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ABSTRACT

Losses stemming from energy theft and system faults are a major

challenge to providing reliable electrical service in developing ar-

eas of the world. Managing these losses is a vital part of ensuring

energy distribution system stability and maintaining a functioning

microgrid. Despite this, even losses that are detected are often not

addressed by microgrid operators due to the difficulty of locating

unauthorized loads, especially in deployments serving hundreds or

thousands of households. In this paper, we propose a method for the

localization of unauthorized loads based on the fine-grained sensing

of voltage phase across a microgrid. Unlike other approaches, the

proposed method utilizes synchronous voltage sensing at smart me-

ters and does not rely on expensive inline power metering. Voltage

phase measurements feed a graphical model of a power distribution

network, which yields the locations of loads as they connect to the

system. We evaluate our method using a circuit-based approach

in SPICE by simulating loads on a real-world microgrid topology.

We then validate our simulation results on a laboratory microgrid

testbed using real loads, showing that fine-grained voltage sens-

ing can be effectively leveraged to localize unauthorized loads in

microgrids.
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1 INTRODUCTION

Smart grid technologies in development today represent a real

opportunity to revolutionize electrical power transmission and

distribution in terms of efficiency, reliability, and sustainability. In-

novations in digital communications and control have already led

to gains by enabling the dynamic optimization of grid operations

and the integration of distributed resources and generation, includ-

ing renewables such as wind and solar power. The development

and proliferation of a new generation of digital energy meters and

connected appliances promise further gains through the use of

demand-side management technologies while also enabling greater

support for bi-directional energy flows and distributed resources at

a low-voltage consumer level. However, smart grid architectures

generally require connectivity to a national or international wide-

area power grid, and thus are not suited for serving the more than

1.1 billion people in rural and remote areas without access to a reli-

able source of electricity [4]. Efforts to address this problem have

introduced a new class of power distribution system called the "mi-

crogrid," a small-scale power grid with localized sources and loads.

Microgrids are uniquely suited for serving geographically isolated

areas because they are designed to operate both with or without

a connection to a traditional wide-area grid. This key feature of

microgrids presents new system requirements and challenges in

addition to those of traditional power distribution.

Figure 1: voltage phase shift across the length of a distribu-

tion line is related to the length of the current-carrying seg-

ment of the line
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A major challenge of operating microgrids in developing areas

is system reliability, which is made difficult by the pervasiveness

of energy theft in these areas. Energy theft is often carried out

by tampering with electrical meters or making unauthorized con-

nections directly to the bare distribution wiring on utility poles.

Such schemes bypass standard smart meters, making unauthorized

connections difficult to locate. Due to the scale of some microgrids,

even losses that are detected often go unaddressed because the

locations of unauthorized loads cannot be determined.

In this paper, we propose a method for the localization of unau-

thorized loads based on the fine-grained sensing of voltage phase

across a microgrid. Our method’s use of voltage phase is a key fea-

ture in that it can be integrated into existing smart meters, and in

that it avoids relying on cumbersome and expensive current sensing

or inline power metering. Our method leverages the relationship

between the voltage phase shift across the length of a distribution

line and the length of the current-carrying segment of the line, as

depicted in Figure 1. We propose a graphical microgrid model and

discuss its derivation from a well-established model of transmission

lines. We then present an algorithm which, in combination with the

microgrid model and the nearest neighbor search (NNS) method,

achieves accurate load localization. We evaluate the localization ac-

curacy of our approach in a custom SPICE-based simulator using a

subsection of a 500-household microgrid topology from Les Anglais,

Haiti [5]. We analyze the effect of time synchronization on localiza-

tion accuracy and show that a cost-effective wireless mesh network

of smart meters can outperform a costly GPS-connected network of

micro-phasor measurement units (micro-PMUs). Finally, we exper-

imentally validate our graphical microgrid model and simulation

results on a laboratory microgrid testbed using real loads.

2 RELATEDWORK

The work presented in this paper utilizes concepts across multiple

areas of systems research. In this section, we discuss related work

in the areas of microgrid reliability, energy theft detection, power

distribution fault localization, and power system phase measure-

ment.

2.1 Microgrid Reliability

While microgrids can be an effective means of providing electrical

power to areas outside the reach of a wide-area grid, they suffer

from significant reliability and sustainability challenges. Research

in the area of microgrid modeling has identified approaches for

improving microgrid performance, including the use of renewable

energy [13] [16] [12] and demand-side management strategies [11]

[15]. The use of pre-paid smartmeters has further enabledmicrogrid

operators to effectively manage loads and collect tariffs [2] [1] [3].

