
���������
	���


�����������������������

Digital broadcast technology is hot. A casual glance at a newspaper reveals
it: articles describe the impact of streaming media, questions of intellectual
property being broadcast, new applications that rely on broadcast, discussions
of privacy concerns with broadcast, etc. We are invited to electronically join
broadcast meetings over the Internet, we can choose to listen to famous or
obscure streaming radio stations from most corners of the globe, and we are
promised a future where we will receive high-definition digital TV.

Clearly, broadcasting is an important technology. But can we do it securely?
And what does “secure broadcast” mean? To us, secure broadcast revolves
around two themes:

receivers are certain that material they receive came from the appropriate
sender; and

senders have the option of limiting the recipients of particular messages.

In this chapter, we discuss these themes at length. And in this book, we
address these concerns and many others, ranging from implementing secure
broadcast on hardware with limited computational power to using broadcast
mechanisms to execute denial-of-service attacks.

But first, let us begin by examining some basic terms. Broadcast communi-
cation is an essential mechanism for scalable information distribution. Point-
to-point communication has been the dominant form of computer network
communication since the beginning of networking. Unfortunately, with the
explosive growth of information technology and the proliferation of the Inter-
net and its applications, point-to-point communication faces serious scalability

�



� ���������	��
���
���������������
��������	����� �!��
"�

challenges. Distributing content, such as a popular movie, to a large audience
over individual point-to-point connections is not economical. In contrast, one
server can effortlessly reach vast audiences by using broadcast communication
such as IP multicast.

A large number of broadcast applications exist today and even more are
emerging. We present some broadcast applications here, and we discuss them
in greater detail later in this chapter.

Content distribution over the Internet. Digital TV and digital radio dis-
tributed over the Internet are becoming increasingly popular. Most likely,
we will receive the future Soccer World Cup final or the opening ceremony
of the Olympic games over an Internet or satellite broadcast.

Software distribution. Broadcast enables quick and wide-spread distri-
bution of software updates. For example, consider anti-virus software.
Viruses utilize the Internet to infect hundreds of thousands of PC’s in a
few hours. As a countermeasure, an anti-virus center could broadcast virus
scanner updates, and the operating system manufacturer could broadcast
security patches.

Sensor networks. The miniaturization of networked sensors brings an op-
portunity to solve many hard problems. Consider the problems of real-time
road monitoring, real-time building safety monitoring (e.g., seismic safety),
or fine-grained climate control in buildings. Since typical sensor networks
communicate over wireless networks, broadcast is a natural communication
method.

Transportation control. By nature, transportation information affects mul-
tiple parties and is rapidly changing. Consider air traffic control. The ma-
jority of the communication patterns are broadcasts: GPS signals, airport
landing system beacons, radio communications. Another example is road
traffic control. Future cars will be equipped with wireless communication
for driving support. Future highways may be equipped with beacons that
broadcast location and current road information to cars.

Logistics and fleet monitoring. Many companies need to track their fleet
and can benefit from knowing accurate position information about their
vehicles. Consider a taxi cab company or an express delivery service. With
accurate position information, the coordination center can take informed
decisions when it plans cab availability, or delivery times. An effective
method for communication in such a setting is through broadcast. Location



���������	��
��
������� �

tracking is also useful for public services, such as buses and trains. Future
buses may broadcast their current location and schedule to help passengers
to predict the arrival time.

Personal wireless communications. With the proliferation of cell phones
we expect to see a rapid growth of broadcast-based wireless services and
applications. For example, traffic monitors built into highways broadcast
the current traffic pattern, public services such as hospitals and pharmacies
may broadcast health-related information to people wearing health-support
equipment. The potential applications are innumerable.

Home automation. If the vision of ubiquitous or pervasive computing
becomes a reality, almost every object within a household will be able to
compute and communicate with other objects. Wireless communication
(i.e., broadcast) may be an efficient and simple method for managing and
querying these objects.

Financial markets. Disseminating real-time financial market information
efficiently to a large audience is an important challenge. We want to broad-
cast the information to all receivers simultaneously to attempt to achieve
the goal of having receivers get the information at the same time, while
protecting the integrity of the information.

Military applications. The military has a wide range of applications that
rely on broadcast to achieve robustness and survivability. Furthermore,
many military applications rely on wireless communication.

Multi-player games. Since the early days of networking, multi-player
games are popular entertainment applications. Today, some games involve
thousands of people simultaneously interacting in the virtual game world.
Broadcast communication enables scalable and efficient games.

����� ����������� �"!��$#&%('*)&+,%(��-/.0��#213�4%657598:�/;<.0� 1=;�%>�

Point-to-point communication protocols are designed for one sender and
one receiver. Unfortunately, the majority of point-to-point protocols do not
generalize to broadcasting data to multiple receivers. Namely, broadcast com-
munication encounters the following major challenges:

Reliability. In point-to-point communication, a receiver achieves reliabil-
ity by detecting missing or corrupted data, and requesting the sender to



� ���������	��
���
���������������
��������	����� �!��
"�

retransmit. In large-scale broadcasts, such an approach would not scale be-
cause a single lost packet can cause a flood of retransmission requests at
the sender (this problem is sometimes called NACK implosion).

