
SMIF: A Framework for Secure Multicast

Intercommunication

Dawn Song Yang-hua Chu Adrian Perrig

December 20, 1997

1

Contents

1 Introduction 1

2 Motivation 2

3 SMIF Requirements 2

4 SMIF building blocks 6

5 Simple Architecture 10

5.1 Scenario . 10

5.2 Architecture and Protocol . 10

5.3 Analysis . 11

6 Architecture With Con�dentiality 11

6.1 Scenario . 12

6.2 Architecture and Protocol . 12

6.3 Security analysis . 12

6.4 Performance analysis . 13

7 Architecture 3 14

7.1 Scenario . 14

7.2 Architecture . 14

7.3 Protocol . 15

7.4 Security analysis . 15

7.5 Performance Analysis . 16

7.6 Alternative Architecture . 16

8 Extension based on Active Networks and IPv6 18

9 Threat Analysis 20

9.1 Multicast as a Tool of Threat 21

10 Conclusion 22

11 Acknowledgements 22

1

1 Introduction

In the view of the constantly expanding Internet, more applications make

use of the Internet every day. Internet telephony, video conferencing, up-to-

date stock quotes, etc. just to mention a few. Extending an application to

make use of the Internet may greatly increase the functionality but on the

other hand security and privacy issues arise. Anybody on the planet might

interfere or cause problems.

Since security is a diÆcult problem to solve, new Internet applications or

protocols postpone security issues until later versions. The same observation

applies to multicast - the �rst implementations did not address security.

We believe that security is important and a necessary component for many

serious applications. Therefore we feel that adding security and privacy

capabilities to multicast of high importance.

In this report we describe the SMIF framework, an environment that

supplies a system designer with building blocks that let him realize a wide

variety of di�erent security requirements. In addition the designer also has a

simpler task as he does not need to be familiar with security subtleties. This

approach leads to a more complicated environment than a simple o�-the-

shelf solution. Because there is no easy method that solves all combinations

of security requirements optimally our approach is the right way to go.

Terminology

To illustrate the protocols we will use our friends Alice and Bob to describe

the good users and Trent acts as a trusted server. Unfortunately in the real

world we also have evil and malicious personalities, represented by Mallory

who plays the malicious attacker and Eve who likes to eavesdrop. These

personalities are also described in [Sch96].

The terminology used to describe multicast participants is senders or

receivers/subscribers if we want to distinguish between the capability of

sending vs receiving and we just use member if the distinction is not impor-

tant in the context. A user may join or subscribe to a multicast group. He

can either leave the group voluntarily or get expelled.

The notation for cryptographic methods are the following. When we

encrypt a message M with key K we write fMgK. The hash of message M

is denoted as H(M).

SMIF: A Framework for Secure Multicast Intercommunication

2 3 SMIF Requirements

2 Motivation

In today's Internet many applications demand security related features. In

the view of new Internet services, such as video distribution or video con-

ferencing, multicast will become an important technique to reduce network

traÆc. Because of the possibly large number of subscribers and the possi-

bility for anybody to join the group, security becomes crucial for the correct

behavior of multicast applications. Let's take a look at various applications

and their security requirements.

� For a military secure channel we would like to have the highest se-

crecy (con�dentiality) and authentication achievable. It also requires

protection from traÆc analysis.

� Commercial organizations require con�dentiality and authentication

for their secure communications such as video conferencing.

� Some organized chatting groups such as a virtual classroom need

sender authorization to protect from malicious spamming of the group.

� An unorganized group such as non-arbitrated chatting-room may want

both sender and receiver anonymity and group con�dentiality.

� Commercial data/information distribution such as stock market data,

weather broadcast or other database querying need sender authenti-

cation and atomicity with billing. Some receivers may want to have

privacy (anonymity) too.

� Internet casinos may require customer anonymity and fairness for the

game.

3 SMIF Requirements

In section 2 we have seen that applications demand various levels of security

as well as di�erent security properties. We have established a list of security

capabilities of SMIF that are fully supported. Sections 5 to 7 explain how to

use the SMIF basic building blocks to achieve any combination of security

requirements.

The security requirements we address in SMIF are: con�dentiality, pri-

vacy of sender and receiver/subscriber, source integrity, authentication of

the sender, non-repudiation and sender authorization.

SMIF: A Framework for Secure Multicast Intercommunication

3

Con�dentiality

Con�dentiality is also known as destination security or secrecy of data. Eve

the eavesdropper should not be able to infer any information about the con-

tent by reading data packets on the network. Only the person for which the

data is destined is able to infer meaningful information from data packets.

More speci�cally, a multicast message that implements con�dentiality

must therefore only consist of encrypted information. All subscribed users

share a common secret that allows them to decrypt the information.

[Mit97] addressed the issue that new group members should also not be

able to decrypt previous information of the multicast group. The shared

secret must therefore change each time a new member joins the group.

Similarly a subscriber that leaves the group should not be capable of

decrypting subsequent messages. Especially when the member is expelled

by the group. Clearly, the shared secret must also change in this case.