Features such as remote system monitoring, load-shedding, and

dynamic power-limiting allow operators to take reactive steps in

cases of brown-out or system fault [11].

2.2 Energy Theft Detection

A number of approaches have been proposed for the detection

of energy theft in microgrids and traditional power distribution

systems. [18] provides an overview and analysis of common solu-

tions, including the use of tamper-resistant meters, the tracking of

consumption over time, and line inspection. A proposed approach

for preventing energy theft involves the injection of destructive

harmonics into microgrid lines in order to damage unauthorized

loads [8]. Some work has attempted to apply machine learning

methods to smart meter data in order to perform theft detection.

Support vector machines (SVM) have been employed to identify ab-

normalities in historical data but are limited by the fact that energy

theft traces exhibit similar patterns to legitimate traces because

they often involve the same types of appliances [7] [14]. In addition

to existing limitations, most detection methods cannot account for

the bypassing of energy meters and thus cannot detect the common

case of a direct connection being made to the distribution wiring.

2.3 Power Distribution Fault Localization

Investigations into the localization of disturbances in power systems

have been dominated by work at the high-voltage transmission

level, as opposed to the low-voltage distribution level analogous

to microgrids. Despite this, some methods for fault localization in

unbalanced distribution systems have been explored. [9] utilizes

the detection of high-frequency components caused by discharges

from the low-level breakdown of insulators. This method is specific

to electrical faults and would not be useful for localizing unautho-

rized loads. [10] presents an approach based on the estimation of

apparent impedance, using fundamental components of voltage

and current from a single location. This method is limited in that it

requires current data and only provides a distance from the mea-

surement point, as opposed to a location. [6] extends the method

by utilizing multiple measurement points, but still requires current

measurement. While all of the methods discussed were evaluated

in simulation, none were tested experimentally.

2.4 Power System Phase Measurement

The work in this paper employs high-precision measurement of

voltage phase across a microgrid in order to localize unauthorized

loads. The measurement of phase in power systems is not a new

concept, and is generally achieved through the use of phasor mea-

surement units (PMUs). A PMU is a specialized device for measuring

AC waveforms at a particular point in an electrical grid. A PMU cap-

tures the magnitude and phase of sinusoidal voltages and currents

and represents them as phasors. A deployment generally consists

of a network of many PMUs distributed across a grid, with all PMUs

using a common time source for synchronization. Such a network of

PMUs generates a set of time-synchronized phasor measurements

known as a synchrophasor, which has become an invaluable tool

for power management in electrical grids. Today, PMU networks

are almost exclusively used to monitor high-voltage transmission

systems, rather than mid- and low-voltage distribution systems.

The latter are the focus of this work. Because both generation and

loads are highly distributed at the transmission level, grid operators

must rely on derived estimates of power flows in the system. These

are generally found by measuring state variables throughout the

grid using a PMU network and performing power-flow analysis,

modeling the grid as a nonlinear system.

Historically, a couple of factors have limited the widespread

adoption of PMU technology. High costs associated with installa-

tion, communication, and hardware have limited the size of PMU
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networks at the transmission level. The 2014 report [20] by the

U.S. Department of Energy found that the average overall cost per

PMU unit (including procurement, installation, and commission-

ing) ranged from $40,000 to $180,000. Additionally, traditional PMU

technology has seen almost no adoption at the distribution level

on a local scale; this is due to both cost and the differing design

requirements of distribution-level waveform sensing. For instance,

a traditional PMU measures voltage phase with one-degree res-

olution, which works well for most transmission-level scenarios

but is not useful at a local distribution scale, where much shorter

lines carrying far less power result in much smaller voltage phase

differences.

One initiative working to bring AC waveform measurement

to distribution systems is the micro-PMU project. As discussed

in [19], the micro-PMU project aims to develop a PMU architec-

ture cost-effective and precise enough for use in distribution sys-

tems. A key contribution is the design of the micro-PMU hardware,

which synchronizes measurements using GPS as a common time

reference, achieving a voltage phase measurement resolution of

10 milli-degrees, equivalent to 0.46 microseconds at 60 Hz. In [19],

the authors briefly discuss fault localization based on impedance

estimates. However, this is presented as a hypothetical application

and is not developed on or evaluated. While micro-PMU’s preci-

sion of measurement is enough to localize unauthorized loads, the

micro-PMU instruments presented are still prohibitively expensive

for use in rural microgrids, with each unit costing approximately

$3,500. A deployment would involve additional costs likely exceed-

ing those of the instrument, including costs incurred from unit

installation, GPS antenna wiring, and cellular data usage. In con-

trast, this paper presents an unauthorized load localization method

that is based on wireless energy meters costing less than $100 per

unit and does not require any additional instrumentation, GPS, or

cellular connectivity.

