
Timeline: An Operating System Abstraction for
Time-Aware Applications

Fatima M. Anwar ∗‡, Sandeep D’souza †‡, Andrew Symington ∗‡, Adwait Dongare †‡,
Ragunathan (Raj) Rajkumar †, Anthony Rowe †, Mani B. Srivastava ∗

∗Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA
†Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

Abstract—Having a shared and accurate sense of time is critical
to distributed Cyber-Physical Systems (CPS) and the Internet of
Things (IoT). Thanks to decades of research in clock technologies
and synchronization protocols, it is now possible to measure and
synchronize time across distributed systems with unprecedented
accuracy. However, applications have not benefited to the same
extent due to limitations of the system services that help manage
time, and hardware-OS and OS-application interfaces through
which timing information flows to the application. Due to the
importance of time awareness in a broad range of emerging
applications, running on commodity platforms and operating
systems, it is imperative to rethink how time is handled across
the system stack. We advocate the adoption of a holistic notion of
Quality of Time (QoT) that captures metrics such as resolution,
accuracy, and stability. Building on this notion we propose an
architecture in which the local perception of time is a control-
lable operating system primitive with observable uncertainty,
and where time synchronization balances applications’ timing
demands with system resources such as energy and bandwidth.
Our architecture features an expressive application programming
interface that is centered around the abstraction of a timeline
– a virtual temporal coordinate frame that is defined by an
application to provide its components with a shared sense of time,
with a desired accuracy and resolution. The timeline abstraction
enables developers to easily write applications whose activities are
choreographed across time and space. Leveraging open source
hardware and software components, we have implemented an
initial Linux realization of the proposed timeline-driven QoT
stack on a standard embedded computing platform. Results from
its evaluation are also presented.

I. INTRODUCTION

Maintaining a shared notion of time is critical to the

performance of many distributed and cyber-physical systems

such as sensor networks, swarm robotics [1], high frequency

trading [2], tele-surgery [3], Big Science [4] and global-scale

databases [5]. Technologies such as GPS, Precision Time Pro-

tocol [6] and chip-scale atomic clocks have made it possible to

provide systems with accurate, stable, and a common notion

of time across a network. However, other technology trends

have made it harder for applications to benefit from these

advances in timing technologies. For example, asymmetric

medium delays degrade time transfer [7], imperfect oscillators

cause timing jitter [8], multi-core systems have timing incon-

sistencies [9], and abstractions like virtual machines introduce

greater timing uncertainty [10]. In multiple domains ranging

‡Equally contributing authors

���

�����	
�������

�����������

	�������	

���

'��(�)��

��)���

����*

���(�

)���*��+

��,����
'��

Fig. 1: Coordinating subgroups in the Internet of Things (IoT)

require access to a shared sense of time

from database consistency [5] to interactive cloud gaming [11],

the knowledge of timing uncertainty has proven to be useful.

However, application-level visibility into timing uncertainty

remains largely unexplored in current systems.
We introduce the notion of Quality of Time (QoT) as the

end-to-end uncertainty in time delivered to a user by the

system. Our goal is to create a QoT architecture which reacts

to application timing demands, and exposes timing uncertainty

to applications in an easy-to-use, secure and scalable way.

Our architecture treats time as a controllable, verifiable and

observable primitive thus delivering the requested QoT to

applications.
Technologies such as the Internet of Things drive us towards

a world where a large number of end-point and intermediary

devices share, store and manipulate real-time data. This has led

to the emergence of time-aware applications with extremely

diverse timing requirements. The timing precision and accu-

racy requirements of applications in one domain of connected

systems may be substantially different for others, and may also

change over time. Figure 1 illustrates this diversity by showing

a distributed system with many different device types and

communication channels forming timing subgroups (shown

in different colors). These devices are often heterogeneous

and have different resource constraints. Traditionally, time

synchronization has always been best-effort, agnostic to ap-

plication requirements and wasteful of system resources.
We advocate for factored coordination where subsets of

coordinating nodes synchronize their clocks to only the desired

accuracy. To achieve this objective, we propose the timeline
abstraction for managing and synchronizing time in computing

systems. Time-aware applications express their willingness to

share common time by binding to a virtual timeline, rather

than to a specific device or time coordinate system. Each

2016 IEEE Real-Time Systems Symposium

1

application specifies an accuracy (the deviation an application

is willing to tolerate from the timeline) and a resolution

(an upper bound on the minimum discrete time tick) with

which it binds to the timeline). The key advantage of this

approach is that a device can support multiple timelines,

with different and time-varying accuracy requirements. Thus

enabling the paradigm of factored coordination. Furthermore,

timelines provide scalability, robustness to node failures as

well as dynamic binding and unbinding.

The overview of a timeline-driven QoT architecture is

shown in Figure 2. The architecture closes the loop between

the timing requirements of applications, and how well the

system is able to meet their needs by propagating timing uncer-

tainty back to the applications. It characterizes the timekeeping

hardware capabilities e.g. oscillators and timestamping mech-

anisms and exposes them as controllable and disciplinable

clocks. The system can adjust these clocks and/or switch

between them to balance application needs with the system

resources. For example, a system can switch from a high

energy rubidium oscillator to an unstable low energy quartz

crystal oscillator, from hardware timestamping to software

timestamping, from a high synchronization rate to a low rate to

balance system resources with application QoT requirements.

The primary contributions of our work are as follows:

• We propose the notion of Quality of Time based on timing

uncertainty.

• We investigate how time-aware applications and the OS

should exchange information about time and develop a

model that describes how (i) applications interact with

a shared notion of time, (ii) applications register their

timing requirements with the OS and (iii) how timing

uncertainty is conveyed from the OS to applications.

• We propose a platform-independent OS abstraction called

a timeline, and present an application programming in-

terface (API) that greatly simplifies the development of

QoT-aware choreographed applications.

• We provide an end-to-end timeline-driven QoT architec-

ture and its corresponding implementation for Linux.

• We conduct a series of micro-benchmarks to verify the

performance of our QoT architecture on a Linux-based

embedded platform, the Beaglebone Black [12].

II. RELATED WORK

The notion of time uncertainty is not new to the field of

time synchronization. NTP [13] computes a bound on time for

every timestamp sample and applies clock filtering algorithms

to filter out the false samples. However, this bound is never

exposed to applications and hence becomes invalid when a

clock adjustment is made. Google Spanner [5] utilizes the True

Time API to show how the knowledge of uncertainty in time

can be used to achieve the external consistency of transactions

in a global database. However, Spanner is a closed system and

the TrueTime API are tailored only to database transactions.

Additionally, both the TrueTime API and POSIX API do not

treat the notion of time as an application-specified requirement.

In contrast, our work seeks to provide a universal framework

������ ���	

������	�
����������

���	���	����	����

����	��
�	����	�

����
������

	
������������
���	�����������

���������
����������

�
�

����
����������

����
����������

Fig. 2: Timeline-driven Quality-of-Time Architecture

with associated timeline-based API that lets applications spec-

ify their QoT requirements, and also exposes the achieved

QoT to applications for varied uses including coordination and

adaptation.

At the programming level, time-triggered and event-

triggered computation models provide timing determinism.

The time-triggered architecture (TTA) [14] addresses issues

in real-time programming by establishing a global time-base

to specify interaction among nodes, whereas event-triggered

architectures like Ptides [15] map model time to real time,

only when systems interact with the physical world, e.g.

using sensors and actuators. PtidyOS [16] is a microkernel

that generates target specific code for the Ptides model. Our

timeline-driven QoT architecture utilizes a different paradigm.

