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Abstract

This paper introduces a new family of protocols ad-

dressing collaborative group key agreement for secure

group communication in autonomous groups. I present

three protocols with varying degrees of security and ef-

�ciency. The �rst protocol provides a non-authenticated

key agreement and is suitable for applications with low

security requirements. The second and third protocols

add a DiÆe-Hellman-based authenticated key agreement

to provide collaborative authentication. In particular,

the third protocol uses G�unther's concept of implicitly-

certi�ed public keys to achieve higher eÆciency. A ma-

jor advantage of the protocols is that they allow eÆcient

\join" and \leave" operations, while preserving perfect

forward and backward secrecy. These protocols improve

previously proposed schemes in the following ways: �rst,

they can be used for autonomous group key agreement,

where no central server is necessary and no member has a

special role. Also, the complexity is drastically reduced:

compared to best currently used techniques, the number

of rounds for the initial key agreement are reduced from

n to log(n), and the bandwidth requirements are reduced

from O(n2) to O(n), where n is the number of members.

In addition, I present new primitives that enforce rights

management policies in the group (such as sender autho-

rization).

Keywords: Secure group communication protocol, col-

laborative group key agreement, key distribution.

1 Introduction

With the explosive growth of the Internet and the shift of

traditional communication services to the Internet, group
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communication becomes increasingly important. Simul-

taneously, there is a growing demand for security. Con-

sequently, not only does Internet communication need

to be secure, but also Intranet communication faces an

increasing need for security for the following reasons: al-

though companies install �rewalls, high security applica-

tions need additional protection, because a �rewall is usu-

ally the only serious security mechanism a company has

| once an intruder has bypassed it, the remaining sys-

tems are simple to compromise. There is ample evidence

that it is easy to �nd security leaks in large corporations.

Also, large companies have contractors, agreements with

other companies, temporary employees, cleaning person-

nel, all with access to the \secure" network behind the

�rewall, where one can, for example, install a tunneling

device. Therefore, even Intranet communication needs

additional security.

We need eÆcient secure group communication proto-

cols. The parameters for these protocols include: the

number of members that can be concurrently present in

a group, how frequently members are expected to join or

leave the group, how many senders can be present in a

group, whether a group is autonomous or administered by

a central server, and the security and policy requirements.

In this paper, I present a protocol to establish a group

key in small to medium-sized, autonomous groups, which

may have highly dynamic memberships. Examples in-

clude telephone and video conferences, remote consulta-

tion and diagnosis systems for medical applications, con-

tract negotiation, multi-party games, collaborative work

places, electronic commerce environments such as on-

line real-time auctions, and information dissemination of

stock quotes.

Most currently proposed protocols [2, 10, 16, 17, 3, 8, 1]

use a dedicated server or group controller, which results

in simpler protocols, but at the cost of requiring members

to trust the server. However, a central server or group

controller incurs management overhead and is a central

point of failure. Conversely, in an autonomous group, if



a member fails, it will be excluded eventually without

obstructing group communication. Another drawback of

server-based protocols is that electing one group member

as the group controller creates an asymmetry among the

members, producing problems when the group controller

fails, wants to leave, or is evicted from the group. Also,

server-based schemes require that all members trust the

server. In addition, requiring a server connected to the

Internet may inhibit its use for some applications, i.e.,

multi-party games, because of the required management

overhead.

The major contributions of the protocols presented in

this paper are the following:

� They do not rely on a central server or on a special

member (a group controller).

� The communication, computation, and time com-

plexities are one order of magnitude faster than state

of the art techniques.

� They use eÆcient and scalable \join" and \leave"

mechanisms.

The outline of the paper is as follows: Section 2 gives

background information on the problem of secure group

communication, and reviews previous work. Section 3

presents the protocols, along with novel security proper-

ties. In Section 4, I discuss implementation issues. The

protocol complexity and security analysis are presented

in Sections 5 and 6. Finally, I conclude and present ideas

for future work.

2 Background

The general goal of secure group communication is to es-

tablish a common secret key (also referred to as a group

key), among all group members for con�dential commu-

nication. Generally, a secret group key is established by

a group key agreement protocol (GKAP). Joining mem-

bers and leaving members pose the problem of backward

and forward secrecy. A protocol provides perfect back-

ward secrecy if a member joining the group at time t

does not gain any information about the content of mes-

sages communicated at times t0 < t. A protocol provides

perfect forward secrecy if a member leaving the group at

time t does not gain any information about the content of

messages communicated at times t0 > t. Protocols need

to provide these properties to provide secure group com-

munication in dynamic groups (dynamic implies that the

membership can change through joins and leaves).

A necessary condition for a GKAP to provide backward

secrecy is that all information a new member receives

must be unrelated to any previous group information. In

particular, a new member can not use the keys he or she

receives to obtain more information about previous keys

than an outsider would have. Similarly, a necessary con-

dition for a protocol to provide forward secrecy is that

after a member leaves, he or she can not obtain key in-

formation for subsequent group operations. The leaving

member will then not have any more information about

the group than an outsider would.

Besides con�dentiality, a GKAP needs to provide in-

tegrity and authentication to be secure. Message integrity

guarantees that the message was not altered or sent by

an outside attacker. Member authentication ensures that

only valid users can join the group.

Many existing protocols are vulnerable to the collusion

attack. A collusion attack is when members exchange

private key data to decrypt future group messages, even

though they were expelled. The multi-join problem is

related: a member might \collude" with itself by joining

the same group twice under di�erent identities. The issue

of a member colluding with an outside member is not as

serious a problem since, as long as the legal member is in

the group, the outsider will be able to send and receive

group messages through his or her friend. In protocols

where individual group members authenticate each other,

however, one group member might in�ltrate an outsider

into the group, who would normally not be allowed to

join the group. The problem here is that the outsider

might stay in the group, even after his or her friend was

evicted.