Anonymity of Sender and Privacy of Receiver

In the way the Internet is used predominantly today, many users wish to

retain their privacy. We can distinguish between privacy of the user with

respect to other users on the same local network or Internet for receiving

information and anonymity for sending information.

Unfortunately privacy and anonymity are not end-to-end relations such

as con�dentiality. When we encrypt a message to receive con�dentiality

the lower network layers don't need to provide encryption. But to reach

anonymity all of the layers need to provide it. If only one layer violates

anonymity we loose it for all layers. Since SMIF is mostly independent of

the underlying layers we cannot guarantee absolute anonymity. Instead we

will rely on a trusted third party to achieve anonymity. To attain privacy

we will encrypt the data so no eavesdropper can infer what information the

subscriber is looking at. But again, the underlying layers may violate the

privacy. For example an eavesdropper may �nd out the multicast group a

user is subscribed to through the IGMP protocol. He can then subscribe to

the group as well to \eavesdrop" directly.

Another privacy issue is linked to expelling of members. In the case

where multiple members are expelled at once, the expelling step should

be atomic and should not allow any member in the group to �nd out the

identities of the other expelled members. We would like to prevent scenarios

where expelled members might collaborate to exchange information to stay

in the group. Another issue is where a group member directly contacts an

SMIF: A Framework for Secure Multicast Intercommunication

4 3 SMIF Requirements

expelled member to o�er some \special deal".

Source Integrity

Data integrity is an important property required by many applications. Sen-

sitive data that would give an attacker an advantage by changing it, must

therefore be protected. By requiring a multicast message to satisfy source

integrity we express that nobody can change the information between the

source and the destination.

This can be especially useful for news distribution, stock market quotes

or even advertisements in articles we read. In the last case mentioned an

ISP could potentially make pro�t by replacing commercial Web pages and

changing the advertisements as the pages are forwarded to the client. The

ISP could make pro�t by charging customers for insertion of their advertise-

ments.

Authentication of Sender

The past has shown that impersonation or obfuscation of the identity is

easy to achieve in TCP/IP systems. Especially the IP address spoo�ng or

TCP SYN
ooding attacks both rely on wrong IP source addresses. Multi-

cast groups carrying sensitive information need to protect the senders from

impersonation and the receivers from falsi�ed data.

The classical solution to these problems is to add an authentication mech-

anism to the protocol. This allows the receiver to unambiguously authenti-

cate the sender of every message, preventing counterfeiting.

Non-repudiation of message

In today's Internet, message packets are routed through many untrusted

domains. A malicious attacker sitting somewhere in the network might

change the contents of information. This could be fatal for sensitive data

such as stock market quotes or medical documents.

The receiver therefore wants to make sure that the data was really sent

by the sender and has not been changed underway. Integrity of the message

in conjunction with authentication of the sender achieve these requirements.

In another setting the sender wants to have a proof that a certain message

was really sent by a certain person. We call this non-repudiation of the

message. This can be useful for example for electronic commerce protocols

SMIF: A Framework for Secure Multicast Intercommunication

5

or web server replies where the client demands legally binding responses1.

We would like to add that both of the above settings are equivalent. In

either case we need the non-repudiation property of the sent messages. This

can be achieved by using the integrity of messages as well as authentication

of senders described above.

Authorization of Sender

Another requirement of some multicast groups is the authorization of the

sender. Any subscriber only accepts messages from authorized senders. One

of our design rationales was not to modify the underlying multicast protocol.

We have therefore the problem that any member of the multicast group

can send messages to the group and every other member will receive them.

Since we are not changing the underlying multicast protocol in SMIF, we

have no way of preventing spammers (unauthorized senders) directly. But

we provide for a mechanism that makes it easy for any receiver to verify the

authorization of a sender to send a message.

Scalability

Scalability becomes an issue in any distributed system which involves a pos-

sibly large number of users. Especially in multicast we might have millions of

subscribers in one multicast group if we consider Internet television. Under

this viewpoint we need to be very careful to design the algorithms accord-

ingly. For example if our key distribution scheme is quadratic in the number

of group members n, we would have a poor scalability for large groups.

Our design rationale for SMIF therefore involves good scalability to make

the system work even if the group is highly dynamic and millions of sub-

scribers join. We want to keep the computation overhead low as well as the

state storage overhead necessary for the security.

Robustness

Since no network is perfect SMIF must take into account that any router

or host may fail. The security must not rely on assumptions on the net-

work reliability. Conversely we also want to retain functionality even if the

network has a non-negligible error rate.

1We assume in this case that the web server sends its most frequently read pages over

a multicast group

SMIF: A Framework for Secure Multicast Intercommunication

6 4 SMIF building blocks

Basically speaking, SMIF should remain functional even if one or many

main components fail. We can achieve this by adding redundancy. A single

point of failure is therefore unacceptable.

Multicast Protocol Independent

SMIF is a high-level design and does not rely on speci�c underlying protocol

features. Further we don't change the underlying multicast semantics.