It focuses on assisting coordinated and distributed time-aware

applications on local as well as wide area networks, through

a hardware-independent system library as well as an entire

framework built using commodity hardware and software.

Also relevant and complementary to our work is research

in time synchronization on the analytical modeling of clock

uncertainties [17], and methods to compensate for them via

approaches such as Kalman filtering [18].

III. TIMELINES

Modern operating systems generally derive their notion of

time from the highest-quality timer available on a system. For

example, in Linux, multiple virtual clocks are derived from

such a single timer. These virtual clocks all share the same

accuracy and resolution, and expose themselves to applications

in userspace via the standardized POSIX clock [19] interface.

The Linux kernel allows users to precisely schedule events on

any of these clocks notion of time by using the underlying

High Resolution Timer subsystem. However, Linux does not

expose the uncertainty in its knowledge of time to applications,

nor does it allow applications to specify or change their QoT

requirements.

Linux and other OSs allow clocks to be disciplined using

synchronization techniques such as NTP [13] and PTP [6].

These and other synchronization protocols are based on the

traditional “trickle-down time” approach (as shown in Figure

3a), where a master (statically defined or dynamically chosen)

sits on top of a timing hierarchy, restricting other nodes to

be slaves. The slave nodes measure time with respect to the

master’s time axis. Furthermore, messages are exchanged at

2

a pre-calibrated rate corresponding to the tightest accuracy

requirement in the network. Such approaches are inherently

centralized, not adaptive, and are wasteful of resources.

We introduce an alternative paradigm based on factored
coordination that abstracts away from “trickle-down time”,

and only coordinating nodes synchronize their time. To enable

adaptive time management and factored coordination, we

propose a new timing abstraction called a timeline. A timeline

is a virtual reference time base that is completely decoupled

from any specific reference device or time system. It enables

developers to easily implement coordinated applications. Ap-

plications that need to coordinate their tasks, bind to a common

timeline and synchronize their time as shown in Figure 3b. For

example, node f and g bind to Timeline 3 and synchronize

their time with each other rather than the entire network. This

enables us to escape the limitations of the traditional master-

slave synchronization paradigm and support applications that

dynamically bind and unbind from timelines as needed. As a

result, our system is distributed, enables adaptive groupings

and balances timing requirements with system resources.

A timeline’s instantaneous reference could be any node in

the network, and can be passed adaptively between nodes,

based on available resources or network conditions. For ex-

ample, multiple players in the same locality playing a virtual

reality game need not synchronize to some external server,

instead they can join a timeline and synchronize with one

another for their timing needs.

Applications define their timing requirements with respect

to a timeline, and not any specific master node. When an appli-

cation binds to a timeline, it specifies its timing requirements

in terms of an accuracy and a resolution, collectively re-

ferred to as a binding. This is shown in Figure 4. The accuracy

of a timeline is an asymmetric interval around the reference

time that determines the maximum error an application can

tolerate in its time estimate. The resolution of a timeline is the

minimum tick requirement of an application. Both accuracy

and resolution are represented by a {second, attosecond}
tuple with each attribute being a 64-bit unsigned integer.

For example, if some applications want to coordinate their

sensing tasks in the order of a millisecond, and they require

nanosecond granularity in their time ticks, they will all bind

to the same timeline with an accuracy of 1 millisecond,

{0, 1e15}, and a resolution of 1 nanosecond {0, 1e9}.
The accuracy and resolution of a timeline affect the system’s

choice of switching between different clock sources or oscil-

lators with varying frequencies and stability. High accuracy

� �

� � � 	

�� ������

� ���	��

(a) Trickle-Down Time Model

�

� �

� 	

�

��

�
���
��

��	
�

!

(b) Timeline Model

Fig. 3: Traditional v/s Timeline based synchronization models

��������

�	
����

�	
��

���������

���������
��

��

���	����	�

���	����	�

�

Fig. 4: Node 1 and 2 bind to a timeline with a desired binding

accuracy, and binding resolution. Note that accuracy is an

asymmetric interval around true time.

necessitates the use of a stable clock, whereas high resolution

requires a high-frequency clock. Clocks with greater stability

and higher resolution generally consume more energy. This

abstraction provides an opportunity to balance application

needs (accuracy and resolution) with resources. Motivated by

the timeline abstraction, we next describe our QoT architecture

and its accompanying system stack.

IV. QOT ARCHITECTURE

The QoT architecture uses the timeline abstraction to make

uncertainty in time observable and controllable across a broad

range of QoT-Aware applications. The QoT architecture is

comprised of three distinct components: (i) Clocks, (ii) System
Services, and (iii) QoT Core. In this section, we describe the

individual components of the QoT architecture (as shown in

Figure 2), and show how they interact with each other.

A. Clocks

The QoT architecture exposes timekeeping hardware as

Clocks, which play a major role in delivering knowledge of

time with associated QoT to the applications. Based on the

functionality provided, we categorize them into two types:

Core Clocks drive all the functionality of the stack. All

timelines derive their reference time as a projection from a

core clock. For a clock to qualify as a core clock, it must

provide (i) the ability to read a strictly-monotonic counter,

which cannot be altered by any system process, (ii) the

ability to schedule events along a timeline reference, and (iii)

provide the hardware resolution and uncertainty associated

with reading the clock. Optionally, a core clock may also

expose interfaces to timestamp and generate external events.

Network Interface Clocks (NICs) assist in disciplining the

local time to some global reference time. Only those network

interfaces which have the ability to accurately timestamp

network packet transmission and reception, at the physical

layer, are exposed as NICs. This enables precise calculation

of the offset between two clocks, and the propagation delay

associated with a medium. A NIC is similar to a core clock in

providing the ability to read time, and optionally provide I/O

functionality for precisely timestamping an event, or generat-

ing a very deterministic pulse in the future. A NIC, however,

differs from a core clock in that: (i) it is not necessarily

monotonic, (ii) it may be disciplinable and (iii) it does not

3

provide the ability to generate interrupts. Hence, it cannot be

used to accurately schedule user-level application threads.

Our architecture supports these two clock categories, and

provides mechanisms to synchronize them with each other.

While every node must contain a core clock, it is not necessary

for a node to contain a NIC.

B. System Services

System services are user-space processes responsible for

distributing timeline metadata, quantifying timing uncertain-

ties, and synchronizing time within and across nodes.

1) Data Distribution Service (DDS): DDS [20] is a net-

working middleware service which simplifies networking pro-

gramming for our architecture. It provides a publish-subscribe

framework, which collects all the timeline requirements and

gives participating nodes the ability to decide the reference

time in a decentralized fashion.

2) Synchronization Service: Modern OSs expose only a

single clock and synchronize it on a best-effort basis by being

oblivious to the application requirements. In contrast, our

timeline-driven architecture supports multiple timelines on a

single node, each having its own notion of time. In Figure

3b, node c is part of both Timelines 1 and 2. Hence, it runs

two parallel instances of the synchronization service for two

different timelines, each achieving only the desired accuracy.

A timeline represents a mapping from a local core time to

a global reference time. To generate this mapping we require

a two-step synchronization procedure as shown in Figure 5.

In the first step, we synchronize the NIC to the core clock

on a single node. Once the NIC is aligned to core time all

timestamps provided by a NIC can be mapped to core time.

In the second step, we perform inter-node synchronization.