3 GRID MODEL

Our load localization method exploits the fact that a load connected

to a distribution line induces a voltage phase shift across the length

of the line. In this section, we first describe the line model used as

the basis for the relationship between load location and voltage

phase shift; we then describe our model for graphically representing

the electrical topology of a grid.

3.1 Line Model

When a load draws power from a source through a transmission or

distribution line, a certain portion of the total power - termed "line

losses" - is consumed by the line itself. This phenomenon generally

results in shifts of both the voltage amplitude and voltage phase

throughout the length of the line. These shifts are determined by

the properties of the load, the properties of the line, and the length

of the line segment between the source and the load. As depicted

in Figure 1, our method of load localization specifically exploits the

relationship between the length of the line segment and shifts in

voltage phase.

For the sake of simplicity and generalizability, we adopt a line

model that assumes a linear relationship between the length of

a current-carrying line segment and voltage phase shift. That is,

for every doubling of the line segment we expect a doubling of

the phase shift. In reality, this is not the case and the relation-

ship is in fact sub-linear for real distribution lines. The behavior

does, however, closely approximate linearity for sub-kilowatt loads

on low-voltage lines, leading us to adopt the simplified model. A

standard model often used in power transmission literature that

accurately describes the sub-linear relationship is the short trans-

mission line model. In this section, we derive the expression for our

linear model and show how its description follows from the short

transmission line model. Later in this chapter, we explain how we

use the short transmission line model as our "ground truth" model

in SPICE simulation in order to evaluate the linear model.

3.1.1 Relationship Between Voltage Phase and Load/Line Proper-

ties. In order to describe, and later simulate, the sub-linear behavior

of a real line, we employ the widely-adopted "short transmission

line model." The model, shown in Figure 2, is a lumped-element cir-

cuit model for characterizing low-voltage transmission lines shorter

than 80 kilometers. It is distinct from other transmission line mod-

els in that it ignores shunt capacitance, which tends to be relatively

negligible for short lines. The short transmission line model en-

ables us to calculate the load phasor voltage VR , given a source

phasor voltage VS , a complex load impedance ZR , and a complex

line impedance ZT = RT + jXT , where RT is the line resistance and

XT is the line reactance. If we treat the circuit as an AC voltage

divider, we find that

VR = VS
ZR

ZT + ZR
,

which can be represented in polar form as

|VR |e
iωteiθVR = |VS |e

iωteiθVS
|ZR |e

iϕR

|ZT |eiϕT + |ZR |eiϕR
.

Our goal is to solve for the phase difference between the source

voltage VS and the load voltage VR , as depicted in Figure 1. We do

this by defining the source voltage phase to be zero, θVS = 0, and

declaring a new impedance ZF = ZT + ZR . We can then simplify

the polar form

Figure 2: "short transmission line" model
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|VR |e
iωteiθVR = |VS |e

iωtei0
|ZR |e

iϕR

|ZF |eiϕF

=
|VS | |ZR |

|ZF |
eiωt

eiϕR

eiϕF

=
|VS | |ZR |

|ZF |
eiωtei(ϕR−ϕF )

to determine that

|VR | =
|VS | |ZR |

|ZF |
and θVR = ϕR − ϕF .

The expression above shows that the load voltage phase θVR , and
hence the voltage phase difference across a short transmission line,

is solely dependent on the load phase shift ϕR and the phase shift

caused by the summation of load impedance and line impedance,ϕF .
A visual representation of this relationship can be seen in Figure 3,

which shows "phasor diagrams" of how impedances determine load

voltage phase θVR when the load is inductive (top) and when the

load is capacitive (bottom).