4 SMIF building blocks

In section 3 we have established the necessary requirements for secure multi-

cast. In this section we present a set of building blocks that we use to realize

any combination of security requirements. The blocks we use are reliable

multicast, cryptographic algorithms, group key management and a trusted

server.

Cryptographic Algorithms

The problem of achieving con�dentiality is solved by using encryption tech-

niques as described in [Sch96]. For speed issues we will use symmetric al-

gorithms such as IDEA or DES. In the case where we need asymmetric

encryption we will still use a symmetric algorithm to encrypt the message

with a new random key and we only encrypt the random key with the asym-

metric method, resulting in a large speedup.

The asymmetric algorithm we use is RSA with a minimum of 512 bits

or an elliptic curve algorithm. RSA allows us to encrypt information as

well as producing digital signatures. The RSA public keys are distributed

by using an existing public key infrastructure as described in the following

paragraph.

A public key infrastructure aims to bind a principals identity to a pub-

lic key. A principal, which can be a human or an organization, register its

identity and the corresponding public key to some trusted entities in the

infrastructure. The trusted entities, who set and publish guidelines, cer-

tify new principals who comply with the guideline, and validate the binding

upon request. This is the basic assumption by well-known public key infras-

tructures such as X.509 and PGP. The di�erence is in turns of architecture;

namely how these certi�cation authorities interact with each other to make

it scalable to a large number of principals.

SMIF: A Framework for Secure Multicast Intercommunication

7

Currently there are two widely used public infrastructure, X.509 and

PGP. X.509 has a hierarchical structure equivalent to a tree. The root is

called the Internet Policy Registration Authority (IPRA). Beneath the IPRA

are Policy Certi�cation Authorities (PCA), each of which establishes and

publishes its policies for registration of users or organizations. PCAs in turn

certify CAs, which in turn certify subordinate CAs, users, or organizations.

When user A wants to authenticate user B's public key, user A �nds the

proper certi�cation path by traversing up the certi�cation hierarchy until a

mutual CA is reached and then traversing down the hierarchy until user B

is reached.

PGP adopts the \Web of Trust" model, where each principal can also

a CA, and a network of principals forms a public key infrastructure. To

establish a certi�cation path from user A to B, user A queries a list of trusted

principals about user B, which can in turn query their trusted principals,

until user B is reached. The problem of PGP is the assumption that trust

is transitive. If user A trust user B's public key is correct, it does not imply

user A trust user B's judgement on user B's list of trusted public keys.

To achieve the message integrity we need a hashing algorithm. Since

MD5 has been proven not to be robust enough against collisions we will use

SHA or RIPE-MD.

Server based

To maintain a secure multicast group, we need to address several issues. The

�rst one is how to establish the group. The second one is how a person joins

the group, ie. the policy for joining. The third one is that for people who

are already in the group, who can send the messages and who can listen to

which kind of messages. The forth one is that what need to be done when

some people leave the group. We choose a centralized scheme to address all

these issues. For the broadcast scheme where only one sender can send such

as magazine distribution where the publisher or the sender will be the server

to start up the group and decide who can join the group and who need to

leave the group and all that kind of policies. For the multicast scheme, we

have an explicit server to establish and enforce these polices.

Key management

The next building block is the key management. A person needs a shared

secret or a public key certi�cate to authenticate itself to the server to join

the group. It also needs a group session key to decrypt the messages. In a

SMIF: A Framework for Secure Multicast Intercommunication

8 4 SMIF building blocks

sender authorization scheme, senders also need a sending key. In a sender

authentication scheme, senders need keys to sign the messages. To achieve

a small cost for updating group session keys, we need some keys to encrypt

the new group session key. The requirement of the signature and encryption

functionalities make it diÆcult to design a scalable and secure key manage-

ment scheme.

One solution for authentication of sender (or client) is to use the public

key infrastructure in which everybody has its own public/private key pair.

When a user wants to join the multicast group, it will use its private key

to authenticate to the server to get the group key like the X.509 or other

public key structures. The server will assign keys to the client based on the

authentication of the client and its access control list. Also the authentica-

tion of senders in this structure seems very straightforward. A sender can

simply sign its message with its private key and multicast it. The disadvan-

tage for this is that the public key structure is usually very expensive. We

need to trust a third party, namely the Certi�cation Authority (CA) to au-

thenticate the users and create valid certi�cates. Public key encryption and

decryption are also an order of magnitude slower than the equivalent private

key algorithms. But the advantage is that by having a public/private key

pair, a client basically can authenticate to anybody else by the public key

certi�cates.

The second solution for authentication of sender (or client) is the private

key infrastructure. For example, after the client pays the money, the server

will establish a symmetric key between itself and the client. Later the client

will use its symmetric key to authenticate itself to the server. In general,

symmetric key cryptography has a low overhead and keys are easy and very

fast to generate. But a symmetric key structure can only let the client to

authenticate itself to the server since it's a shared key between the itself and

the server. So for sender authentication, we can either use the public key as

we described in last paragraph, or use the private key structure in which the

sender will send the message signed by its symmetric key to the server �rst,

and then the server will multicast the message signed by its own private key

including the sender's name.