NICs exchange synchronization packets across nodes and

timestamp them in core time, thus generating a timeline

mapping using a first-order linear model, tM = t
′
M + (1 +

ppb/109)∗(tc−t
′
c), where tM is the current timeline mapping

that is derived from previous mapping t
′
M , frequency bias

ppb (parts per billion) and current and previous core time,

tc and t
′
c respectively. In Figure 5, multiple timelines are

maintained as logical mappings and they provide the ability

to synchronize with multiple nodes with totally different

accuracy requirements, thus enabling the factored coordination

paradigm. The Linux PTP Project [21] also runs two-step

synchronization. It first aligns NICs across different nodes, and

then it synchronizes the system clock to the NIC. However,

this approach does not scale to multiple timelines. Hence, we

keep the core clock strictly monotonic and maintain multiple

timelines as logical mappings from the core clock.

Synchronization Uncertainty: Time synchronization per-

formance is limited by various stochastic delays in the sys-

tem: Propagation delay, Transmit delay, Receive delay and

Residency delay. These delays introduce uncertainty in our

time measurements. Using a statistical approach we can cal-

culate the upper bound on synchronization uncertainty as,

EU = {(ppbm − ppb+Δppb)/109} ∗ (tc − t
′
c) + (em +Δe),

and the lower bound on uncertainty, EL = {(ppb − ppbm +

���������� �����������"��
#�"$

�"��
#�"$

����������� � �
����������

����������
#�%$

������������� �

����������� �
���	
#��$

���	
#��$

����������� � �
����������

����������
#�%$

! !�

Fig. 5: End-to-end time synchronization using timelines. (1)

NIC is disciplined by the core clock on a single node (tN =
tC). (2) NICs on two nodes exchange packets and timestamp

them in core time. (3) The timestamps are used to work out

the Core – Core mapping (tM) and are stored in the form of

a logical timeline mapping.

Δppb)/109} ∗ (tc − t
′
c) + (em − Δe), where ppbm is the

mean bias, Δppb is the standard deviation of bias, em is

the mean offset and Δe is the standard deviation of offset.

Instead of using only local statistical information to calculate

the bounds, network wide information using a Kalman filter

can also be applied to calculate tighter uncertainty bounds.

Whichever model is used for the uncertainty bound calcula-

tion, a global time estimate at any point in time should be

tM − EL < tM < tM + EU .

3) System Uncertainty Estimation Service: Every times-

tamp read by a user application contains an uncertainty value

introduced by the OS, which is a function of factors like

the system load and CPU operating frequency. This service

continuously updates these uncertainty statistics and passes it

to the the stack. These uncertainty values are appended to

every timestamp as an uncertainty bound.

C. QoT Core

The QoT Core (also referred to as the core) acts as a bridge

between all the stack components, and the host OS. The core

performs a range of functionality:

Timeline Management: To satisfy different QoT require-

ments, the core keeps track of different timelines and their

associated bindings, and handles their creation and destruction.

It also provides an interface for applications to bind to a

timeline and specify their QoT requirements.

Clock Management: The core provides an interface for

different hardware clocks to register with it, and exposes an

interface for a privileged user to choose and switch between

these different clocks. The core utilizes this chosen clock to

maintain a monotonic sense of time, referred to as core time.

The key idea is that a privileged daemon should be able to

automatically select the core clock in a manner that balances

clock stability/resolution with energy consumption. The core

also maintains the projection parameters from the core clock

to each timeline reference, and provides an interface for the

synchronization service to manipulate them.

Event Scheduling: Scheduling an application on a global

notion of time is important to execute distributed tasks syn-

chronously. Hence, the core provides applications the ability to

synchronously schedule events based on a timeline reference.

The core provides this functionality in the form of timed waits
by interfacing with the OS scheduler. Timed waits provide

threads the ability to sleep for a relative duration or until an

absolute time. The scheduling subsystem is also designed to

4

"	������
���	����	�
�����

��
���	

�&'

�&�
�����	�	

�&�
�����	�	�

�������������(����)�����*�	������	

+	��	������	

����������������������������	����	

���	����	
���

!��"#$!�����(����)�����
	���	����	����

!��"#$! ����(����)�����!
	���	����	����

��
���	

�(�	�,-��

���	���	�"
��������������

����
�����������

*�	�
����������

���	���	�"

����	��
*��	��������
.���������

����

/��

���	� .�	���
���	��

�00 ���(�� 1���

������	�����������

�'"�
�
���
����

�'�2�
��������

�(�	�,���

���	��(�-�	�

���	���	�3

���	���	�3
��������������

���	����	�
�'"�

�
���
����

�����
�������������

������
�	�	�����

�'�2�
����������
�����

�����������
������

���� ���� ����

��(��
���	�

���	�
���	�

��������
���	�
�����

/��

����	�
��-��	�

���	�
��-��	�

��	��������	��

%����%�����&�����	��'����(%%)

Fig. 6: The QoT Stack for Linux

dynamically compensate for any synchronization changes to a

timeline reference.

QoT Propagation: One of the goals of the QoT stack is

to expose the timing uncertainty to applications, so that the

framework gives the current estimate of time, along with the

uncertainty associated with it. As shown in Figure 2, the core

propagates the uncertainties from different stack components,

appending uncertainty to every time estimate. It also provides

interfaces for the system services and the hardware clock to

expose/update these uncertainty values.

V. QOT STACK FOR LINUX

To demonstrate the possibility of our QoT architecture, we

have developed a timeline-driven QoT Stack for Linux. Given

the variety of supported software and hardware, Linux is an

ideal candidate to prototype a cross-platform timeline abstrac-

tion. Since, every system has its unique timing limitations, we

attempt to quantify and work with them, instead of forcing the

use of a particular platform.A complete architectural diagram

of our QoT Stack for Linux appears in Figure 6. We adopt a

modular design to avoid requiring changes to the Linux kernel,

instead relying on loadable kernel modules and userspace

daemons to make Linux QoT-aware.

A. Timelines in Linux

Our Linux-based prototype implements a timeline as a

/dev/timelineX character device, where X corresponds

to a unique identifier. The character device exposes the time-
line reference as a POSIX clock [19] to userspace, which is

disciplinable by a synchronization service. The timeline char-

acter device also exposes an Input-Output Control (ioctl)

interface, for applications to bind/unbind to a timeline, spec-

ify/update their QoT requirements, and read the timeline’s

reference time with an uncertainty estimate. In the Linux

kernel, timelines are stored and ordered on a red-black tree

which provides an O(log(N)) look-up time with a string

identifier. For details on timelines and bindings data structures,

please refer to Appendix A.

B. Clocks

Clocks (shown as Network Interface Clock and Platform
Core Clock in Figure 6) are managed via drivers and use

the Linux ptp_clock libraries to abstract away from

architecture-specific sources. This abstraction provides the

ability to enable or disable the clock source, configure timer

pins (for timestamping inputs or pulse-width modulated out-

puts) and discipline the external clock (either in hardware

or software). Pins are configured through the hardware timer

subsystem using .enable and .verify function callbacks.

The time can be observed or set through .gettime64 and

.settime64 function callbacks. The kernel drivers imple-

ment the correct function callbacks, and register the existence

of the precise clock through ptp_clock_register, with

the kernel’s PTP subsystem. In PTP terminology, these clocks

are referred to as Precise Hardware Clocks (PHC), which

is any clock or network interface that supports hardware

timestamping and GPIO capabilities. These clocks are exposed

to userspace as /dev/ptpX character devices and they register

their capabilities, uncertainties, resolution and function hooks

with the core module.

C. System Services

Data Distribution Service: OpenSplice [20] is used as the

data distribution service in our stack. It disseminates timeline

metadata across the entire network. Once every node has a

complete picture of timelines on all nodes, they compete for

providing the reference time and in our baseline implementa-

tion, the node with the highest accuracy requirement is chosen

5

phc2phc
(highest accuracy)

phc2sys
(medium accuracy)

sys2sys
(low accuracy)

Start of Frame
Delimiter interrupt pin

GPIO capabilities Software timestamping

Y

Y

Y

N

NN

N

Hardware
timestamping

Fig. 7: Decision tree for choosing a time synchronization

service based on hardware capabilities

to provide the reference time to the timeline’s subgroup. The

synchronization rate is determined by the highest accuracy

requirement in the network. Hence, the node which has the

highest requirement in its timing subgroup can become a

master and push packets with a rate corresponding to its

accuracy requirement.