Figure 3 also shows how the load voltage phase θVR is partially

determined by the magnitude of the line impedance |ZT |. This
relationship is key to our localization method because |ZT | is de-
termined by the length of the line. This relationship is linear, thus

when the length of the line is doubled the value of |ZT | is dou-
bled. There is one situation in which |ZT | has no impact on the

value of θVR : when the load impedance phase shift ϕR and the line

impedance phase shift ϕT have the same value, then θVR = 0 and

the value of |ZT | is irrelevant. In Figure 3, this would be visually

represented by ZR and ZT pointing in the same direction. In prac-

tice, however, this case is unlikely to occur because a majority of

real loads have a higher phase shift or lower phase shift than a low-

voltage distribution line; that is, they have a considerably higher

inductance per unit resistance than a distribution line (such as with

θ

θ

φ φ

φ φ

Figure 3: "phasor diagram" of complex impedances as

they relate to voltage phase across a line (note: complex

impedances are technically not phasors)

induction motors), or they have a considerably lower inductance

per unit resistance (such as with incandescent bulbs and hot plates).

3.1.2 Approximate Linearity of Voltage Phase. For the purposes

of load localization, we assume that when a load is powered through

a distribution line, the length of a current-carrying line segment

is linear and proportional to the voltage phase difference across

that line segment. In reality, this relationship is sub-linear, but is

still a close enough approximation of linearity for the purposes

of our localization method. We can show that the relationship is

approximately linear by modifying the polar form of our original

definition of VR , once again defining that θVS = 0,

|VR |e
iωteiθVR = |VS |e

iωtei0
|ZR |e

iϕR

|ZT |eiϕT + |ZR |eiϕR

= |VS |e
iωt |ZR |e

iϕR

|ZT |eiϕT + |ZR |eiϕR
∗
e−iϕR

e−iϕR

= |VS |e
iωt |ZR |

|ZT |ei(ϕT −ϕR ) + |ZR |
,

and declaring a new impedance ZG to be

|ZG |eiϕG = |ZT |e
i(ϕT −ϕR ) + |ZR |,

we simplify to

|VR |e
iωteiθVR = |VS |e

iωt |ZR |

|ZG |eiϕG

and arrive at the definitions

|VR | =
|VS | |ZR |

|ZG |
and θVR = −ϕG .

Using the phasor arithmetic definitions for the phase angle of

the sum of two phasors,

ϕA+B = arctan(
|A| sin(ϕA) + |B | sin(ϕB )

|A| cos(ϕA) + |B | cos(ϕB )
),

we can redefine θVR in terms of ZT and ZR ,

θVR = −ϕG

= − arctan(
|ZT | sin(ϕT − ϕR ) + |ZR | sin(0)

|ZT | cos(ϕT − ϕR ) + |ZR | cos(0)
)

= − arctan(
|ZT | sin(ϕT − ϕR )

|ZT | cos(ϕT − ϕR ) + |ZR |
)

We further simplify the definition of θVR by noting that |ZR | �
|ZT | is always true in a distribution line scenario. This is because

loads powered through a line must have an impedance at least 20

times higher than that of the line (normally much higher), because

otherwise the line cannot provide the rated voltage that is expected

by the loads. This results in |ZR | being the dominant term in the

denominator, yielding the approximation

θVR ≈ − arctan(
|ZT | sin(ϕT − ϕR )

|ZR |
).

This definition of θVR reveals the approximate linearity between

the length of a current-carrying line segment and the voltage phase



Localizing Loads in Microgrids

Using High-Precision Voltage Phase ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

difference across that line segment. Linearly scaling the length of

a line segment causes |ZT | to be scaled linearly, leaving all other

parameters unchanged; this, in turn, causes the entire term within

the arctan() to be scaled linearly. Additionally, because |ZR | � |ZT |,
it is known that the term within the arctan()will equal a value near

0. Finally, the arctan() function is known to approximate the linear

function f (x) = x for values near 0, therefore we know that θVR
will have an approximately linear response with respect to the

length of a line.

3.2 Grid Graph Model

The load localization method described in this work is based on a

comparison of voltage phase measurements collected from meters

throughout the distribution grid. The method requires two sets of

inputs: the first is the set of voltage phase measurements, and the

second is a representation of the electrical topology (or "wiring") of

the microgrid. We model the electrical topology as a directed rooted

tree (or "in-tree"), where all edges point from a node to its parent

and together comprise paths which all point to the root of the tree.

As depicted in Figure 4, each node xi in the tree represents a meter

or a branching point in the grid, and each edge represents a line

segment that connects a meter or branch point to a neighboring

meter or branch point. The root node x1 represents the meter or

branch point which is the immediate neighbor of the source in the

grid. Each node xi has two properties: a binary propertymi that is

true when a node is a meter and false when the node is a branching

point, and a numerical property di representing the line distance
from the node to the source. The line distance is calculated from

the physical length of the distribution lines when all line segments

consist of the same type of wiring. However, the line distance can

alternatively represent an impedance in cases where not all line

segments have the same gauge or other electrical properties.