The following terminology, which is partly adapted

from [9, 1], is used throughout the paper:

A group key agreement protocol (GKAP) is a key estab-

lishment technique in which a shared secret key is derived

by two or more speci�ed parties as a function of informa-

tion contributed by each party, such that no party can

predetermine the resulting value. After a successful run

of the protocol all members share an identical secret key.

GKAP's should also have the following desired proper-

ties.

� A key agreement protocol (KAP) is contributory if

each party equally contributes to the key and guar-

antees its freshness.

� A GKAP provides implicit key authentication if each

group member is assured that no outsider knows the

secret group key, unless aided by a dishonest group

member.

� A contributory key agreement protocol provides key

integrity if every member is assured that its partic-

ular secret key is a function of only the individual

contributions of all members and not of any outside

information. In particular, extraneous contribution

to the group key cannot be tolerated even if it does

not assist an attacker with any additional knowledge.

� A KAP provides key con�rmation if every member

is assured that its peers are in possession of the com-

mon group key.

� A secure group communication protocol provides key

independence if no sequence of group keys provides



any information on previous or future group keys.

This property is a necessary condition for forward

and backward secrecy.

As pointed out in [1], key integrity and key authen-

tication are independent concepts. A protocol violates

key integrity as soon as outside information in
uences

the key, which does not necessarily have an impact on

the security of the key. Conversely, an insecure GKAP

might leak a secret key and violate key authentication,

while providing key integrity.

Previous work

Previous work in secure group key communication proto-

cols mainly focused on server-based systems [2, 10, 16, 17,

3, 8]. Early work on server-based schemes uses a central

server, which shares a secret key with each member and

uses unicast and encryption to communicate new keys se-

curely with each member individually [7, 10]. To achieve

scalability Mittra proposes a server hierarchy [10]. Wall-

ner et. al. propose a key tree hierarchy [16], which is built

by the central server and which makes key updates eÆ-

cient by broadcasting a message of size O(logN) where

N is the number of members. My approach uses a sim-

ilar key tree hierarchy, but the key tree is generated by

the members and no central server is necessary. Wong et

al. extends the centrally managed key tree hierarchy to

provide secure multicast service [17]. Chang et al. pro-

pose another method for eÆcient key update [3], which

reduces the total number of keys in the group from N (in

key tree schemes) to 2 log(N). Unfortunately this scheme

is not robust against collusion attacks | members can re-

main in the group (even after they were expelled) by ex-

changing their keys. A careful inspection of the protocol

reveals that the keys of a leaving member are still used

for subsequent group operation, which violates forward

secrecy.

Protocols for smaller groups have not received as much

attention as those for large groups. Since most groups are

expected to be small groups in practice1, eÆcient proto-

cols for small groups are important. For small groups,

we can remove the requirement for a central server and

construct collaborate group key authentication protocols.

In collaborative group key agreement protocols,

Burmester and Desmedt describe star-based, tree-based,

broadcast, and cyclic protocols for contributory group

key agreement [2]. All protocols are variations on the

DiÆe-Hellman key exchange. They do not address the

problems of dynamic groups, namely no \join" and

\leave" operations are presented. In addition, the tree-

based scheme uses a group \chair" which is at the root of

1Assuming that an analogue of Zipf's law holds for the distri-

bution of the group size, we expect to see a small number of large

groups and a large number of small groups. As a Gedanken Ex-

periment, we can verify the previous statement by considering tele-

phone calls. We expect to see a high number of calls between two

persons, fewer between three, etc.

the key hierarchy and is responsible to establish the com-

mon group key. I improve this scheme by eliminating the

need for a trusted group chair, adding dynamic member-

ship, and resolving practical implementation issues.

Ateniese et al. address dynamic membership issues [1].

Their system is also based on a variant of the DiÆe-

Hellman key agreement. The scheme, however, uses a

group controller and needs N protocol rounds to estab-

lish a common key in a group of N members. The to-

tal bandwidth used is O(N2). I improve these bounds

to dlog(N)e number of rounds and O(N) bandwidth re-

quirements.

3 EÆcient Key Agreement Proto-

cols for Autonomous Groups

This section describes three novel contributory group key

agreement protocols for dynamic communication groups.

The �rst protocol presented does not authenticate the

individual group members, whereas the subsequent two

do. All protocols are based on a binary key tree hierarchy.

3.1 Assumptions

The protocols function under the following assumptions.

First, authenticated members are not malicious and are

well-behaved. Therefore, two members trust each other

after mutual authentication. Also, all members trust the

Certi�cate Authority (CA) or the Key Authentication

Center (KAC).

The design of the protocol depends on the failure

model. As described by Powell [12], there are two basic

failure models: the crash failure or fail-stop model and

the arbitrary failure model, also referred to as Byzantine

failure model. The arbitrary failure model describes the

\worst-case", where a program can behave in an arbi-

trary way. Examples for group communication systems

in this setting are [11, 15, 13]. The protocols in this paper

assume that members fail as in the fail-stop model, where

members fail by halting. This is a reasonable model for

practical application domains. Contrary to the arbitrary

failure model, synchronous, reliable communication is as-

sumed | meaning that a message will be received within

a given delay. Also, although IP multicast is inherently

unreliable, the protocols rely on an underlying protocol

which provides reliable multicast [18, 5]. All the proto-

cols assume that all members know the structure of the

key tree and the position of each member in the tree;

more details on the key tree are given in Section 4.

3.2 Notations

I use the following notation to describe the protocols:

N : Number of members that are in the group or that

want to join it initially.



Ek(M): Encryption of plaintext M with key k.

Dk(C): Decryption of ciphertext C with key k.

H(M): Hash of message M .

SA(M): Sign message M with A's key.

A! B :M : A sends message M to B.

A! � :M : A broadcasts message M .