Synchronization Service: The synchronization service op-

erates in userspace and comprises of Core-NIC Synchroniza-
tion and Timeline Synchronization daemons, as shown in Fig-

ure 6. The Timeline Synchronization daemon is implemented

by patching the Linux PTP Project [21]. It calculates clock

discipline parameters, and disciplines the /dev/timelineX
character devices through the .settime and .adjtime
POSIX clock APIs. The mappings are stored in the kernel

so that the timeline reference can be easily returned using the

.gettime POSIX clock API. A detailed description of PTP

can be found in Appendix C.

We also create a synchronization service phc2phc that aligns

two Precise Hardware Clocks (PHC): clocks which support

hardware timestamping and GPIO with external hardware

timestamping, and deterministic hardware interrupt capabili-

ties. Our implementation performs Core-NIC synchronization

using phc2phc. If one of the clock is not a PHC, we use the

phc2sys [21] service to synchronize clocks. The decision tree

in Figure 7 shows how timestamping and GPIO capabilities

of a clock influence our choice of synchronization service.

Certain network interfaces do not support hardware times-

tamping, but provide a hardware interrupt upon the Start of

Frame Delimiter (SFD) of a synchronization packet. In this

case, if the core clock is a PHC, it can timestamp the SFD

interrupt in hardware and run phc2phc across multiple nodes

for high accuracy. However, certain network interfaces neither

expose a PHC, nor support SFD. In this case, the core clocks

resort to software time stamping and perform sys2sys. Table I

lists some example network interfaces with different hardware

capabilities and the corresponding synchronization service.

TABLE I: Network Interface Capabilities

NIC Capabilities Service
TI CPSW PHC, GPIO interrupt phc2phc
AT86RF233 PHC, SFD interrupt phc2phc
DW1000 PHC, SFD interrupt phc2phc
IEEE 802.11 None sys2sys

System Uncertainty Estimation Service: This service tries

to get a probabilistic estimate of the OS clock read uncertainty

by reading the core clock in a tight loop from userspace,

via a privileged interface (/dev/qotadm). By taking the

difference of consecutive timestamps, the service calculates

the uncertainty distribution.

D. Linux QoT Core Kernel Module

The Linux QoT Core, shown as the central component in

Figure 6, is implemented as a loadable kernel module. It

consists of the following sub-modules.

Scheduler Interface: Each active timeline maintains a red-

black tree of waiting threads, ordered by their wake-up times

in the timeline reference. When an application thread issues

a timed wait request, the thread is suspended and en-queued

on a red-black tree corresponding to the timeline to which it

is bound. Waking up applications from their suspended state

relies on the interrupt functionality of the core clock. When

the callback triggers, the interrupt handler checks each active

timeline for tasks that need to be woken up, and moves such

tasks from the wait queue to the ready queue. Subsequently,

the task is scheduled as per its priority, and the policy being

used by the scheduler. This introduces scheduling uncertainty,

as other threads may also be present on the ready queue.

Before the task is actually scheduled, the core returns a

timestamp of the scheduling instant along with an uncertainty

estimate. This enables an application to take a decision, based

on the received QoT. The scheduling policy agnostic design,

enables the stack to be portable to a range of different Linux

kernels, and prevents it from being tied down to a specific

kernel version. It also gives the opportunity for OS developers

to use scheduling policies best suited for the target platform.

Future implementations of the stack will include techniques to

probabilistically compensate for the scheduling uncertainty.

Decisions on waking up a task, or programming the next

interrupt callback, rely on the projections between core time

and the timeline references. The scheduling interface com-

pensates for any synchronization changes to these projections.

When a synchronization event occurs, the interface checks the

head of the timeline queue, to decide whether the change in

the projection, necessitates a task to be scheduled earlier than

previously estimated.

User Interface: The core exposes a set of thread-

safe ioctl interfaces in the form of a character device,

/dev/qotusr, to userspace. It gives user applications the

ability to create/destroy a timeline, read timestamps with un-

certainty estimates, as well as issue timed waits on a timeline

reference. The user interface also provides applications the

ability to access the external timestamping and event triggering

functionality of the core clock (if supported by hardware).

Admin Interface: This is a special character device

/dev/qotadm, which enables a privileged daemon to control

specific parameters of the QoT stack. It provides an ioctl
interface, which allows a privileged user to get information on

clocks, switch between different core clocks, as well as get/set

the OS uncertainty associated with reading timestamps.

Sysfs Introspection: The core provides a sysfs interface

for a user to view and change the state of the system using

6

file operations. It can be used to develop complex visualization

tools or to integrate with existing monitoring systems.

On the Beaglebone Black platform, the memory footprint

of the QoT Stack for Linux is 4.071 MB. The current im-

plementation re-implements a number of existing components

for easier debugging, leading to a large code size. Future

implementations will focus on optimization.

VI. APPLICATION PROGRAMMING INTERFACE

We provide an API that allows programmers to simplify

the development of distributed QoT-Aware applications. The

key API calls can be found in Table II in the Appendix, and

are categorized by their functionality: (i) Timeline Association
APIs allow applications to bind/unbind to a specific timeline,

and specify/update their QoT requirements. (ii) Time Man-
agement APIs allow applications to read the timeline notion

of time with the uncertainty estimate. (iii) Event Scheduling
APIs allow applications to schedule events using timed waits

on the timeline reference, along with returning the uncertainty

as when the event was actually scheduled. Additionally, the

APIs also provide the ability to trigger events at a deterministic

point in the future, as well as accurately timestamp external

events, contingent on hardware support from the core clock.

Listing 1: QoT-Aware TDMA Application

name = ” tdma−t i m e l i n e ” ; / * T i m e l i n e UUID * /
/ * T i m e l i n e a c c u r a c y e q u i v a l e n t t o TDMA guard band * /
timeinterval_t accuracy = {

.below = TL_FROM_nSEC (0) ,

.above = TL_FROM_nSEC (TDMA_GUARD_BAND) ,
} ;
/ * T i m e l i n e r e s o l u t i o n e q u i v a l e n t t o TDMA p e r i o d * /
timelength_t res = TL_FROM_nSEC (TDMA_PERIOD) ;
timelength_t period = TL_FROM_nSEC (TDMA_PERIOD) ;
timepoint_t start_offset

= TP_FROM_nSEC (ge t my s lo t () *TDMA_SLOT_LENGTH) ;
/ * Bind t o a t i m e l i n e wi t h r e q u e s t e d UUID * /
timeline_t timeline = t i m e l i n e b i n d (name , accuracy , res) ;
/ * S e t p e r i o d and s t a r t o f f s e t * /
t i m e l i n e s e t s c h e d p a r a m s (timeline , period , start_offset) ;
/ * P e r i o d i c TDMA T r a n s m i s s i o n * /
w h i l e (tdma_running) {

/ * S l e e p u n t i l s t a r t o f n e x t t r a n s m i t s l o t * /
status = t i m e l i n e w a i t u n t i l n e x t p e r i o d (timeline) ;
i f (status == QOT_OK) {

/ * T r a n s m i t i f u n c e r t a i n i t y w i t h i n bound * /
t ransmi t packe t (message) ;

} e l s e {
h o l d o f f () ;

}
}
t ime l ine unb ind (timeline) ; / * Unbind from a t i m e l i n e * /

Using these APIs, we present a sample code snippet for a

Time Division Multiple Access (TDMA) application in Listing

1. In this implementation, multiple nodes need to be allocated

transmit slots, such that no packet collisions occur. It is essen-

tial that all nodes have a shared notion of time, along with the

uncertainty associated with it. The application compensates for

synchronization errors using guard bands. If timing uncertainty

increases beyond these guard bands (e.g. if synchronization is

lost), then packets will collide. Notifying the application about

the returned QoT gives it the ability to adapt.
Such an application would start by creating a binding

to a timeline, with desired accuracy and resolution using

timeline_bind. The detail of data types for timeline and

it’s binding requirement – accuracy and resolution – can be

found in Appendix B. Given that transmitting in a TDMA

slot is inherently periodic, the application can set its pe-

riod and start offset using timeline_setschedparams.