Figure 4: Example instance of the gridmodel generated from

the electrical topology of a microgrid

The topological tree model is constructed from a subsection of

the grid which we call the "localizable zone" of the grid. This zone

represents the area of the grid in which our method can localize a

load, and it is defined as the union of all paths between the location

of the root node and the location of each individual meter in the

grid. The set of line segments not in this zone consists of "leaf"

segments which do not have a meter at the point of termination,

and the "trunk" segment which connects the source to the root

node. Any load present outside of the zone will be localized to the

point in the zone closest to the real location. Grid developers can

maximize the size of the localizable zone by ensuring that a meter is

placed near the source and that all leaf line segments have a meter

at the point of termination.

4 LOCALIZATION METHOD

Algorithm 1: The Ph() function generates node phases given

a load location

Input: Finite set X = {x1,x2, . . . ,xn } of nodes,
the node xk associated with the load,

the distance c of the load from the source

Output: Finite set P = {p1,p2, . . . ,pn } of normalized node

voltage phases

1 declare empty set P

2 for i ← 1 to n do

3 ancestor ← lowest_common_ancestor(xi ,xk )

4 if ancestor = xk then

5 pi ← c

6 else

7 pi ← distance(ancestor )

8 for i ← 1 to n do

9 pi ← pi/largest_magnitude_in(P)

10 return P

In order to localize loads in the grid, we first define a phase

function Ph() which, given a load location, calculates the expected

Figure 5: Example of the phase function output given an

electrical topology and load location
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relative voltage phases at each node (see Algorithm 1). As inputs,

the function takes the set of nodes X , the node xk associated with

the load, and the line distance c between the load and the source.

The node xk associated with the load is defined as the child node

of the line segment the load is connected to. For each node xi in
the grid, the expected voltage phase pi at that node is determined

by the lowest common ancestor (LCA) of the node xi and the load-

associated node xk . The lowest common ancestor of two nodes is

the deepest node which has both nodes as descendants. (Of note is

the fact that if one of the nodes is a descendant of the other then

that other node is the LCA. This is because each node is defined

to be a descendant of itself.) Each of the voltage phases pi is then
scaled by the voltage phase with the largest magnitude. The result

is the set P consisting of relative phases pi with values between 0

and 1, which is returned by the function. Figure 5 shows a simple

example of the output of Ph() given a load connected 40 units away

from the source.

Using the phase function Ph(), we then construct a search space

that can be queried using a host of optimization techniques. For the

sake of simplicity, we employ the widely-adopted nearest neighbor

search (NNS) technique in order to localize a load. The search space

is represented by the finite set S , where each si is itself a set and
equals the output of the phase function Ph() at a given load location.

The set S is constructed by starting with a load at the root node and

linearly scanning the load across all line segments in the grid, using

a chosen interval. For example, in order to perform localization at

a 1-meter resolution one would set the interval to 1 meter. If the

grid in this scenario consists of a total of 1000 meters, then the set

S will contain 1001 sets of relative phases.

Once a search space S is defined, it can be used to localize a given

query point q. When a load is connected to an unpopulated grid,

q is the set of phase measurements from each meter in the grid,

normalized such that they can be directly compared to the sets S .
When a load is connected to a populated grid, q is the difference

in phase at each node between the current measurement and the

previous measurement, taken before the appearance of the load.

To determine the location corresponding to q, we calculate the

dissimilarity for each si and q using the Euclidean distance function

d(s ′i ,q) =
√
(s ′i,1 − q1)2 + (s

′
i,2 − q2)2 + · · · + (s

′
i,n − qn )2,

where s ′i is the subset of si containing phase estimates of meter

nodes, and excluding those of branch nodes. The location corre-

sponding to the s ′i with the lowest dissimilarity then indicates the

location of q.

5 EVALUATION

In this section we describe our synthetic load model, evaluate our

localization method at scale in simulation, and discuss experimental

validation on an in-lab testbed.