To do group session key updates, one way is that the server encrypts the

new group session key with every trusted member's public key or symmetric

key and then unicast it to the trusted member. But in this case the server

needs to send N messages for one key update which is obviously not scalable.

To decrease the cost, we use the approach presented in [WHA97]. The key

server keeps a key hierarchy of symmetric keys as shown in �gure 1. Each

user at the leaf node of the tree knows all the keys on the path to the root.

SMIF: A Framework for Secure Multicast Intercommunication

9

For example user 2 knows key E, B and A. Key A is used for data encryption

in the multicast group. In case that a key needs to be changed, the new key

only needs to be encrypted with the two children keys and re-sent.

Key E Key F Key G

Key C

Key A

Key B

Key D

User 2User 1 User 4User 3

Figure 1: Key management scheme

This scheme makes group re-key very cheap. For example when a new

user joins, he gets all the keys from his leaf node up to the root. It is easy

to see that the number of keys each user needs is logarithmic in the number

of members. This is because the height of the tree h = log2(n) with n as

the number of group members. In case a member leaves the group, we need

to change all the keys the member has. The re-key is made by changing all

keys from the leaf node up to the root. Let's explain how this works with an

example. Let's assume user 3 leaves the group. This implies that we need

to change keys C and A. Since key F is only used for user 3 we don't need

to change it. To change key C, the server encrypts the new key C' with

key G. To change key A, the new key A' is encrypted with the old key B

and the new key C'. Therefore every member except user 3 has again all the

necessary group keys.

This scheme scales well for even a large number of members. We can see

that even if we have 109 members, each member only needs 30 keys. Each

join or leave also needs only 60 encryptions. Unfortunately the number of

keys that need to be managed by the server is 2 � n. The number of key

changes is also substantial for highly dynamic groups. But we assume that

generating good fresh random symmetric keys is feasible.

SMIF: A Framework for Secure Multicast Intercommunication

10 5 Simple Architecture

Reliable Multicast

Because there are security-critical information (such as group secret key)

being exchanged over the multicast protocol, we are building our security

multicast framework on top of a reliable multicast service. It is worth noting

that the multicast messages related to maintaining secure service may piggy

back on top of the regular multicast messages. Since most reliable multicast

services are initiated by receiver, receiver has a choice not to recover the lost

message if the receiver determines that the multicast message is not critical.

Providing a reliable multicast is still under heavy research. Proposed

schemes include SRM described in [FJM+95] and STROM [XMZY97].

Alternatively, we may choose to replace the assumption of a reliable mul-

ticast service with unreliable multicast service, and have a reliable unicast as

a channel to convey security-critical information that is lost in the multicast

protocol. However, we speculate that when the multicast group grows large

in size, the chance of missing packets increase up to a point that it becomes

more economical to use existing reliable multicast than opening individual

reliable unicast sessions.

5 Simple Architecture

In this simple architecture, we are exploring a secure multicast architecture

that supports integrity and authenticity properties in an eÆcient manner.

5.1 Scenario

Advertisement revenues is recognized as the major �nancial sponsorship of

the free (and valuable) information on the Internet today. To ensure that

their money is paid for, advertisement agencies have strong demand that

the advertisements be delivered to the receiver without error or modi�ca-

tion. Potentially, malicious Mallory could swap the advertisements during

transmission and make money with the injected advertisements.

5.2 Architecture and Protocol

This architecture requires a reliable multicast to deliver both the multicast

messages and their associated security information. The picture looks like

the following:

Alice, the sender, has a public/private key pair for the digital signature.

Alice publishes her public key using the public key infrastructure. Bob, the

SMIF: A Framework for Secure Multicast Intercommunication

5.3 Analysis 11

receiver, can verify Alice's public key using the same public key infrastruc-

ture. Note that Bob is anonymous because he does not need to authenticate

to Alice to receive the broadcast message.

The protocol runs as follows:

1. For a given message M, a given one-way hash algorithm H, and a given

signature key pair, (K.Alice.priv, K.Alice.pub), Alice signs the hash of

the message, and broadcasts to the group:

Alice) Group: [M, H(M), fH(M)gK.Alice.priv]

2. Bob, upon receiving the message, veri�es that the signature is correct

based on his knowledge of Alice's public key, and that the hash H(M)

corresponds to the message M.

5.3 Analysis

As a malicious middle man, Mallory cannot alter H(M) because it is pro-

tected by Alice's signature. Therefore, the integrity of M is preserved by

the hash function H. Moreover, Mallory cannot pretend to be Alice because

he cannot construct Alice's signature.

Digital signature works well if the broadcast message is small and is

completely known at the time of broadcasting (so Alice can compute the

hash). However, messages such as video streams or live stock quotes do not

�t well with conventional digital signature. As a replacement, we can use

the stream digital signature as introduced in [GR97].

This architecture is described as a broadcast application. However, we

can easily translate the architecture into a multicast application, where a

member plays both roles as Alice (the sender) and Bob (the receiver). The

main problem is when the multicast group gets very large, each receiver must

keep track of all the public keys necessary to authenticate all the senders in

a multicast group. Moreover, this architecture fails to address some other

important properties such as sender authorization and con�dentiality.