In the description of the protocols, I use the following

notation for binary trees. Figure 2(a) is an example of a

key tree. I use d to denote the depth of the key tree. The

root is at level 0 and the lowest leaves are at level d. The

nodes are denoted as hl; ii, where l stands for the level and

i for the node number in the level, where 1 � i � 2l since

each level l hosts at most 2l nodes. (This is in the case of

a perfectly balanced binary tree. As we will see later, the

tree is not always balanced, but to simplify the discussion

of the protocols, I assume that the key tree is balanced,

hence the number of members N = 2d. In Section 4 I

show how the protocol can handle an arbitrary number

of members and also unbalanced trees.) For each node

hl; ii, there is a corresponding key Khl;ii. The members

are always placed at a leaf node. I also use the notion of

subtree: in a binary tree, every non-leaf node has a right

and left subtree.

3.3 Non-authenticated group key agree-
ment protocol (NAGKA)

The �rst protocol establishes a common group key with-

out user authentication. The lack of authentication can

be useful in many settings, for example where the group

members prefer to remain anonymous, or where the mem-

bers do not share a commonly trusted third party. The

protocol is a variation of the non-authenticated DiÆe-

Hellman 2-party key agreement [4], extended to group

key agreement. The scheme is described in detail in the

boxes labeled Protocol 1 and Procedure 1. Figure 1 shows

the key tree in a group with 4 members. After the proto-

col, all group members share the root key and know only

the keys on the path from their leaf node up to the root.

The key tree hierarchy is similar to the one proposed by

Wallner et al. [16], but they use a central server to estab-

lish the key hierarchy, which initially sends the keys by

unicast to the individual members. I adopted the key tree

hierarchy because it provides perfect forward and back-

ward secrecy, and it is robust against collusion attacks,

with little overhead (every member only needs to know

log(N) keys).

As an overview, the protocol works as follows: The

key tree is constructed from the leaves up to the root.

Initially each member chooses a random number, for the

key value of its leaf node, which collectively form the

lowest level of the key tree. For the construction of each

Initialization: There are N = 2d members fMij(1 �
i � N)g that participate in the group, where d is the

depth of the key tree. An appropriate prime p and gen-

erator � of Z�

p(2 � � � p�2) are selected and published.

Each user Mi selects a random number ri 2 Z
�

p and sets

the keys of level d to Khd;ii = ri.

Iterate over j: (1 � j � d)

In each step all keys Khl;vi of level l = d � j are con-

structed, 1 � v � 2l.

Run the key agreement Procedure 1 for each

v : (1 � v � 2l), passing (j; v; l) as arguments.

Finally: All members Mi share the root key and know

only the keys on the path from their leaf node up to the

root.

Protocol 1: Non-authenticated group key agreement

protocol (NAGKA)

Key agreement 1( j : int; v : int; l : int ) : Khl;vi

j stands for the current round, v is the node number of the

current level l.

The leftmost leaf node of the subtree rooted at node hl; vi is
vl = (v�1)�2j+1 and the rightmost leaf is vr = v �2j . Choose
a random member of the left subtree Mi0(vl � i0 � vl+vr�1

2
)

and one from the right subtree

Mi00 (
vl+vr+1

2
� i00 � vr). The left key of the node hl; vi has

the index v0 = 2v�1; the right index, v00 = 2v. This is shown

in Figure 2(b).

1. Mi0 ! � : �Khl+1;v0i mod p

2. Mi00 ! � : �Khl+1;v00i mod p

3. All members of the subtree of node Khl;vi can now com-

pute the new key of this level

Khl;vi = (�
K

hl+1;v0i)
K

hl+1;v00i mod p

= (�
K

hl+1;v00i)
K

hl+1;v0i mod p

= �
K

hl+1;v0i�Khl+1;v00i mod p

Procedure 1: Establish key hl; vi using non-

authenticated key agreement

α
r3*r4

α
r1*r2

α
r3*r4

α
r1*r2

α
*

M M M M1 2 3 4

Level 2 keys

Level 0 keys

Level 1 keys

r2r1 r3 r4

Figure 1: Non-authenticated group key tree (depth = 2)

subsequent layer, two members establish a key through

the key agreement procedure, one member from the left

subtree and the other from the right subtree. They both

broadcast their part of the DiÆe-Hellman key agreement,

which allows all the members of the subtree to compute



K <1,1>

K <0,1>

K <2,1> K <2,2> K <2,3> K <2,4>

M 4M 3M 2M 1

K <1,2>

(a)

i’’MMi’

K

K <l-1,k’> K <l-1,k’’>

<l,k>

(b)

Figure 2: (a) Notation of the nodes of a group key tree of

depth 2. (b) shows the key indices and members associ-

ated within one step of the key agreement, corresponding

to the notation used in the protocol description.

the key of the current level. Once the root key is estab-

lished, the group can start the secure communication by

encrypting all messages with the root key.

Since this protocol does not provide authentication,

anybody can join the group, which violates con�dential-

ity. In addition, this protocol is based on the basic DiÆe-

Hellman key agreement, which is vulnerable to a man-in-

the-middle attack, which also compromises con�dential-

ity. To solve these problems, I replace the unauthenti-

cated DiÆe-Hellman key agreement with authenticated

versions. Hence, the second protocol uses an authenti-

cated version of the DiÆe-Hellman key agreement, and

the third protocol uses G�unther's key agreement.

3.4 Authenticated group key agreement
(AGKA)

For many applications mentioned in the introduction, the

members need to be authenticated, e.g., members of a

secure conference telephone call. I will apply an authen-

ticated DiÆe-Hellman scheme for this purpose.

The AGKA protocol is similar to Protocol 1, except

that the two group members (which establish the parent

key node of their current key nodes) also perform a mu-

tual authentication when exchanging the exponents. The

authentication is based on digital signatures and a pub-

lic key infrastructure (PKI). When exchanging the keys,

both members sign the concatenation of the exponent,

the members position in the tree, and a timestamp. The

details are described in the box of Protocol 2 and Proce-

dure 2, again for the case where N = 2d, for clarity.

3.5 G�unther's implicitly-certi�ed public

keys

One disadvantage of the AGKA protocol is that it uses

certi�cates and a PKI. For each key agreement, the cer-

This protocol is similar to Protocol 1, except that in each step

the members Mi0 and Mi00 perform mutual authentication.