5.1 Synthetic Load Model

While electrical devices and appliances are often thought of as draw-

ing a stable amount of power over time, in reality a load’s power

consumption is constantly varying. These variations in power cause

proportional variations in voltage phase across a grid. Figure 6

shows example traces of this phase jitter for (a) a 72-Watt incan-

descent light bulb and (b) a 50-Watt floor fan. These traces were

collected with the loads powered through 30.48 m (100 ft) of 16

AWG two-conductor wire. The incandescent bulb is shown to ex-

hibit a voltage phase that varies by approximately 5 nanoseconds

(or 5% of the phase), while the voltage phase of the floor fan varies

by a significantly larger 60 nanoseconds (10% of the phase). This

voltage phase jitter is the dominant source of error for the local-

ization method presented in this work; hence, understanding and

accurately modeling this phenomenon is a critical part of our eval-

uation.

We build on top of the load model in the "short transmission line"

case by representing loads as random impedance variables. This

synthetic load model is not used by our localization method but

rather is used by the simulator to mimic the "noisiness" of real loads.

Hence, the model is presented as a part of evaluation. A synthetic

load is defined as a random variable

D ∼ Z ∗ N (μ,σ 2),

where Z = R + jX and μ = 1.

A synthetic load D consists of a complex impedance Z and a

normally-distributed random noise function N (μ,σ 2) with mean

μ equal to 1 and variance σ 2 determining the amount of jitter. We

have found that for both linear and non-linear loads, the measured

voltage phase tends to be normally distributed and closely matches

our load model.

Table 1: Load Set

Load R (Ω) X (Ω) σ

Incandescent Bulb 201.0 0.0 0.009

Floor Fan 288.9 22.3 0.016

Desk Fan 558.1 98.2 0.013

LED Bulb 704.2 54.1 0.032

5.1.1 Load Set. In order to populate our microgrid simulator,

we characterized a small collection of loads we call the Load Set

using a laboratory testbed. Devices were powered through 30.48 me-

ters (100 feet) of two-conductor 16 AWG wire and high-precision

voltage measurements were collected in order to estimate load

impedance and noise of each device. The Load Set is shown in Ta-

ble 1 and consists of a 72-Watt incandescent light bulb, a 50-Watt

floor fan, a 25-Watt desk fan, and a 20-Watt LED bulb. These par-

ticular loads were chosen to represent the three major categories

of loads: purely-resistive linear loads (incandescent bulb), induc-

tive/capacitive linear loads (fans), and non-linear loads (LED bulb).

These loads were also chosen because they are commonly used by

customers in rural microgrids. Each load in the load set is char-

acterized by a resistance R, a reactance X , and a variance σ . The
properties of the loads in the set are used by the simulator to gen-

erate synthetic loads for localizing and for simulating background

noise. One special case is the LED bulb, which is a non-linear load

that we are representing using its linear properties. While doing
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(b) 50-Watt floor fan

Figure 6: Measured voltage phase jitter distribution for incandescent bulb and floor fan

this does not yield an accurate representation of the LED bulb volt-

age waveform in simulation, we found through experimentation

on our testbed that we still achieved accurate voltage phase mea-

surements through zero-crossing detection. We believe that the

handling of arbitrary non-linear loads would require a redesign

of the microgrid simulator and is a promising direction for future

work on this topic.

Employing different load types, we found that both resistance

and reactance (due to capacitance or inductance) have a significant

effect on voltage phase. This can be seen in Figure 6, which shows

that the voltage phase shift and phase noise of (b) the 50-Watt floor

fan is significantly higher than that of the (a) 72-Watt incandes-

cent bulb, despite the fact that the bulb draws more power. This

illustrates a counterintuitive result where the localization method

based on voltage phase will localize a low-power load more accu-

rately than a high-power load in certain cases. One such corner

case is illustrated, in which there is only a single load connected on

the microgrid. Note that both Table 1 and Figure 6 are calculated

using phase data that has some filtering already applied; specifi-

cally, each phase reading is calculated based on the average of 60

zero-crossings over a 1-second period, where the zero-crossings

are passed through an RC low-pass filter with a cut-off frequency

of 11.4 kHz.

5.2 Simulator Design

In order to evaluate load localization at scale, we developed a cus-

tom SPICE-based microgrid simulator for simulating arbitrary grid

topologies. The simulator consists of two stages: the SPICE stage

and the localization stage.

The inputs to the simulator are fed into the SPICE stage, consist-

ing of a graphical model of the microgrid electrical topology (or

"wiring") and the Load Set. The topological information is used to

build a circuit representation of the grid, where each 1-meter seg-

ment of wire is modeled as a "short transmission line" component.