6 Architecture With Con�dentiality

We extend the previous architecture to include con�dentiality. Under this

architecture, every member in the multicast group can send and receive

messages.

SMIF: A Framework for Secure Multicast Intercommunication

12 6 Architecture With Con�dentiality

6.1 Scenario

Secure closed-door video conferencing will be an important application to

conduct business meetings over the Internet. The \close-door" policy im-

plies a strong con�dentiality requirement. No one other than the group

members may send messages to and receive messages from the group. We

therefore get a weak authorization since only group members can send valid

messages to the group. The authorization is weak because we don't have a

�ne granularity for sender access control.

By encrypting all group communications we get anonymity and privacy

to eavesdropper. Only if any eavesdropper has the possibility to join the

group we loose anonymity. The anonymity is therefore dependent on the

group join policy.

6.2 Architecture and Protocol

This architecture uses reliable multicast and the group key management

protocol described in section 4 as the main building block. Under group

key management protocol, Trent is the trusted server who is responsible for

admitting and expelling members, while updating fresh group keys during

the process. With a fresh group key (K.Group), the protocol is quite simple:

1. Alice creates the hash of the message H(M) and encrypts together with

her message using K.Group. If authentication is necessary (and hence

her identity is revealed), Alice puts her signature of H(M) before the

encryption. Then she multicasts the encrypted message to the group:

Alice) Group: fM, (H(M) or fH(M)gK.Alice.priv)gK.Group

2. Bob, a member of the group, decrypts the message, veri�es that the

hash matches the message and that Alice's signature is correct (if

available).

6.3 Security analysis

It is easy to see that integrity is guaranteed by the hash function and the

authenticity is guaranteed by Alice's signature. If Alice does not provide

her signature, the authenticity is a weaker statement: \this message comes

from a group member who holds the group key".

Con�dentiality is also preserved under this protocol. As long as a valid

group key is established, any member can encrypt the message with the

SMIF: A Framework for Secure Multicast Intercommunication

6.4 Performance analysis 13

group key before multicasting it to the group. Any other members in the

group can decrypt the message with the same group key, but no eavesdropper

can.

At our secure multicast protocol level, Alice's anonymity is preserved

inside the group if she does not sign with her signature. Her anonymity is

preserved outside the group regardless because no eavesdropper can decrypt

the message. Since anonymity is not end-to-end as mentioned in section 3

we can't guarantee perfect anonymity and privacy because of traÆc analysis

on lower layer protocols.

6.4 Performance analysis

In section 4 we have shown that the group key management is scalable

because it requires only logarithmic overhead for each join and leave. All

the new keys can be encrypted and concatenated in one message which is

sent to the multicast group. The new member gets a short unicast message

from the server. If we have 109 members we have seen that we only need 30

keys. We know that symmetric keys are very short, the longest ones today

use 20 bytes. Symmetric encryption does not make the message longer than

one block-size, which is usually 8 bytes. Therefore the message to the new

user will be at most 24 bytes * 30 which is only 720 bytes. The message

which is multicasted carries each new key encrypted twice. Therefore this

message is only 1440 bytes long. Considering that these calculations are for

one billion subscribers, we can see that the key management overhead on

the network is negligible.

Further we can argue that we can also cluster joins and leaves. This

will make the overhead much smaller when we cluster simultaneous joins in

one subtree since only one update message needs to be sent to the multicast

group. In case leaving members are also localized in the tree, the key update

can also get combined and the update only needs to start from the tree node

that the leaving members have in common. The requirement for atomic

expellation of subsets of members is therefore also satis�ed since no expelled

member stays \longer" in the group than any other.

We have shown that the performance overhead for key management func-

tions is small. Next we investigate how much overhead the encryption and

decryption yields. It is widely known that symmetric encryption algorithms

are very fast to compute. On a Pentium-II based machine we can encrypt

and decrypt at 10 Mbit/s in software. Since the ciphertext is not longer

than the plaintext, security adds no network overhead2. Because a digital

2Only if we use compression algorithms the performance will be much lower with en-

SMIF: A Framework for Secure Multicast Intercommunication

14 7 Architecture 3

signature is also very short (on the order of 20 bytes) this also does not add

any considerable or unscalable overhead either.

7 Architecture 3

In this extended secure multicast architecture, we are trying to address all

the desired security properties listed in section 3, namely integrity, authen-

ticity, sender authorization, sender anonymity, receiver privacy, and most

importantly, con�dentiality.

7.1 Scenario

In Internet gambling, we want anonymity of players. Players don't want

other people to know that they are playing or they win a million dollars. For

most of the games, we also want con�dentiality since fairness is dependent

on this. We also want the authentication of the dealer.

For the military secure communication, usually secrecy has di�erent lev-

els. For di�erent levels of secrecy, di�erent levels of receivers can decrypt

the messages. We also want non-repudiation of messages, authentication

and authorization of senders. Since it's for military security, we don't want

any privacy or anonymity of senders.