One-time initialization: Each member Mi registers

his or her public key KMi
at a Certi�cate Agency (CA)

which then issues the certi�cate which is public and as-

sumed to be known by all the other members. An appro-

priate prime p and generator � of Z�

p(2 � � � p� 2) are

selected and published. Each user Mi selects a random

number ri 2 Z
�

p and sets the keys of level d to Khd;ii = ri.

Iterate over j: (1 � j � d)

In each step all keys Khl;vi of level l = d � j are con-

structed, where 1 � v � 2l.

Run the key agreement Procedure 2 for each

v : (1 � v � 2l), passing (j; v; l) as arguments.

Finally: All members Mi share the root key and have

all the keys on the path from their leaf node up to the

root. All members know that every other member was

at least authenticated once by another member.

Protocol 2: Authenticated group key agreement proto-

col (AGKA)

Key agreement 2( j : int; v : int; l : int ) : Khl;vi

j stands for the current round, v is the node number of the

current level l.

The leftmost leaf node of the subtree rooted at node hl; vi is
vl = (v�1)�2j+1 and the rightmost leaf is vr = v �2j . Choose
a random member of the left subtree Mi0(vl � i0 � vl+vr�1

2
)

and from the right subtree Mi00(
vl+vr+1

2
� i00 � vr). The left

key of the node hl; vi has the index v0 = 2v�1, the right index

is v00 = 2v.

1. Mi0 ! � : �
K

hl+1;v0i mod p; i0; t0; SMi0
(�

K
hl+1;v0i

mod p; i0; t0) with t' being a recent time stamp.

2. Mi00 ! � : �
K

hl+1;v00i mod p; i00; t00; SMi00
(�

K
hl+1;v00i

mod p; i00; t00) with t" being a recent time stamp.

3. Every member in the subtrees can verify the validity of

the digital signature and compute the new key

Khl;vi = (�
K

hl+1;v0i mod p)
K

hl+1;v00i mod p

= (�
K

hl+1;v00i mod p)
K

hl+1;v0i mod p

= �
K

hl+1;v0i�Khl+1;v00i mod p

In case one signature is invalid, they will notify the group

and the dishonest member is expelled.

Procedure 2: Establish key hl; vi using mutual authen-

tication

ti�cates need to be exchanged, which consumes band-

width because of the large size of certi�cates. Further-

more, the signature of the PKI needs to be veri�ed, which

is computationally expensive. For these reasons, the

third protocol uses G�unther's identity based key agree-

ment [6], also known as implicitly-certi�ed key agreement

protocol. This protocol is reproduced here to keep this

paper self-contained. Also, the original paper does not

detail all the steps necessary for the key agreement.



G�unther's authentication scheme is based on a trusted

key authentication center (KAC), similar to a certi�cate

authority (CA) in a PKI. The KAC pre-authenticates a

user, issues his or her private and public information,

and makes sure that the identity identi�ers are globally

unique.

This authentication scheme is split up into three

phases: First, an initial set-up phase where the

KAC distributes its public information; second, a pre-

authentication phase where each member sets up his or

her public/private information with the KAC; and �nally,

the authentication phase where two members perform

mutual authentication. During the mutual authentica-

tion phase, both members exchange their public infor-

mation and a blinded nonce. If both members can com-

pute a common secret key, it implies that they were both

pre-authenticated through the KAC. Since the \name"

of each member is used to reconstruct the user's \certi�-

cate" which is used during the authentication, the scheme

is also called identity-based key agreement. The box of

Procedure 3 shows the details of G�unther's implicitly-

certi�ed public keys.

3.6 Authenticated group key agreement
using G�unther's scheme (AGKA-G)

This protocol, AGKA-G, is similar to AGKA, except

that instead of public key certi�cates, it uses G�unther's

scheme for mutual authentication. An additional dif-

ference, however, is that the messages exchanged in the

mutual member key agreements do not allow the other

members in the same subtree to generate the node key.

Therefore the two members use unicast to exchange their

public information and to establish the new node key. To

pass the new key on to the other members residing in the

same subtree, both members encrypt the new key with

the root key of their respective subtree, and broadcast

it to the members in the same subtree. For example, in

Figure 2, if M1 and M3 perform the key agreement for

the root key Kh0;1i, M1 will use Kh1;1i to encrypt the

new key Kh0;1i before sending it to the other members in

the same subtree. In the same way, M3 uses Kh1;2i for

encryption.Again, I describe AGKA-G in Protocol 3 for

the case where the binary key tree is balanced (N = 2d).

3.7 Join and leave procedures

Since the protocols are used for dynamic communication

groups, mechanisms to allowmembers joining and leaving

the group are necessary, without compromising forward

and backward secrecy, and key independence. For both

the join and leave procedures, I assume a general binary

tree structure, not necessarily balanced, as shown in Fig-

ure 3. First, I discuss the case of a new member joining

the group. The box labelled Procedure 5 contains the

details of the join protocol.

In this key agreement protocol, there is a trusted third party,

the KAC. A and B set up their identities and do the key

agreement with authentication.

Initialization: The KAC chooses and publishes a prime

p and generator � of Z�

p. KAC selects x 2 Z�

p randomly,

not divisible by the largest prime factor of p� 1, which

is its private key. y = �x is also published.

Pre-authentication: A sends the KAC its identity in-

formation IA which the KAC checks for uniqueness and

then issues the corresponding private key.

A! T : IA
The KAC then chooses randomly ka such that

gcd(ka; p � 1) = 1 and computes Pa = �ka mod p and

k�1
a mod (p� 1). Then the KAC computes

a = k�1
a � (H(IA) � x � Pa) mod (p � 1), where H is a

cryptographic hash function. Furthermore ka is private

to the KAC, a is sent back to A as its secret key. Pa and

IA are both published.

KAC! A : a; Pa (a is passed through a secure channel.)

B goes through the same procedure to receive his or her

secret key b and public information Pb and IB.