The electrical topology also defines the locations of energy meters

in the grid. Loads are represented by the synthetic load model,

through which they are described by a characteristic resistance R,
reactance X , and standard deviation of noise σ . The user chooses a
target load and a set of background loads from the Load Set, as well

as the locations of the loads. The set of loads and locations can be

either pre-defined or chosen randomly by the simulator. The full

circuit is then built and the steady-state AC response is simulated,

generating the set q of voltage phases at energy meter locations.

Figure 7: Electrical topology of Les Anglais microgrid subdi-

vision

The output of the SPICE stage is used as the input to the lo-

calization stage of the simulator. As described in Section 4, this

stage employs the topology input and the phase function Ph() to

construct a search space S . The simulator then linearly searches

the set within S that has the lowest dissimilarity to the query set

q. Although linear search of a space is often considered inefficient,

we have found that it works well in this case because the search

space is small, growing proportionally with the sum of the lengths

of the line segments in the grid.

For our evaluation, we used a subdivision of the microgrid in Les

Anglais, Haiti, shown in Figure 7, as the electrical topology input of

our simulations. The entire microgrid consists of five single-phase

low-voltage subdivisions powered by the three-phase medium-

voltage distribution system through five separate transformers.

Due to voltage distortions across transformers, the voltage phase-

based method presented in this work cannot localize loads across

transformers, requiring that each subdivision be handled as a sepa-

rate microgrid. For the sake of practicality, a single subdivision was

employed in simulation. The subdivision consists of 800 meters of

two-conductor 2 AWG wire, separated by approximately 2 meters,

carrying single-phase 120-Volt AC power. In the physical microgrid,

this low-voltage line is strung along utility poles, represented by

the white line segments and numbers in Figure 7. The location of

the source is indicated by a large white point and the locations of

the meters are indicated by small red points.
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(b) 100 random background loads

Figure 8: Location estimate distributions for a 72-Watt incandescent light bulb given 10 background loads and 100 background

loads

5.2.1 Simulation Results. Through simulations on the synthetic

Les Anglais electrical topology, we aimed to capture the relation-

ship between localization error and background noise on the lines,

and provide insight into how well we could expect to localize loads

on a real microgrid at run-time. Figure 8 shows a comparison of lo-

calization error between a low and high background noise scenario.

Figure 8(a) represents the distribution of localization error for the

72-Watt incandescent bulb connected 100 meters from the source

on a grid with 10 random background loads; Figure 8(b) shows the

same situation with 100 background loads. We see that the error

distribution is significantly larger when there is more background

noise due to a larger number of loads. We also see that in both

cases in Figure 8, our localization method tends to overestimate the

distance of the load. This is a general behavior of our method that

applies to all cases of localization, and is a result of our model’s

assumption that load distance and phase have a linear relationship,

which is in fact an approximation of the real relationship. This

bias is more significant under heavy load and could potentially be

accounted for with a more sophisticated model.
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Figure 9: 90th percentile localization error (in meters) with

respect to actual load location, for different load types given

a variable number of background loads. (Lower localization

error is better. Increasing the number of background loads re-

sults in less accurate load localization.)
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Figure 10: 90th percentile localization error (in meters) with

respect to actual load location, for different load types given

the quality of time synchronization of devices. (Lower local-

ization error is better. More accurate time synchronization re-

sults in more accurate load localization.)

We also investigated how different load types compare in terms

of localization error, given an increasing amount of background

noise. This was done by simulating each type of load on the grid

topology with a gradually increasing number of background loads,

from 1 to 300. The target load was placed 100 meters from the

source, while the background loads were randomly chosen from

the Load Set and placed at random locations. The results in Figure 9

show how 90th percentile localization error increases for each

load type as the number of background nodes increases (90% of

errors were below the given threshold). Each data point represents

the 90th percentile error out of 100 simulations. We see that while

localization error for all loads tends to grow logarithmically with the

number of background nodes, loads vary greatly in terms of absolute

localizability. The results suggest that load power is the main factor

determining localization error, with the 72-Watt incandescent bulb

exhibiting an error of up to 8.92 meters with the grid under normal

load, while the 20-Watt LED bulb exhibits an error up to 40.07

meters. Errors for all load types are higher under heavy load, when

the voltage drops by more than 2.5%, and higher still for over-load,
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when the voltage drops by more than 5%. In practice, the over-

load case should be very uncommon because 120-Volt at 60 Hz

systems are generally specified to voltage tolerances of no more

than ±5%. These results would be different for systems such as

those conforming to the European Union’s 230 Volt ±10% at 50 Hz

standards.