For the electronic magazines, we want privacy of the subscribers. Also

we want the authentication of senders (which are the publishers). We also

want the con�dentiality of the data so nobody can read it without paying

for it. And we want integrity so nobody can change the data on its way.

7.2 Architecture

This architecture uses reliable multicast and our group key management

protocol as the main building block. In the group key management protocol

Trent acts as the trusted server and is responsible for admitting and expelling

members, while updating group keys during the process. In addition, Trent

maintains an access control list of authorized senders. Upon receiving a

\send" request, Trent broadcasts the message to the group only if the sender

is in the access control list. No one other than Trent can broadcast to the

group.

cryption. The solution here is to compress the message before encryption.

SMIF: A Framework for Secure Multicast Intercommunication

7.3 Protocol 15

7.3 Protocol

At the beginning of the protocol, we assume the following:

� All members in the group hold the same symmetric group key K.Group

� Alice holds a private key K.Alice, shared only with Trent.

� Trent holds a public and private key pair (K.Trent.pub, K.Trent.priv).

K.Trent.pub is known by all members in the group.

� Trent holds a list of authorized senders.

To send a message to the group, the following steps are performed:

1. Alice sends an encrypted unicast message to Trent using her private

key K.Alice

Alice -> Trent: fMgK.Alice

2. Trent decrypts the message, veri�es that Alice is one of the authorized

senders, encrypts the message with the group key, signs the encrypted

message with his private key, and broadcasts to the group:

Trent -> Group: [fMgK.Group, f H(fMgK.Group) gK.Trent.priv]

3. Bob, one of the members in the group, veri�es that Trent's signature

is correct, and decrypts the message using the group key.

7.4 Security analysis

It is quite easy to see that integrity, sender authorization, and con�dentiality

properties are preserved under the protocol. Integrity is implicit with the

use of symmetric key cryptosystem as long as there are enough redundancies

in the message in which the receiver can verify. Authorization of sender is

guaranteed by Trent's access control list. Con�dentiality is guaranteed by

the Alice's secret key in step 1 and group key in step 2.

It is less obvious what sender authenticity means in this protocol. In step

1, Alice's message is authenticated by the secret key K.Alice shared between

Alice and Trent. In step 2, the Trent's signature simply means \the sender

of this message is authenticated by me and is authorized to send you this

message". To provide conventional message authenticity, Alice can sign her

message at step 1 and later Trent broadcasts the signature with the message.

SMIF: A Framework for Secure Multicast Intercommunication

16 7 Architecture 3

Alternatively, Trent can reveal Alice's identity with the protection of his

digital signature in step 2. Note that there is a con
icting interests between

authenticity and anonymity; our protocol preserves sender anonymity while

maintaining some level of authenticity.

At the protocol level, Alice's anonymity is preserved as long as Trent does

not explicitly leak out Alice's identity. Unfortunately there is a catch. Unlike

encryption, anonymity is not end-to-end; Alice's identity may be leaked at

every level of the protocol stack, such as IP unicast to Trent. The same

argument holds true for receiver privacy. Although this protocol does not

leak any privacy information about Bob, a potential eavesdropper Eve may

listen to Bob's LAN traÆc and learn that Bob belongs to the multicast group

at the lower protocol layer (such as IP multicast and reliable multicast). We

will discuss this further in section ???.

7.5 Performance Analysis

In architecture 2 construction we have shown that group key management

protocol is scalable with logarithmic overhead for each join and leave (section

??). Moreoever, the

7.6 Alternative Architecture

The previous architecture makes Trent, the server, a hot spot, since ev-

ery message must be decrypted by Trent to verify authorization and re-

encrypted it again to preserve con�dentiality. This architecture allows a

sender to send multicast messages directly to the group.

To satisfy sender authorization requirement, we made the following sim-

ple hack:

We strategically place all authorized senders under one subtree (the sub-

tree under Key B) which is separate from the rest of the members who are

authorized to receive messages only. The sender's key (in this case Key

B) is assymetric (K.Sender.priv, K.Sender.pub). K.sender.priv, known by

authorized senders only (User 1 and 2), is used for signing the message.

K.sender.pub, known by all members in the group, is used for verifying that

the message is sent by authorized senders.

This assymetric sender's key is updated everytime an authorized sender

joins or leaves the multicast group. The server also needs to broadcast

the new sender's public key (K.Sender.pub) to the rest of the group by

encrypting it with the group key (fK.Sender.pubgK.Group).

Now the rest of the protocol becomes simple:

SMIF: A Framework for Secure Multicast Intercommunication

7.6 Alternative Architecture 17

Key E Key F Key G

Key C

Key A

Key B

Key D

key
Sender’s

User 2User 1 User 4User 3

Authorized Senders

Authorized Receivers

Receiver’s key

Figure 2: Key management protocol with sender's key

1. Alice encrypts the message using K.Group, signs the hash of the mes-

sage using K.Sender.priv, and multicasts them to group:

Alice -> Group: [fMgK.Group, fH(M)gK.Sender.priv]

2. Bob, a member of the group, decrypts the message, veri�es the signa-

ture is good using K.Sender.pub, and the message matches the hash.