Key agreement:

1. A! B : IA; Pa

2. B ! A : IB; Pb

3. A chooses secret ra at random, B picks rb

4. A! B : (Pb)
ra mod p

5. B ! A : (Pa)
rb mod p

6. Both can now compute the common key

K = �ka�a�rb+kb�b�ra

We walk through A's steps, B's are analogous.

A knows a; IB; Pb = �kb mod p; ra; (Pa)
rb

mod p = �ka�rb mod p; �; and �ka mod p. The

�rst part of the product is simple to compute from

the known information:

�ka�a�rb mod p = ((Pa)
rb)a mod p = �ka�a�rb

mod p

The computation of �kb�b�ra mod p is as follows.

�kb�b mod p = �H(IB)�x�Pb mod p = �H(IB )

(�x)Pb

mod p. If we now raise the �nal term to the rath

power, and multiply, we get: K = �ka�a�rb �(�kb�b)ra

mod p = �ka�a�rb+kb�b�ra mod p. We can see how

the public information IB, as well as the private ra
is used to compute K.

Procedure 3: G�unther's implicitly-certi�ed public key

Since the join procedure needs to provide perfect back-

ward secrecy, the joining member cannot receive any of

the old keys in the key tree. Hence all the keys from the

leaf node of the new member up to the root need to be

changed. The new member joins at the closest node to

the root. In the example shown in Figure 3(a), the new

member M5 joins at node h1; 2i. Member M4 is moved

one level down to accommodate M5, as shown in Fig-

ure 3(b). All keys from the new member up to the root

need to be newly established, in the case shown in Fig-



This protocol is similar to Protocol 2, except that G�unther

scheme, described in Procedure 3, is used for mutual authen-

tication, instead of certi�cates and PKI.

One-time initialization: Each member Mi registers

his or her identity IMi
at the trusted third party T ,

which then issues its corresponding private information

mi and the public information PMi
. The public informa-

tion known by each member is: �; �t; p; q.

Iterate over j: (1 � j � d)

In each step all keys Khl;vi of level l = d � j are con-

structed, where 1 � v � 2l keys in total.

Run the key agreement Procedure 4 for each v : (1 �
v � 2l), passing (j; v; l) as arguments.

Finally: All members Mi share the root key and have

all the keys on the path from their leaf node up to the

root.

Protocol 3: Authenticated group key agreement proto-

col using G�unther's identity-based key agreement

Key agreement 3( j : int; v : int; l : int ) : Khl;vi

j stands for the current round, v is the node number of the

current level l.

The leftmost leaf node of the subtree rooted at node hl; vi is
vl = (v�1)�2j+1 and the rightmost leaf is vr = v �2j . Choose
a random member of the left subtree Mi0(vl � i0 � vl+vr�1

2
)

and from the right subtree

Mi00(
vl+vr+1

2
� i00 � vr). The left key of the node hl; vi has

the index v0 = 2v � 1, the right index is v00 = 2v.

1. Mi0 !Mi00 : IMi0
; PMi0

2. Mi00 !Mi0 : IMi00
; PM

i00
; (PM

i0
)
K

hl+1;v00i mod p

3. Mi0 !Mi00 : (PMi00
)
K

hl+1;v0i mod p

4. From this information, both members can compute the

key of the current level Khl;vi following Protocol 3.

5. To verify that both members computed the same key,

Mi0 and Mi00 exchange the following messages.

Mi0 !Mi00 : EKhl;vi
(i0)

Mi00 !Mi0 : EKhl;vi
(i00)

If authentication fails, the valid member will contact the

other members to expell the dishonest outsider.

6. Both Mi0 and Mi00 then send the new key Khl;vi en-

crypted to all members below the key node.

Mi00 ! � : EK
hl+1;v00i

(Khl;vi)

Mi0 ! � : EK
hl+1;v0i

(Khl;vi)

Procedure 4: Establish key hl; vi using authenticated

the G�unther key agreement

ure 3(b) the keys Kh2;4i, Kh1;2i, and Kh0;1i need to be

newly established. I defer the discussion of how the new

member �nds a position in the tree to Section 4.

Similarly, since the leave procedure needs to provide

perfect forward secrecy, all the keys that the leaving

member knows need to be changed, which prevents him

or her from knowing any of the new keys. The box

K <1,1>

K <0,1>

M4

K <2,1> K <2,2>

<3,1>K

M1 M2

K <3,2>

M3

K <1,2>

(a) Before Join

K <1,1>

K <0,1>

K <2,1> K <2,2> K <2,3> K <2,4>

M5M4M3

K <3,2><3,1>K

M1 M2

K <1,2>

(b) After Join

Figure 3: (a) Key tree before join operation (b) and after

joining the new member M5.

labelled Procedure 6 contains the details of the leave

protocol. When the member at node hl; ii leaves the

group, the node hl � 1; d i
2
ei gets replaced by hl; i � 1i

(by moving the entire subtree one level up). All keys

from the deleted node up to the root need to be updated:

Khl0;d i

2l
0 ei

(0 � l
0
� l � 1).

For example, Figure 3(b) shows the key tree right be-

fore M5 leaves, then the node h1; 2i is deleted and h2; 3i

moves one level up, as shown in Figure 3(a).

Initialization: There are N current group members.

The new user is inserted at node hl; ii in the key tree,

which is at the leaf closest to the root. Then there was a

member at hl� 1; d i
2
ei which gets \pushed" to hl; i� 1i.

All keys from the leaf key up to the root need to be

updated:

K
hl0;d i

2l
0 ei

(0 � l0 � l). The new userMi selects a random

number ri 2 Z
�

p and sets the key of level l to Khl;ii = ri.

Iterate over j: (1 � j � l)

In each step the key Khl0;vi is constructed, where l0 =

d� j and v = d i

2j
e.

Procedure 1 is run with j; v; l0 as arguments, to establish

key Khl0;vi.

Procedure 5: \Join" procedure in NAGKA

Initialization: The leaving member is at node hl; ii in
the key tree. All keys K

hl0;d i

2l
0 ei

(0 � l0 � l � 1) need to

be updated. The peer subtree is moved one level up.

