. Meng, S. Paul, and Y. C. Hu. Coterie: Exploiting frame similarity

to enable high-quality multiplayer vr on commodity mobile devices.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, p. 923–937. Association for Computing Machinery, New
York, NY, USA, 2020. doi: 10.1145/3373376.3378516

[27] Mozilla. Mozilla hubs. https://hubs.mozilla.com/. Online.
Accessed: June 2023.

[28] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown. An
introduction to decision tree modeling. Journal of Chemometrics: A
Journal of the Chemometrics Society, 18(6):275–285, 2004.

[29] Y. Noimark and D. Cohen-Or. Streaming scenes to mpeg-4 video-
enabled devices. IEEE Computer Graphics and Applications, 23(1):58–
64, 2003.

[30] J. Park, P. A. Chou, and J.-N. Hwang. Volumetric media streaming for
augmented reality. In 2018 IEEE Global Communications Conference
(GLOBECOM), p. 1–6. IEEE Press, 2018. doi: 10.1109/GLOCOM.
2018.8647537

[31] F. Pece, J. Kautz, and T. Weyrich. Adapting standard video codecs for
depth streaming. In EGVE/EuroVR, pp. 59–66, 2011.

[32] N. Pereira, A. Rowe, M. W. Farb, I. Liang, E. Lu, and E. Riebling.
Arena: The augmented reality edge networking architecture. In 2021
IEEE International Symposium on Mixed and Augmented Reality (IS-
MAR), pp. 479–488, 2021. doi: 10.1109/ISMAR52148.2021.00065

[33] B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, and H.-P. Seidel.
Proxy-guided Image-based Rendering for Mobile Devices. Computer
Graphics Forum, 2016.

[34] Three.js Developers. Three.js Library. https://threejs.org/.
Online. Accessed: May 2021.

[35] S. Shi, V. Gupta, M. Hwang, and R. Jana. Mobile vr on edge cloud:
A latency-driven design. In Proceedings of the 10th ACM Multimedia
Systems Conference, MMSys ’19, p. 222–231. Association for Com-
puting Machinery, New York, NY, USA, 2019. doi: 10.1145/3304109.
3306217

[36] S. Shi, K. Nahrstedt, and R. Campbell. A real-time remote render-
ing system for interactive mobile graphics. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
8(3s):1–20, 2012.

[37] L. Sun, H. A. Osman, and J. Lang. A hybrid remote rendering method
for mobile applications. Multimedia Tools and Applications, 79:3333 –
3358, 2019.

[38] E. Teler and D. Lischinski. Streaming of complex 3d scenes for remote
walkthroughs. In Computer Graphics Forum, vol. 20, pp. 17–25. Wiley
Online Library, 2001.

[39] Unity Technologies. Unity, 2005. Online. Accessed: April 2023.
[40] Unity Technologies. Unity render streaming. https://docs.

unity3d.com/Packages/com.unity.renderstreaming@3.1/

manual/index.html, May 2023.
[41] Unity Technologies. Webrtc for unity framework. https:

//docs.unity3d.com/Packages/com.unity.webrtc@3.0/

manual/index.html, May 2023.
[42] Valve Corporation. Steamvr. https://store.steampowered.com/

app/250820/SteamVR, 2014.
[43] J. M. P. van Waveren. The asynchronous time warp for virtual reality

on consumer hardware. In Proceedings of the 22nd ACM Conference
on Virtual Reality Software and Technology, VRST ’16, p. 37–46.
Association for Computing Machinery, New York, NY, USA, 2016.
doi: 10.1145/2993369.2993375

[44] W3C. Webxr device api. Online. Accessed: April 2023.
[45] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image

quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

https://gaminganywhere.org/
https://www.nvidia.com/en-us/geforce-now/
https://github.com/arenaxr/arena-unity/
https://github.com/arenaxr/arena-unity/
https://www.babylonjs.com/
https://docs.unrealengine.com/5.2/en-US/pixel-streaming-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/pixel-streaming-in-unreal-engine/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://developer-docs.magicleap.cloud/docs/guides/remote-rendering
https://developer-docs.magicleap.cloud/docs/guides/remote-rendering
https://developer-docs.magicleap.cloud/docs/guides/remote-rendering
https://hubs.mozilla.com/
https://threejs.org/
https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.webrtc@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.webrtc@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.webrtc@3.0/manual/index.html
https://store.steampowered.com/app/250820/SteamVR
https://store.steampowered.com/app/250820/SteamVR

[46] WebRTC Working Group. Webrtc, 2011. Online. Accessed: April
2023.

	Introduction
	Related Work
	System Overview
	Operational Overview
	Implementation

	A Model for Dynamic Scene Partitioning
	Maximum Local Polygon Count
	User Benefit Function
	Interactivity BI
	Accuracy of Representation BA
	Latency Distortion BL

	Latency Threshold User Study
	Evaluation
	System Overhead and Round Trip Time
	Perceptual Evaluation

	Discussion and Limitations
	Conclusion