All the properties in the original architecture are preserved here. In-

tegrity is guarenteed by the hash, which is in turn protected by the sender's

private key. Sender authorization is achieved because only authorized sender

can produce the signature. Con�dentiality is preserved because it is en-

crypted with the group key.

Authenticity retains the similar meaning as the original architecture,

namely \the sender of the message was authenticated by the key manage-

ment server as one of the authorized senders of this multicast group".

Sender anonymity is stronger in this architecture, because the sender

Alice does not need to expose her own identity to Trent to send a message.

She can just sign the message and the rest of the multicast group will accept

her message. Receiver privacy remains unchanged in this case.

SMIF: A Framework for Secure Multicast Intercommunication

18 8 Extension based on Active Networks and IPv6

8 Extension based on Active Networks and IPv6

Nowadays, the Internet is vulnerable to denial of service attacks such as

ooding or spamming. And the development of multicast makes this attack

even simpler and more powerful. A malicious host can just send any junk

to the multicast group address. It can cause a big traÆc load and all the

end-hosts in the multicast group will be annoyed. One possible solution is

that we can use sender authorization. So when the packet is forwarded from

the network layer to the application layer, the application layer will do the

authorization of the sender. If it's an unauthorized sender, the application

will automatically drop the packet. In this case, the end-user won't notice

the garbage data, but the computation power of the end-host will be wasted

as well as the network resource. Also the billing based on network usage

will be diÆcult since client won't like to pay for the garbage. So it will be

more and more urgent to �nd a solution to prevent spamming.

Since we can't prevent malicious hosts from sending garbage packets,

the spamming problem can't be solved end-to-end. The only way to pre-

vent this is that the Internet routers can drop unauthorized packets. The

current routing process forwards a multicast packet based on its routing ta-

ble for this multicast group. This is called passive forwarding. Instead, we

need intelligent routers to be able to check the validity of the packets. Via

research on IPv6 and active networks, we propose a solution using the IP

authentication header and the active network.

IPv6 includes security in its design goal. One new mechanism is the IP

Authentication Header [Atk95]. End-hosts can either use a symmetric or

asymmetric authentication algorithm to sign the entire IP packet except for

the �elds or the options that will be changed in transition (e.g. \hop count").

A separate IP Authentication key management component is used to create

and maintain a logical table containing the security parameters for each

current security association. Upon reading the security parameters from the

logical table, a host can do the authentication on the datagram containing

an Authentication Header. The receiver can use the Authentication Header

to authenticate the sender of the packet.

In active networks [WGT98], intermediate routers are intelligent. In-

stead of doing passive forwarding, routers can do computation and process-

ing according to the corresponding packet protocol. Though the security

concern and the processing cost of the packet throw doubts on the devel-

opment of active networks, the rich functionality which can be provided is

very attractive. In our approach, the routers can do the IP Header Authen-

tication and drop the unauthenticated packets.

SMIF: A Framework for Secure Multicast Intercommunication

19

Using IPv6 and active networks, we propose a solution for preventing

spamming in secure multicast. The solution di�ers a little bit from the

architecture we gave earlier in this paper.

For architecture 1, since everybody can send and the receiver will decide

who it wants to listen to by its own access control list, there's no need to

prevent spamming inside the network.

For architecture 2, all the group members share the same group session

key and everybody in the group can send. We want to prevent from mali-

cious people who are outside of the group to
ood the multicast group. So in

addition to the group session key, the server also generates a group authen-

tication key which is used in generating the IP Authentication Header and

distribute it to every group member when it joins the group. And several

changes need to be done for the protocol. When a group member wants to

send a message, after the normal encryption using the group session key,

the IP layer needs to add the IP Authentication Header using the group

authentication key. On the receiver side, the IP layer will �rst check the

IP Authentication Header before it hands the packet to upper layers. The

server will also need to register an entry in the IP Authentication Key Man-

agement's logical table that this group authentication key is associated with

this multicast group address. When the group key is updated, the group

authentication key also needs to be updated. The server will send out the

new group authentication key together with the new group session key using

the same method as described before which almost requires no extra cost.

But the server also needs to update the entry in the IP Authentication Key

Management's logical table. The routers will do IP header authentication

based on the group authentication key. So if people outside of the group

send packets using this multicast group address as destination address and

didn't do the IP authentication, the router will drop the packet when it sees

it. Therefore, we can prevent spamming to this multicast group.

For architecture 3, only authorized people in the multicast group are

allowed to send. We gave two schemes in architecture 3.

One scheme is all the authorized senders share the same sending key

(public key). To prevent from spamming, the server also needs to generate

a group sender authentication key which is used in the IP authentication as

same as we described in the previous paragraph. When an end-host joins the

group and has the permit to send, it will get the group sender authentication

key as well as the group sending key. The sender, receiver, router and

server will do the same thing as described in the previous paragraph. And

the group sender authentication key update is similar to the sending key

update. The only di�erence to the solution for architecture 2 is that the

SMIF: A Framework for Secure Multicast Intercommunication

20 9 Threat Analysis

server registers the group sender authentication key to the IP Authentication

Key Management.