Iterate over j: (1 � j � l � 1)

In each step the key Khl0;vi is constructed, where l0 =

d� j and v = d i

2j
e.

Protocol 1 is run with j; v; l0 as arguments, which estab-

lishes key Khl0;vi.

Procedure 6: \Leave" procedure in NAGKA



3.8 Additional Security Services

The key tree's main role in the above description is to

provide forward and backward secrecy. I propose to use

the key tree for additional innovative security and policy

features. A new type of service in the domain of rights

management is sender authorization, where only speci�c

members are allowed to send group messages, and the re-

maining members are allowed only to receive. This prop-

erty is enforced by placing all senders on the left hand side

of the binary key tree and verifying their sender permis-

sions when constructing the key tree. In AGKA, the left-

hand members know the key Kh1;1i, whereas the right-

hand members know only �Kh1;1i . To expoit this asym-

metry to sign every message sent, I use the El-Gamal

signature scheme [14, 9]. All the receivers verify the

sender authorization upon receipt of the message. The

same idea extends to produce a group signature. The key

tree structure also allows construction of eÆcient time-

bounded memberships. By placing in the same subtree

all members who need to leave at a certain point in time,

all of them can leave in one step by cutting o� the entire

subtree in the key tree. These primitives, together with

the tree structure, express and enforce powerful rights

management policies. These methods are not restricted

to the protocols described in this paper, but are appli-

cable to any key-tree scheme, in particular to previously

proposed server-based key tree schemes [16, 17].

4 Implementation Details

In the key agreement protocols we have seen so far, I

stated two assumptions: all members know their position

and the other member's position in the key tree, and

second, the number of members is N = 2d.

To realize the �rst assumption, we need an algorithm

to place new members deterministically in the key tree,

before running the key agreement protocol. We achieve

this property through a multi-phase protocol, where in

an initial phase all members who wish to join announce

themselves, then in a second phase all members agree

on who will be in the group, and in a �nal phase all

members build the same tree by inserting all members

in lexicographic order, for example. These issues can be

easily resolved by using a group controller, but which

would introduce other problems, which I mentioned in

the introduction.

To relax the second assumption, the protocols need

to work for the case N 6= 2d. As we have seen in the

examples of the \join" and \leave" protocols, the only

necessary requirement for the protocols is that the tree is

binary, meaning that every node either has two children

or is a leaf.

In the description of the key agreement procedures

(boxes labeled Procedure 1, 2, and 4), I mentioned that

the members of the key agreement are chosen randomly

out of the subtrees, rooted at the node of the key which

is to be established. To choose the two members, I use

the following method. Choosing a member at random is

not necessary; every member sends the key agreement

message with a random delay, since every member in

the subtree can perform the key establishment. When a

member Mi in a subtree receives the key agreement mes-

sage sent by another member Mi0 in the same subtree,

Mi does not need to perform the key agreement in the

current round. This results in favorable load-balancing

properties, because the members having faster comput-

ers and better network connectivity will be able to react

quicker to a key agreement in a level and therefore do

more work. Thus these protocols are ideally applicable

in settings with large di�erences in speed and network

connectivity among members.

A similar method allows an eÆcient \join" mechanism,

where the problem is how the joining member �nds his

or her position in the key tree. This problem is solved

by using a multi-phase protocol: during the initial join

phase, the new member sends his or her membership re-

quest; in a second \mating" phase, group members send

\o�er" messages, o�ering the new member to join the

group at their node. Since the key tree needs to stay bal-

anced, only the members closest to the root reply (since

every member has a complete map of the tree, this is a

simple operation). The new member might get multiple

o�ers, which allows him or her to choose the joining posi-

tion. If multiple members wish to join, they can generate

their own key tree, which gets grafted into the main key

tree. This process is extremely eÆcient and allows a large

number of members to join concurrently.

Another implementation issue is the transition from

DiÆe-Hellman keys (which result from the key agree-

ment) to symmetric keys. Because of the mismatch in the

number of bits between the length of the DiÆe-Hellman

key K = �
x mod p and the secret key size required by

the symmetric algorithm, we can use a hash function on

K to deliver the symmetric key bits. A cryptographic

hash function, such as SHA-1 [14, 9] would work and

yields 160 bits, enough to initialize a shorter symmetric

key. Also, I do not specify a particular symmetric al-

gorithm, since any algorithm that satis�es the security

requirements will work. Similarly, the choice of a signa-

ture scheme is open.

5 Security Analysis

The key advantage of the authenticated protocols AGKA

and AGKA-G, is that they achieve mutual authentication

without complete member-to-member authentication (in-

volving
n(n�1)

2
messages), and without a dedicated mem-

ber checking all the other members. The property that

all members are authenticated if the protocol �nishes suc-

cessfully, is proven informally in the appendix. To under-

stand the proof intuitively, we consider the two boundary



cases: First, only one member is corrupt; and second, all

but one member are corrupt. In the �rst case, the cor-

rupt member will be involved in an authenticated key

agreement with a good member at least once, in which

case the corrupted member is discovered. In the second

case, the valid member will be involved in an authenti-

cated key agreement at least once, detecting the corrupt

user. The proof shows that for each subtree of the key

tree that was generated successfully, either all members

in that subtree are good or all members are corrupt.

In case an authentication fails, the certi�ed member

broadcasts a signed report pointing out the intruder. The

subtree containing the intruder is then cut o� the key tree

and all the users below it are expelled. This may appear

draconian, but the other members in that subtree must

also be intruders, otherwise the corrupt member would

have been discovered at an earlier level.

Another important property of the protocol is that any

member only knows the keys in the key tree which lie on

the path from its node up to the root, and no others.

This property is important to ensure forward secrecy in

the case of members leaving the group. Since the key

tree is constructed bottom-up and by the properties of

the key agreement protocols, any member gets only the

keys on the path from its leaf to the root.