Subsequently, the application executes a loop, where it calls

timeline_waituntil_nextperiod, which wakes up

the task every period, using the programmed parameters. This

call returns a status whether the returned QoT is within the

accuracy requested by the application. The application can

make use of this information to take a decision on transmitting

a packet. Finally, before the application terminates, it un-

binds from the timeline using timeline_unbind. We also

contrast our QoT-aware TDMA application with one written

using the Linux POSIX API. The Linux API based TDMA

application does not have a notion of QoT and cannot provide

end-to-end estimates of timing uncertainty. The corresponding

code snippet along with a detailed comparison can be found

in Listing 5 in Appendix D.

VII. EXPERIMENTAL EVALUATION

Our prototype stack provides hardware support for the

popular Beaglebone Black (BBB) embedded Linux platform

[12]. We implement drivers to support the Texas Instruments

(TI) AM335x ARM Cortex-A8 System-on-Chip (SoC) found

on the BBB. The SoC supports the IEEE 1588 standard [6]

(Precision Time Protocol) over Ethernet, and has the ability to

timestamp network packets at the physical layer. The drivers

serve as a reference implementation, and provide core concepts

which can be ported to a variety of platforms. Corresponding

to the two types of clocks that we defined in Section IV-A,

we have implemented platform-specific drivers whose details

can be found in Appendix E.

Our testbed comprises multiple BBB nodes, with the Linux

4.1.12-rt kernel, connected via an IEEE 1588-compliant switch

[22], running the synchronization service which is a patched

version of the Linux PTP Project [21]. Instead of disciplining

the ethernet controller’s NIC on the node (/dev/ptp0),

our service supports simultaneous synchronization of multiple

timelines, and disciplines the /dev/timelineX charac-

ter devices. Using this testbed, we now present multiple

micro-benchmarks which demonstrate the ability of our stack

to perform synchronization, expose uncertainty and perform

choreographed scheduling.

−20 0 20
 0

0.02

0.04

0.06

0.08

 0.1

P
ro

ba
bi

lit
y

D
en

si
ty

Accuracy (nsec)

(a) Core-NIC

−1 0 1 2 3 4 5 6
 0

 50000

100000

150000

200000

250000

300000

A
cc

ur
ac

y
(n

se
c)

log
2
(sync interval) (sec)

(b) Accuracy v/s Synchronization Interval

Fig. 8: (a) Core-NIC synchronization accuracy (b) Illustrating

the adjustable synchronization parameter

7

0 5000 10000
−3000

−2000

−1000

 0

 1000

 2000

 3000

 4000

U
nc

er
ta

in
ty

 (
ns

ec
)

Common events

(a) Synchronization on for 1 hour

0 1000 2000 3000
−10000

 −5000

 0

 5000

 10000

 15000

U
nc

er
ta

in
ty

 (
ns

ec
)

Common events

(b) Synchronization on, then off for 5 mins

0 5000 10000
−60000

−40000

−20000

 0

 20000

 40000

 60000

 80000

U
nc

er
ta

in
ty

 (
ns

ec
)

Common events

(c) Synchronization on, then off for 1 hour

upper bound

lower bound

upper bound

lower bound lower bound

upper bound
observed

observed
observed

Fig. 9: Upper and lower bounds around the observed uncertainty with and without synchronization. Note the change in y-axis

scale, increasing from (a) to (c)

A. Synchronization Uncertainty

The prerequisite for end-to-end synchronization – mapping

local core time to a global timeline reference – is to first

synchronize the on-board NIC with the local core clock. We

use a programmable hardware timer on the BBB AM335x

to trigger very deterministic and periodic outputs on a pin

in core time, which is then timestamped by the NIC. The

difference between the core and NIC timestamps is used

to work out the clock disciplining parameters. We plot the

distribution of this difference in Figure 8a, which indicates the

Core-NIC synchronization accuracy, which is in the order of

nanoseconds. A similar approach can work on other hardware

platforms as well.

The ability to control the synchronization accuracy, is a

key goal of the QoT stack. We use the transmission rate

of synchronization packets as a control knob to adjust the

accuracy, and the resulting plot is shown in Figure 8b. Note

that increasing the synchronization packet transmission rate

reduces synchronization error and increases timing accuracy.

This proves the existence of such adjustable parameters, which

can be exposed to the userspace services so that they can con-

trol the system performance and meet the QoT requirements.

Now that we have synchronized the NIC to the core clock

and established the relationship between synchronization rate

and accuracy, we use a topology similar to the one in Figure

3b for end-to-end synchronization. There are two timing sub-

groups: nodes a, b and c bound to Timeline 1 with an accuracy

of 100 μsec; and nodes c, d and e bound to Timeline 2 with

an accuracy of 1 μsec. The system sets a synchronization rate

of 0.05 Hz for Timeline 1, and 2 Hz for Timeline 2 according

to their accuracy requirements. We conducted experiments on

this topology to demonstrate that the QoT stack runs multiple

and parallel synchronization sessions on a single node, which

disciplines multiple timelines simultaneously. The results are

shown in Figure 10, where node c maintains two timelines

with very different accuracy requirements of 100 μsec and

1 μsec, with respect to Timelines 1 and 2 respectively. This

validates our initial claim that the timeline-driven architecture

not only supports multiple virtual time references on a single

node, but also synchronizes only to the desired accuracy, hence

conserving resources like bandwidth and energy.

2 4 6 8 10 12 14

x 104

 0

200

400

600

800

(a) Timeline 1 synchronization accuracy

P
ro

ba
bi

lit
y

D
en

si
ty

Accuracy (nanoseconds)

0 200 400 600 800 1000 1200 1400
 0

200

400

600

800

(b) Timeline 2 synchronization accuracy

P
ro

ba
bi

lit
y

D
en

si
ty

Accuracy (nanoseconds)

Fig. 10: (a) shows pair-wise error probability density of three

nodes a, b, c bound to timeline 1 in Figure 3b with 100 μsec

accuracy requirement, (b) shows pair-wise error probability

density of three nodes c, d, e bound to timeline 2 with 1 μsec

accuracy (Note that x-axis units are in nanoseconds, and x-axis

scale changes in (a) and (b)). Note that c maintains mappings

of both timelines, and the achieved accuracy for all the nodes

is almost equal to their desired accuracy

In Figure 9, we show the QoT stack’s ability to estimate

the uncertainty in synchronization and expose it. Uncertainty

captures the variance in time introduced by various sources of

errors, that cause the time to deviate from its true value. The

red plot provides the ground truth i.e, the actual uncertainty

between the local timeline reference and the global timeline

reference, e = tglobal − tlocal, whereas the green plot is an

upper bound on uncertainty estimated by the stack, eu =
tupper − tlocal and the blue plot is the lower bound on uncer-

tainty estimated by the stack, el = tlower−tlocal. Note that the

bounds are valid that is, tupper > tglobal, tlocal > tlower, only

when, eu > e > el, which is what is achieved in Figure 9. The

uncertainty bounds estimated by the stack are applicable, both

when synchronization is running or not. Figure 9a shows the

bounds when the synchronization is running. Note that these

bounds tend to increase when we turn the synchronization off

(Figures 9b and 9c). The bounds extend in both directions as

8

Scheduler Latency (μs)
20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

D
en

si
ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) Estimated QoT Scheduler Latency