The second scheme is that all the senders will send their packets �rst to

the server and then the server does authentication and then multicasts the

packet. In this case, only the server needs to have the IP authentication key.

So the server just generates an IP authentication key for itself and register it

to the IP Authentication Key Management. And the server usually doesn't

need to update this key in case that the session key gets updated. The other

issues are similar to the ones we described before.

Since we have the active network to check the IP Authentication Header

and drop garbage packets, we prevent spamming to the secure multicast

group. The protocol for the server to register the entry in the IP Authenti-

cation Key Management is still an open issue since there's no speci�cation

for the IP Authentication Key Management. But once given the speci�ca-

tion of the IP Authentication Key Management, the protocol for the server

to register will be feasible.

9 Threat Analysis

In this threat analysis we will identify possible threats and show how they

are handled by SMIF.

1. Mallory blocks key update to Alice and then keeps sending her mes-

sages with the old session key.

Solution: Here we clearly have the problem that an unauthorized

sender directly forwards messages to Alice. The simple solution to

this scenario is to use the sender authorization described in section 7.

Because the sender is always authorized in these architectures, Mal-

lory cannot send bogus messages directly if she is not authorized to

send. If she is an authorized sender then she could send a message to

Alice anyway.

In the case where all the senders share a common sender key and send

the messages directly to the group, the attack becomes dangerous if

Mallory was expelled from the authorized senders and she blocks the

key update to Alice. Later Mallory still uses her old sender key to di-

rectly send forged packets to Alice. To prevent this attack we can use

the server based broadcast scheme. Here only the server can send mes-

sages to the multicast group and signs each message with his private

key.

SMIF: A Framework for Secure Multicast Intercommunication

9.1 Multicast as a Tool of Threat 21

2. Mallory steals Trent's private key and forwards forged messages to the

group members.

There's no real solution to this kind of attack. Our assumption is that

Trent is a fully trusted server and that his private key is not disclosed.

Since our architecture relies on this assumption we can not protect

ourselves from this attack.

3. Multiple members collaborate to get more keys or joining the group

twice to get more keys.

Solution: This does not help at all since all the keys in the key

hierarchy are distinct. This attack can be powerful if we make multiple

keys at one level equal which would simplify the key management but

also lowers the security. The attack where a receiver shares its key

with an outside person is not a valid attack since the receiver can

as well share all the multicast information with that person anyway.

In the same way when a valid sender shares his sending key with

an outsider we don't try to prevent since that fraudulent person can

forward packets to the multicast group for the outsider anyway.

Denial of Service Attacks

A denial of service attack stands for a common type of attack where a

malicious attacker makes a service unavailable to other users. Denial of

service in multicast is much more complicated to prevent than in a pure

unicast world because of the following attacks.

1. Spam the multicast group.

Solution: We can use our approach proposed in section 8 which uses

active networks and IPv6 to prevent
ooding of the network. In the

case where we don't have these protocols we can't prevent
ooding.

The best we can do is message �ltering at the end host based on

authentication as described in section ??.

9.1 Multicast as a Tool of Threat

Can multicast be used as a tool to break down security. Although it is not

part of the secure multicast, it is worth mentioning in here. - what happens

if a person spam the network with lots of nasty packets - very little packet

can result in large
ow of packets

SMIF: A Framework for Secure Multicast Intercommunication

22 REFERENCES

10 Conclusion

We have established a general framework which can be used to implement

a wide variety of security requirements for multicast groups. Through three

example architectures we have shown the usefulness and wide application

range of the SMIF framework. In our analysis we motivated the correctness

and scalability of the provided solutions.

11 Acknowledgements

We would like to thank Doug Tygar and Hiroaki Kikuchi for their numerous

discussions and their helpful comments on security issues.

References

[Atk95] R. Atkinson. IP Authentication Header, RFC 1826. Technical

report, IETF, August 1995.

[FJM+95] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang.

A reliable multicast framework for light-weight sessions and ap-

plication level framing. In Proceedings of the ACM SIGCOMM

95, pages 342{356, Boston, MA, August 1995.

[GR97] Rosario Gennaro and Pankaj Rohatgi. How to Sign Digital

Streams. In CRYPTO, 1997.

[Mit97] Suvo Mittra. Iolus: A Framework for Scalable Secure Multicas-

ting. In ACM SIGCOMM, September 1997.

[Sch96] Bruce Schneier. Applied Cryptography. JohnWiley & Sons, 1996.

[WGT98] David J. Wetherall, John V. Guttag, and David Tennenhouse.

ANTS: A Toolkit for Building and Dynamically Deploying Net-

work Protocols. April 1998.

[WHA97] Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key

Management for Multicast: Issues and Architectures. Technical

report, IETF draft, July 1997.

[XMZY97] X. Rex Xu, Andrew C. Myers, Hui Zhang, and Raj Yavatkar.

Resilient Multicast Support for Continuous-Media Applications.

In Proceedings of NOSSDAV 97, 1997.

SMIF: A Framework for Secure Multicast Intercommunication