In the appendix, I sketch a proof that the authenti-

cated key agreement protocols provide implicit key au-

thentication against passive attackers. A frequent active

attack in the context of DiÆe-Hellman key agreements is

the man-in-the-middle attack. I have mentioned earlier

that the unauthenticated NAGKA protocol is vulnerable

against this type of attack. Due to the mutual authen-

tication of members in the authenticated protocols, this

problem is not an issue for AGKA and AGKA-G.

Due to the intractability of the DiÆe-Hellman prob-

lem, my protocols provide key independence. In addition

all keys that a joining member receives were not previ-

ously used, and similarly, all keys that a leaving member

knows are changed and do not in
uence the subsequent

group operation. For these reasons, the protocols pro-

vide perfect forward and backward secrecy. Therefore,

collusion does not compromise the security of the group.

As can be seen from inspecting the �nal key (as shown

in Figure 1), we can see that the key agreement protocols

are contributory and provide key integrity.

6 Complexity analysis

I analyze the complexity of my protocols based on com-

munication and computation overhead. The metrics for

communication overhead are the number of messages

transmitted and their size. To characterize computation

overhead I measure the number of exponentiations, in-

verses, multiplications, hashes, de/encryptions, signature

generations and veri�cations of a group key agreement of

N members.

I compare the protocols to the state of the art authen-

ticated group key agreement protocols A-GDH.2 and SA-

GDH.2 described by Ateniese et al. [1].

I observe the case of a group key agreement among

N members, where the key tree of depth d is balanced,

therefore N = 2d. In this analysis, I neglect the phase

where the new members negotiate their positions in the

key tree, since the protocol we are comparing against also

report only the time of the key agreement. Similarly to

Ateniese et al. 's analysis [1], the certi�cate distribution

overhead is not taken into consideration. This gives an

advantage of AGKA over AGKA-G, since the latter sends

the information necessary to construct the identity-based

certi�cate.

Table 1 shows the results of the comparison. The pro-

tocols presented in this paper have the property that if

N = 2d, there are N � 1 mutual key agreements in to-

tal. For each \min" entry, we assume that the member

was involved in only one mutual key agreement (level

d � 1), and for each \max" entry we assume that that

member was involved in d key agreements. The �rst part

of the table describes the communication costs involved.

If the network is the bottleneck, these parameters are

important. With jKj we refer to the length of a key.

The second part of the table describes the computational

overhead. Signature computations are by far the most ex-

pensive operations, followed by exponentiations and de-

cryptions. We can see that the AGKA-G really has by far

the lowest overheads by not needing to compute or verify

signatures, through the use of implicitly-certi�ed public

keys. The drawback is that more messages need to be

exchanged, four times as many as in AGKA. Clearly, the

protocols described improve by an order of magnitude

the current state of the art protocols for contributory

group key agreement for dynamic groups. One of the

drawbacks, however, is the large number of broadcasts

used. These broadcast messages are used to distribute

the new keys to the other members of the same subtree.

If the number of broadcasts turns out to be a problem,

it would be possible to replace the randomized matching

of participating members in a key agreement by a deter-

ministic algorithm. This modi�cation would allow the

two members to exchange the key agreement messages

through unicast, followed by a deterministic distribution

of the new key by unicast using the structure of the tree.

7 Conclusions and Future Work

The paper presents three novel key agreement proto-

cols for group key communication. The protocols sat-

isfy many security properties, including perfect forward

and backward secrecy. All of the protocols require only

dlog(N)e rounds for the group key agreement involving

N members. The bound is achieved by constructing a bi-

nary key tree and letting individual users establish new

keys in parallel. This is a vast improvement over the



NAGKA AGKA AGKA-G A-GDH.2 SA-GDH.2

Communication costs

rounds d = dlog(N)e d d N N

broadcasts 2(N � 1) 2(N � 1) 2(N � 1) 1 1

total msgs 2(N � 1) 2(N � 1) 8(N � 1) N N

total bandwidth 2(N � 1)jKj 2(N � 1)jKj 8(N � 1)jKj N2+N
2

� 1 N2

msgs sent per Mi (max) d d 4d 1 1

msgs sent per Mi (min) 1 1 1 1 1

msgs recvd per Mi (max) d d 4d 2 2

msgs recvd per Mi (min) d d d+ 3 2 2

Computation costs

exp per Mi (min,max) d+ 1; 2d d+ 1; 2d 5; 5d 1; N N;N

exp total (d+ 2)N (d+ 2)N 10(N � 1) N2+3N
2

� 1 N2

inverse per Mi (min,max) - - - - 1; 1

inverse total - - - - N

mult/div per Mi (min,max) - - 2; 2d 1; N � 1 2N � 2; 2N � 2

mult total - - 4(N � 1) 2N � 2 2N2 � 2N

hash per Mi (min,max) - - 1; d - -

en/decryptions (min,max) - - d+ 2; 3d - -

signature verif - d - - -

signature gen (min,max) - 1; d - - -

Table 1: Complexities of key agreement protocols

linear number of rounds of previously proposed protocols

for dynamic groups. Also, the protocols reduce the band-

width consumption from O(N2) to O(N). In addition,

I have improved on today's known group key communi-

cation protocols by removing the necessity of a central

server or group key controller thus enhancing the appli-

cability to new domains. Another contribution is that

we can exploit the structure of the key tree to design

rights management policies; other key tree based group

communication protocols only use the key tree to achieve

forward and backward secrecy. In addition, I also de-

scribe implementation issues, and in particular show how

to optimize the key agreement protocol to achieve load

balancing among the members.

I am currently building, and will distribute a Java li-

brary that implements the protocols described. These

libraries will simplify the implementation of applications

which require eÆcient and secure group communication.

The future work on the protocols is to reduce the num-

ber of broadcasts and to explore how to reduce the need

for reliable multicast.

8 Acknowledgements

I would like to thank particularly to Dawn Song and

Yang-hua Chu for the numerous discussions about secure

multicast. Many of the ideas presented were spawned

during our meetings. Furthermore, I am grateful to Doug

Tygar for his continued help and support. Finally, I

would like to thank the anonymous reviewers for their

feedback.