Scheduler Latency (μs)
20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

D
en

si
ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) Measured QoT Scheduler Latency

Scheduler Latency (μs)
20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

D
en

si
ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) Measured Linux RT Scheduler Latency

Fig. 11: Scheduler Latency Distributions, for a periodic pin toggling application on a single node

End-to-End Pin Toggling Scheduling Jitter (μs)
-100 -50 0 50 100

P
ro

ba
bi

lit
y

D
en

si
ty

0

0.01

0.02

0.03

0.04

(a) QoT Stack for Linux

End-to-End Pin Toggling Scheduling Jitter (μs)
-100 -50 0 50 100

P
ro

ba
bi

lit
y

D
en

si
ty

0

0.01

0.02

0.03

0.04

(b) Linux RT Scheduler with PTP

Fig. 12: End-to-end scheduling jitter distributions for syn-

chronous pin toggling on two nodes

Core Clock Read Latency (ns)
1300 1320 1340 1360 1380 1400 1420

In
st

an
ce

s

0

2000

4000

6000

8000

10000

(a)

Core Clock Read Latency (ns)
1300 1320 1340 1360 1380 1400 1420

In
st

an
ce

s

0

2000

4000

6000

8000

10000

(b)

Fig. 13: Clock read latency histograms in different time inter-

vals, estimated by the system uncertainty estimation service

a function of variance in frequency bias, and they will always

bound the actual uncertainty. The longer the period for which

the synchronization is off, the higher will be the uncertainty

bounds. Thus, the QoT stack not only reports precise time

to the applications but also the uncertainty in time with high

confidence bounds.

B. Scheduler Uncertainty

We benchmark the QoT Core’s scheduling interface against

the Linux Real-Time (RT) scheduler by using a periodic pin-

toggling application which toggles a memory-mapped GPIO

pin, at every second boundary. All the following experiments

were conducted under identical load conditions for a duration

of 3000 seconds, with the pin-toggling application being

the highest real-time priority user application in the system.

Multiple sporadic tasks with lower real-time priorities, which

used the QoT stack functionality, were also running on the

same system.

To measure scheduler uncertainty, we devise the following

experiment. On a single node, an application periodically calls

the timeline_waituntil_nextperiod API call, such

that the pin toggle is scheduled at every second boundary on

a timeline. When the task wakes up, the QoT stack provides a

timestamp (with uncertainity) for when the event was actually

scheduled. The scheduler latency can be estimated by taking

the difference of the timestamps: when the task was supposed

to wake up, and when it was actually scheduled. We also

empirically measure the scheduler latency by using a Salae

Logic Pro 16 logic analyzer [23]. The logic analyzer measures

the latency for each pin toggle event by comparing against a

deterministic PWM with edges at every second boundary on

a timeline reference.

Figure 11a plots the distribution of the scheduler latency

as estimated by the QoT stack, while Figure 11b shows the

empirically-measured distribution. Observe that the empirical

distribution and the distribution provided by our stack share

similar characteristics. Thus, the uncertainty estimate provided

by the QoT stack holds up to empirical measurement.

For the Linux RT scheduler, using real-time priority

scheduling (SCHED_FIFO), Figure 11c shows the

empirically-measured latency distribution, where the

clock_nanosleep system call was used to schedule

a periodic pin toggle. Note that the QoT-aware Linux

scheduler and the Linux RT scheduler share similar statistical

properties. The QoT-aware scheduler provides adherence to

our timeline-driven architecture with no significant overhead.

The ability to perform choreographed scheduling is key to

our stack, and hence we next characterize the end-to-end syn-

chronous scheduling jitter. In our setup, we have two identical

applications running on separate nodes. Both applications bind

to the same timeline and synchronize with each other. Using

the timeline_waituntil_nextperiod API call, the

applications synchronously toggle a memory-mapped GPIO

pin at every second boundary on the timeline reference.

The synchronization service is also running on both nodes.

In Figure 12a, we plot the distribution of the end-to-end

jitter between the pin toggles of the distributed application.

The instants at which the pins toggled were captured by a

logic analyzer, and the difference in timestamps was used to

compute the obtained distribution.

9

We conduct a similar experiment using the Linux

clock_nanosleep system call on two distributed nodes

synchronized by PTP. Figure 12b plots the distribution of the

end-to-end scheduling jitter for Linux and PTP. Our stack

runs a patched PTP synchronization service, and hence the

distribution obtained has a similar jitter profile to that obtained

using PTP. Note that our interface is policy-agnostic and does

not incur additional overhead, while at the same time providing

a range of QoT-based functionality. However, the scheduling

jitter can be reduced using more suitable policies in the kernel.

Figure 13 shows two histograms for the estimated latency

in reading the core clock from userspace, over different one-

second durations, as estimated by the system uncertainty

estimation service. Observe that the distributions change over

time and are a function of system load. Each peak in the distri-

bution corresponds to different locks which cause contention

in reading the core clock. This measured distribution plays

a key role in continuously keeping track of the uncertainty

introduced by the OS in reading the clock.

VIII. CONCLUSION & FUTURE WORK

The timeline abstraction with its associated notion of Qual-

ity of Time (QoT) helps virtualize time-related resources in a

system, and plays a role analogous to that of sockets with as-

sociated Quality of Service (QoS) bindings in network stacks.

QoS-aware networking applications can read, write, open and

close sockets, and specify QoS parameters. Similarly, QoT-

aware time-sensitive applications can bind and unbind from

timelines, read and schedule events on the timeline reference,

and specify QoT requirements. We make QoT visible and

controllable in our timeline-driven architecture. This enables

QoT-aware applications to specify their timing requirements,

while the system manages clocks and synchronization proto-

cols to provide the appropriate levels of QoT. In the future,

this architecture would be extended to address challenges

introduced by multiple processing cores, hardware accelerators

and peripherals.

Our initial implementation of the QoT Stack for Linux

delivers most of our early goals. However, it presently takes

advantage of only the accuracy attribute of timelines. Future

implementations of our stack will also make use of the reso-
lution attribute and provide the ability to dynamically switch

between hardware clocks based on application requirements.

We also plan to support multiple network interfaces, and

different oscillators which could be adjusted in hardware. The

stack could then switch between different core clocks, use dif-

ferent NICs across heterogeneous networks, and use different

synchronization protocols, to best strike a balance between

desired performance and resource consumption. Finally, a co-

optimization of timelines and synchronization sessions would

help conserve network and system resources.

The QoT Stack for Linux is open-source and under

development. In the future we plan to support multiple

hardware platforms. The code repository can be found at,

https://bitbucket.org/rose-line/qot-stack/src

ACKNOWLEDGMENT

This research is funded in part by the National Science

Foundation under awards CNS-1329755 and CNS-1329644.

The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copy-

right notation thereon. The views and conclusions contained

herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,

either expressed or implied, of NSF, or the U.S. Government

REFERENCES

[1] B. L. G. Regula, “Formation control of a large group of UAVs with safe
path planning,” in IEEE 21st Mediterranean Conference on Control &
Automation (MED), 2013.