Finally, we investigated the impact of time synchronization

across themetering network on localization error. Thiswas achieved

by adding a module to the simulator that would add a specified

amount of random jitter to each phase value that was calculated

during the SPICE simulation stage. The module models timing

jitter as a Gaussian random variable and applies it one of two

ways, using the "broadcast" mode or the "multi-hop" mode. The

"broadcast" mode involves applying jitter equally to every node and

was used to represent time synchronization in a network of GPS-

connected micro-PMUs, while the "multi-hop" mode represents

time synchronization in a mesh network, where synchronization

of a node depends on the number of hops between the node and

the gateway.

Figure 10 shows how the 90th percentile localization error for

each load type exhibits an exponential-like increase as the time

synchronization worsens, with the timing jitter being applied using

the "broadcast" mode. We define quality of time synchronization in

terms of worst-case synchronization error, where the worst-case

error is equal to three standard deviations from the correct time.

Loads were simulated on the microgrid subsection, 100 meters

from the source, and with 100 random background loads placed

at random locations. In both Figure 9 and Figure 10, variations in

the results are due to each data point being derived from the 90th

percentile of 100 simulations, requiring a significant amount of

time to execute. "Smoother"-looking results can be generated by

running more iterations of the simulation.

Dashed grey lines indicate the localization performance assum-

ing the timing resolution of a micro-PMU network and a "best-case"

scenario in which raw GPS receiver timing is guaranteed. The

dashed black line indicates the localization performance and the

equivalent "broadcast" worst-case time synchronization error of

our multi-hop 802.15.4 network, equal to 390 nanoseconds for the

topology used in these simulations. Equivalent "broadcast" synchro-

nization performance was determined by simulating timing jitter

in the "multi-hop" mode and matching the two modes in terms

of equivalent localization error. Our multi-hop 802.15.4 network,

characterized by a worst-case time synchronization error of 240

nanoseconds per hop, was found to have an equivalent "broadcast"

mode worst-case error of 390 nanoseconds [17]. Figure 10 shows

that this enables the network to localize the 72-Watt bulb and the 50-

Watt fan to approximately 30 and 40 meters, respectively. While our

network is not as accurate as the "best-case" GPS receiver network,

which achieves time synchronization within 100 nanoseconds, it

does outperform the micro-PMU network, which has a worst-case

error of 460 nanoseconds and is considerably more costly.

5.3 Experimental Validation

We experimentally validated our models and simulation results us-

ing a small, in-labmicrogrid testbed, shown in Figure 11. The testbed

consists of 5 segments of 30.48-meter (100 feet), two-conductor

30.48 m 
(100 ft) 

Localizable Zone 

120V, 60Hz 

Figure 11: Microgrid testbed diagram and photo

16 AWG wire connecting two metering points on two separate

branches to an AC power source. Phase data at the source and

two metering points was collected using a custom high-voltage

comparator circuit designed to measure voltage zero-crossings and

output a square wave signal. The square wave signal was sampled

by a logic analyzer at 500 mega-samples per second, and the data

was collected by a laptop computer.

Using the testbed, we were able to validate our line model and

load model, including the fact that voltage phase and voltage phase

error increase approximately linearly with the line distance of a

load. In addition, we were able to test our localization method with

real loads. Figure 12 shows distributions of localization results as

multiple incandescent bulbs are connected to the testbed one-by-

one. Each data point in Figure 12 represents a 1-second sample

calculated from the average of 60 zero-crossings which have been

filtered through a passive RC filter with a cutoff frequency of 11.4

kHz. The example also shows the effect of undesirable phase shift

caused by temperature change in the measurement circuit compo-

nents, which could be corrected for through calibration in future

iterations of the hardware. Despite these effects, we found that

overall testbed localization results were both accurate and precise

enough to warrant future evaluation in a full-scale deployment.

6 CONCLUSIONS

In this paper, we presented a method for localizing unauthorized

loads through the high-precision measurement of voltage phase.

The use of voltage, rather than current, makes this a relatively
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Figure 12: Localization error of multiple loads running on the microgrid testbed

low-cost and unintrusive method for use with smart meters in mi-

crogrids. We evaluated our approach using SPICE-based simulation

on a real-world microgrid topology and validated our results on a

laboratory microgrid testbed. Through our evaluation, we gained

a deeper understanding of the relationship between background

noise on lines, time synchronization, and localization error, and

gained insight into the localization method’s potential real-world

performance.
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