References

[1] Giuseppe Ateniese, Michael Steiner, and Gene

Tsudik. Authenticated Group Key Agreement and

Friends. In 5th ACM Conference on Computer

and Communications Security, pages 17{26. ACM,

November 1998.

[2] Mike Burmester and Yvo Desmedt. A Secure and

EÆcient Conference Key Distribution System. In

Alfredo De Santis, editor, EUROCRYPT94, pages

275{286. LNCS 950, 1994.

[3] Isabella Chang, Robert Engel, Dilip Kandlur, Dim-

itrios Pendarakis, and Debanjan Saha. Key Manage-

ment for Secure Internet Multicast using Boolean

Function Minimization Techniques. INFOCOM

1999, September 1998.

[4] W. DiÆe and M. E. Hellman. New directions in cryp-

tography. IEEE Trans. Inform. Theory, IT-22:644{

654, November 1976.

[5] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and

L. Zhang. A reliable multicast framework for light-

weight sessions and application level framing. In

Proceedings of the ACM SIGCOMM 95, pages 342{

356, Boston, MA, August 1995.

[6] Christoph G. G�unther. An identity-based Key-

Exchange Protocol. In EUROCRYPT89, 1989.

[7] H. Harney and C. Muckenhirn. Group Key Man-

agement Protocol (GKMP) Speci�cation / Architec-



ture. Technical Report RFC-2093 and RFC-2094,

IETF, July 1997.

[8] David A. McGrew and Alan T. Sherman. Key

Establishment in Large Dynamic Groups Using

One-Way Function Trees, May 1998. Published

at http://www.cs.umbc.edu/~sherman/Papers/

itse.ps.

[9] Alfred J. Menezes, Paul van Oorschot, and Scott

Vanstone. Handbook of Applied Cryptography. CRC

Press, 1997.

[10] Suvo Mittra. Iolus: A Framework for Scalable Se-

cure Multicasting. In ACM SIGCOMM, September

1997.

[11] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,

R. K. Budhia, and C. A. Lingley-Papadopoulos.

Totem: A Fault-Tolerant Multicast Group Commu-

nication System. CACM, 39(4):54{63, April 1996.

[12] David Powell. Group Communication. CACM,

39(4):50{53, April 1996.

[13] Michael K. Reiter. Distributing Trust with the Ram-

part Toolkit. CACM, 39(4):71{74, April 1996.

[14] Bruce Schneier. Applied Cryptography (Second Edi-

tion). John Wiley & Sons, 1996.

[15] Robbert van Renesse, Kenneth P. Birman, and Sil-

vano Ma�eis. Horus: A Flexible Group Communi-

cation System. CACM, 39(4):76{83, April 1996.

[16] Debby M. Wallner, Eric J. Harder, and Ryan C.

Agee. Key Management for Multicast: Issues and

Architectures. Technical report, IETF, September

1998. draft-wallner-key-arch-01.txt.

[17] Chung Kei Wong, Mohamed Gouda, and Simon S.

Lam. Secure Group Communications Using Key

Graphs. In ACM Sigcomm 98, 1998. University of

Texas at Austin.

[18] X. Rex Xu, Andrew C. Myers, Hui Zhang, and

Raj Yavatkar. Resilient Multicast Support for

Continuous-Media Applications. In NOSSDAV,

1997.

A Proofs of chosen properties

Theorem 1: Weak implicit key authentication

A passive adversary can gain no knowledge about any of

the keys in the key hierarchy.

Proof sketch. We prove this property by a reduction to

the DiÆe-Hellman problem and the discrete-logarithm

problem. We show that if the passive adversary �nds

one key of the key hierarchy, then he either can solve an

instance of the DiÆe-Hellman or the discrete-logarithm

problem.

The proof works by induction on the depth of the key

tree. We assume that the attacker receives all messages.

Base case. The attacker cannot �gure out any of the

keysKhd;ki in the lowest level d since each member choses

a random number ri and no messages were sent yet at this

stage of the protocol.

Induction. Knowing that the adversary does not know

any key in a level between l
0 and d, we show that he

cannot �gure out any key established in level l0. For

this we analyze the key agreement of key Khl0;ki. Mi0

and Mi00 exchange �Khl0+1;k0i and �
Khl0+1;k00i in public.

Because of the intractability of computing the discrete-

logarithm, neither Khl0+1;k0i nor Khl0+1;k00i is compro-

mised. The attacker can also not compute the new key

Khl0;ki = �
Khl0+1;k0i�Khl0+1;k00i due to the intractability of

the DiÆe-Hellman problem. Similar as in the previous

case, the symmetric encryption of the new key with the

lower-level key does not compromise the security either.

Therefore, the adversary cannot compute any of the

keys of the tree.

In order to show that the authenticated protocols are

secure against an active attacker, the proof becomes more

complicated. The �rst step would be to build a model of

the capabilities of the adversary, which su�ers from con-

cerns for completeness. Then we need to show that any

group of active attackers would not be able to break the

properties of the protocol. Together with Dawn Song, we

are currently in the process of applying model checking

techniques to Strand spaces to verify the correctness of

the protocol. For this paper we contend with the model

of only a passive attacker.

Theorem 2: All members are authenticated

If the protocol �nishes successfully, then all members are

either valid or they all are intruders. If there is at least

one valid member joining the group, then the protocol

only progresses if all other members are also certi�ed.

Proof sketch. We assume that the protocol �nished suc-

cessfully. Therefore all members have broadcasted their

�nal message successfully, containing their membership

number encrypted with the root key. Because all mem-

bers have submitted their validation of the group, all au-

thentications between a valid member and another mem-

ber must have been successful. This implies that if one of

the members of a mutual authentications was certi�ed,

then the other one was as well. Therefore all mutual au-

thentications must have been either between two valid

members or two invalid members. From this we can im-

ply that all members in the group are either valid or all

are intruders.