[2] P. V. Estrela and L. Bonebakker, “Challenges Deploying PTPv2 in a
Global Financial Company,” in Intl. IEEE Symposium on Precision Clock
Synchronization for Measurement & Communication (ISPCS), 2012.

[3] S. Natarajan and A. Ganz., “SURGNET: An Integrated Surgical Data
Transmission System for Telesurgery,” in International Journal of
Telemedicine and Applications Volume, Article ID 435849., 2009.

[4] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit:
a ptp application for robust sub-nanosecond synchronization,” in Intl.
IEEE Symposium on Precision Clock Synchronization for Measurement
Control and Communication (ISPCS), 2011. IEEE, 2011.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Googles globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[6] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “Ieee 1588-standard for
a precision clock synchronization protocol for networked measurement
and control systems,” in Conference on IEEE, vol. 1588, 2005, p. 2.

[7] J. Lundelius and N. Lynch, “An upper and lower bound for clock
synchronization,” Information and control, vol. 62, no. 2, 1984.

[8] H. Zhou, C. Nicholls, T. Kunz, and H. Schwartz, “Frequency accuracy
& stability dependencies of crystal oscillators,” Carleton University,
Systems and Computer Engineering, Technical Report SCE-08-12, 2008.

[9] M. Kuperberg and R. Reussner, “Analysing the fidelity of measurements
performed with hardware performance counters,” in Proceedings of the
2nd ACM/SPEC International Conference on Performance engineering.

[10] T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch, “Virtualize
everything but time.” in OSDI, vol. 10, 2010, pp. 1–6.

[11] K. Lee, D. Chu, E. Cuervo, J. Kopf, A. Wolman, Y. Degtyarev,
S. Grizan, and J. Flinn, “Outatime: Using speculation to enable low-
latency continuous interaction for mobile cloud gaming,” GetMobile:
Mobile Computing and Communications, vol. 19, no. 3, pp. 14–17, 2015.

[12] “https://beagleboard.org/black,” Beaglebone Black.
[13] D. L. Mills, “Internet time synchronization: the network time protocol,”

Communications, IEEE Transactions on, vol. 39, no. 10, 1991.
[14] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings

of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.
[15] P. Derler, T. H. Feng, E. A. Lee, S. Matic, H. D. Patel, Y. Zheo,

and J. Zou, “Ptides: A programming model for distributed real-time
embedded systems,” DTIC Document, Tech. Rep., 2008.

[16] J. Zou, S. Matic, and E. A. Lee, “Ptidyos: A lightweight microkernel
for ptides real-time systems,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2012 IEEE 18th. IEEE, 2012.

[17] B. R. Hamilton, X. Ma, Q. Zhao, and J. Xu, “ACES: Adaptive Clock
Estimation and Synchronization Using Kalman Filtering,” in MobiCom.

[18] X. Xu, “A New Time Synchronization Method for Reducing Quan-
tization Error Accumulation Over Real-Time Networks: Theory and
Experiments Evaluation of kalman filtering for network time keeping,”
in IEEE Trans. on Industrial Informatics, 2013.

[19] “http://pubs.opengroup.org/onlinepubs/009695399/functions/clock.html,”
IEEE Standard 1003.1, 2004.

[20] “dds for real-time system, prismtech,” OpenSplice.
[21] “http://linuxptp.sourceforge.net,” The Linux PTP Project.
[22] “http://w3.siemens.com,” Siemens RUGGEDCOM RSG2488.
[23] “http://downloads.saleae.com,” Salae Logic Pro 16, 2015.

10

APPENDIX

A. Timelines and Bindings

Timelines are ordered on a red-black tree (left in figure

below), and bindings as two parallel sorted linked lists (right in

figure below) – one representing accuracy and the other repre-

senting resolution. Of greatest importance to time management

and synchronization is the ability to calculate the dominating

accuracy and resolution for any given timeline, which is the

highest accuracy and resolution across all associated bindings.

We maintain two parallel linked lists of bindings - ordered

by increasing accuracy and resolution respectively, against a

single timeline node in the red-black tree. This way, we can

efficiently track the dominating accuracy and resolution in

a manner that is robust to the addition of a new binding,

removal of an existing binding, and update of accuracy and

resolution of an existing binding. In the figure below, Timeline

“T2” has two bindings: Binding 1 has the dominant accuracy

requirement, while Binding 2 has the dominant resolution

requirement.

T5

T2

T4

Binding 1

Binding 2Binding 1T1

T3 Binding 2

Accuracy
Resolution

Fig. 14: Sorting Timelines and Bindings

B. QoT Stack Data Types

Listing 2: Time Data Types

/ * A d u r a t i o n o f t im e * /
t y p e d e f s t r u c t timelength {
u64 sec ; / * Seconds * /
u64 asec ; / * F r a c t i o n a l s e c o n d s i n a t t o s e c o n d s * /

} timelength_t ;

/ * A s i n g l e p o i n t i n t im e * /
t y p e d e f s t r u c t timepoint {
s64 sec ; / * Seconds s i n c e r e f e r e n c e * /
u64 asec ; / * F r a c t i o n a l s e c o n d s i n a t t o s e c o n d s * /

} timepoint_t ;

/ * An i n t e r v a l o f t ime * /
t y p e d e f s t r u c t timeinterval {
timelength_t below ; / * Seconds below (−ve) * /
timelength_t above ; / * Seconds above (+ ve) * /

} timeinterval_t ;

/ * A p o i n t i n t ime wi th an i n t e r v a l o f u n c e r t a i n t y * /
t y p e d e f s t r u c t utimepoint {
timepoint_t estimate ; / * E s t i m a t e o f t ime * /
timeinterval_t interval ; / * U n c e r t a i n t y i n t e r v a l * /

} utimepoint_t ;

/ * A d u r a t i o n o f t im e wi t h an u n c e r t a i n end p o i n t * /
t y p e d e f s t r u c t utimelength {
timelength_t estimate ; / * E s t i m a t e o f t ime * /
timeinterval_t interval ; / * U n c e r t a i n t y i n t e r v a l * /

} utimelength_t ;

Listing 3: Timeline Data Types

/ * T i m e l i n e I n f o r m a t i o n * /
t y p e d e f s t r u c t qot_timeline {

c h a r name [QOT_MAX_NAMELEN] ; / * T i m e l i n e name * /
i n t index ; / * T i m e l i n e i n d e x * /
s t r u c t rb_root event_head ; / * Ev en t s RB t r e e head * /
raw_spinlock_t rb_lock ; / * RB t r e e s p i n l o c k * /

} qot_timeline_t ;

/ * QoT compr i s ed o f (min , max) a c c u r a c y and r e s o l u t i o n * /
t y p e d e f s t r u c t timequality {
timelength_t resolution ; / * Time r e s o l u t i o n * /
timeinterval_t accuracy ; / * Time a c c u r a c y * /

} timequality_t ;

/ * B ind ing I n f o r m a t i o n * /
t y p e d e f s t r u c t qot_binding {

c h a r name [QOT_MAX_NAMELEN] ; / * A p p l i c a t i o n name * /
timequality_t demand ; / * Reques t ed QoT * /
i n t id ; / * B ind ing ID * /

} qot_binding_t ;

/ * T i m e l i n e Type * /
t y p e d e f s t r u c t timeline {

qot_timeline_t info ; / * T i m e l i n e i n f o r m a t i o n * /
qot_binding_t binding ; / * B ind ing i n f o r m a t i o n * /
i n t fd ; / * F i l e d e s c r i p t o r t o / dev / t i m e l i n e X * /
i n t qotusr_fd ; / * F i l e d e s c r i p t o r t o / dev / q o t u s r * /

} timeline_t ;

Listing 4: Clock Data Type

/ * QoT Clock (admin on ly) * /
t y p e d e f s t r u c t qot_clock {

c h a r name [QOT_MAX_NAMELEN] ; / * Clock name * /
qot_clk_state_t state ; / * Clock s t a t e * /
u64 nom_freq_nhz ; / * Frequency i n nHz * /
u64 nom_freq_nwatt ; / * Power i n nWatt * /
utimelength_t read_lat ; / * Read l a t e n c y * /
utimelength_t interrupt_lat ; / * I n t e r r u p t l a t e n c y * /
u64 errors [QOT_CLK_ERR_NUM] ; / * E r r o r p r o p e r t i e s * /
i n t phc_id ; / * PTP d e v i c e ID * /

} qot_clock_t ;

C. Precision Time Protocol

Precision Time Protocol (PTP) [6] is an IEEE 1588 compli-

ant time synchronization protocol and it synchronizes clocks

over a multicast capable network. It provides a best master

clock algorithm that identifies the best clock in the network

and choose it as a master. A slave clock synchronizes to

the master clock using bidirectional communication. The

master sends a ‘Sync’ packet along with the timestamp

when the packet left the master node. The slave receives

the ‘Sync’ packet and timestamps its arrival time. The slave

determines its clock offset from the master by calculating the

difference in ‘Sync’ packet’s departure and arrival times, and

adjusts its Network Interface Clock (/dev/ptpX) accordingly.

The slave also compensates for the network propagation delay

by exchanging ‘delay request’ and ‘delay response’ packets

with the master.

D. QoT Application Programming Interface

In this section, we contrast the QoT-aware TDMA appli-

cation (Listing 1) with the TDMA application using existing

Linux POSIX APIs (Listing 5). The Linux API based TDMA

application does not have a notion of QoT and cannot pro-

vide end-to-end estimates on timing uncertainty. The appli-

cation computes its wake up time every period, and uses the

clock_nanosleep system call to wake up and transmit a

11

TABLE II: Quality of Time APIs

Category API Return Type Functionality
Timeline timeline_bind (name, accuracy, resolution) timeline Bind to a timeline

Association timeline_unbind (timeline) status Unbind from a timeline
timeline_getaccuracy (timeline) accuracy Get binding accuracy
timeline_getresolution (timeline) resolution Get Binding resolution
timeline_setaccuracy (timeline, accuracy) status Set Binding accuracy
timeline_setresolution (timeline, resolution) status Set Binding resolution

Time timeline_gettime (timeline) uncertain timestamp Get timeline reference time with uncertainty
Management timeline_getcoretime () uncertain timestamp Get core time with uncertainty

timeline_core2rem (timeline, core time) uncertain timestamp Convert a core timestamp to a timeline reference
timeline_rem2core (timeline, time) uncertain timestamp Convert a timeline reference timestamp to core time

Event timeline_waituntil (timeline, absolute time) uncertain timestamp Absolute timed wait
Scheduling timeline_sleep (timeline, interval) uncertain timestamp Relative timed wait

timeline_setschedparams (timeline, period, start offset) status Set period and start offset
timeline_waituntil_nextperiod (timeline) uncertain timestamp Absolute timed wait until next period
timeline_timer_create (timeline, period, start offset, count, callback) timer Register a periodic callback
timeline_timer_cancel (timer) status Cancel a periodic callback
timeline_config_events (timeline, event type, event config, enable, callback) status Configure events/external timestamping on a pin

packet. If the timing uncertainty exceeds the guard bands, then

packets will collide. On the other hand, a QoT-aware TDMA

application can take a decision on packet transmission based

on the returned QoT.

Alternatively, a developer may create a daemon to compute

the end-to-end timing uncertainty. However, this involves

significant effort, complex interactions with existing timing

systems, and privileged system access. Given that this func-

tionality is commonly required across a range of applications,

our stack provides it as a system service.

Listing 5: TDMA Application using Linux API

clock_gettime (CLOCK_REALTIME , now) ; / * Get t ime * /
/ * C u r r e n t TDMA c y c l e number and s t a r t t ime * /
i n t tdma_cycle_no = timespec2ns (now) /TDMA_PERIOD ;
uint64_t cycle_start_ns = tdma_cycle_no*TDMA_PERIOD ;
/ * S l o t t ime o f f s e t from s t a r t o f c y c l e * /
uint64_t slot_offset = ge t my s lo t () *TDMA_SLOT_LENGTH ;
uint64_t transmit_time_ns = cycle_start_ns + slot_offset ;
/ * P e r i o d i c TDMA T r a n s m i s s i o n * /
w h i l e (tdma_running) {

/ * Time of n e x t t r a n s m i s s i o n * /
transmit_time_ns = transmit_time_ns + TDMA_PERIOD ;
/ * S l e e p t i l l t r a n s m i t s l o t . Also h a n d l e s i g n a l s * /
w h i l e (clock_nanosleep (CLOCK_REALTIME , ns2timespec (←↩

transmit_time_ns) == EINTR) ;
clock_gettime (CLOCK_REALTIME , now) ; / * Get t ime * /
/ * T r a n s m i t i f wakeup t ime w i t h i n bound * /
/ * P a c k e t s may c o l l i d e due t o bad sync or c l o c k * /
i f (timespec_compare (now , transmit_time_ns + ←↩

TDMA_GUARD_BAND) <= 0) {
t ransmi t packe t (message) ;

} e l s e {
h o l d o f f () ;

}
}

E. Beaglebone Black QoT Clock Drivers

To support the QoT stack functionality, the following clock

drivers were implemented for the Beaglebone Black platform:

TI CPSW Network Interface Clock: The Linux kernel al-

ready ships with TI’s Common Platform Ethernet Switch

(CPSW) Drivers (which also supports the AM335x SoC),

which can be found in the kernel at Linux/drivers/net/ether-
net/ti. The Common Platform Time Stamping (CPTS) module

inside the CPSW ethernet subsystem is used to facilitate

host control of time synchronization related operations. CPTS

supports ethernet receive events, ethernet transmit events, and

hardware and software timestamp push events. By default,

hardware timestamp push events are disabled in the CPTS

module, so we patched it and enabled time stamp inputs

(HW1/4 TS PUSH) to load the timestamp push events into

the FIFO. These time stamp inputs can be triggered from

Timers 4-7 of the AM335X. This setup enables NIC to

Core synchronization (described in Section IV-B) with high

accuracy.

BBB-AM335x Core Clock: This driver makes use of the on

board dual mode timers (dmtimers) to provide various core

clock related functionality. The AM335x contains 7 timers.

All of them can be driven by on board oscillators, and

some provide external clocking ability. Timers 1 and 2 are

already used by the Linux kernel, hence, we use timers 3-7 to

demonstrate the range of functionalities of a core clock. All

the timers are clocked by an onboard 24 MHz crystal. The

timers and their corresponding function are as follows:

• Timer 3: Drives the monotonic core clock.

• Timer 4: Enables scheduling, by providing the ability to

trigger interrupts in the future.

• Timer 5: Generates a precise Pulse-per-second (PPS)

which is used to discipline the Network Interface Clock.

• Timer 6: Provides the ability to timestamp external

events on a pin.

• Timer 7: Provides the ability to generate a periodic

output on a pin.

In order to deliver the functionality of timers 5-7 the system

needs to configure the GPIO pins. For ARM based platforms,

this is done by using a device tree. A device tree enables a user

to configure the peripherals of an embedded ARM platform at

run-time. Our prototype stack also provides a device tree for

the Beaglebone Black platform.

12