Receiver heterogeneity. Some receivers may have high-bandwidth net-
work connections and powerful workstations while others may have low-
bandwidth connections with minimal computation resources.

Congestion control. If a link in the Internet is congested, all well-behaved
flows should back off until the link is not congested any more. Congestion
control for IP multicast is particularly challenging.

Security. Traditional security protocols for point-to-point communication
suffer from the following problems in a broadcast setting: they may not
scale to large audiences, they may not be secure, they may not be efficient
and have a high computation or communication overhead, or they may not
be robust to packet loss. We discuss these problems in more detail in Sec-
tion 1.2.

Since reliability for individual packets is difficult to achieve in large-scale
broadcasts, many broadcast applications distribute individual packets unreli-
ably. Many broadcast applications do not expect reliability guarantees from
the communication protocol, and the sender is not responsible for retransmit-
ting lost packets. Thus, broadcast applications deal with packet loss on the ap-
plication layer, e.g., multimedia applications experience quality degradation,
or file transfer applications use forward error correction (FEC) [BLMR98].

In this book, we consider broadcast communication with the following prop-
erties: the sender unreliably distributes real-time data, the receiver wants to
immediately use data as it arrives, and the broadcast must be secure. This is an
especially challenging scenario, although common for many broadcast appli-
cations. Other broadcast settings may be simpler, and thus our protocols can
easily provide security in those settings as well. To summarize, we consider
broadcasts with the following features and requirements:

Large numbers of receivers

Receiver heterogeneity in computation resources (processor, memory, disk),
and network resources (bandwidth, delay, reliability)

The sender cannot retransmit lost packets

Real-time data: the sender does not know the data in advance



���������	��
��
������� �

Streamed data: the receiver uses all data it receives

Fast sending rate

Security, in particular data authenticity and confidentiality

Applications with these requirements include real-time video streams, and
data distribution that uses FEC [BLMR98, DF02, RMTR02]. We view FEC
distribution as real-time data, as these systems often encode a fixed file into
a long data stream where all packets are different (since these streams have a
very long period, the server cannot pre-compute the stream in advance).

����� � ��� ;<#��6� . 8/+ ;�1�� '	%(+ )�+,%(��-:.0��#�1,#
	 ��+=-��

In this section we analyze why efficient security protocols are challenging
to design for broadcast environments. In contrast, a variety of protocols ex-
ist that provide efficient and secure protocols for authentication, signature, or
confidentiality in point-to-point communication: SSL [FKK96a] and the stan-
dardized successor protocol TLS [DA99], and IPsec [KA98b, KA98a].

We now consider the security requirements of real-world broadcast applica-
tions and we investigate why these security requirements are much harder to
achieve for broadcast communication with untrusted receivers, than in point-
to-point communication.

�����>��� )�+=%���-:.0��#21�
 8 1=�"� �>1=;<.0� 1=;�%>�

The power of broadcast is that one packet can reach millions of receivers.
This great property is unfortunately also a great danger: an attacker that sends
one malicious packet can reach millions and just a single malicious network
packet may be enough to cause a computer to lock up or reboot. An exam-
ple of such an attack is the Windows Teardrop attack [CER97], which causes
computers with the Windows NT operating system to halt.

This illustrates the importance of authentication. Unfortunately, efficient
broadcast authentication is a challenging problem.

In the two-party (point-to-point) communication case, we can achieve data
authentication through a purely symmetric mechanism1: the sender and the
receiver share a secret key to compute a message authentication code (MAC)
of all communicated data. When a message with a correct MAC arrives, the
receiver is assured that the sender generated that message.

1We explain symmetric cryptography and message authentication codes (MAC) in Section 2.3.



� ���������	��
���
���������������
��������	����� �!��
"�

Symmetric MAC authentication is not secure in a broadcast setting, where
receivers are mutually untrusted. The symmetric MAC is not secure: every
receiver knows the MAC key, and could thus impersonate the sender and forge
messages to other receivers. Intuitively, we need an asymmetric mechanism
to achieve authenticated broadcast, such that every receiver can verify the au-
thenticity of messages it receives, without being able to generate authentic
messages.2

The property we seek is asymmetric, so it is natural to consider asymmet-
ric cryptography, for instance, a digital signature. Digital signatures have the
required asymmetric property: the sender generates the signature with its pri-
vate key, and all receivers can verify the signature with the sender’s public key.
A digital signature provides non-repudiation, which is a much stronger prop-
erty than authentication. Unfortunately, digital signatures have a high cost:
they have a high computation overhead for both the sender and the receiver,
as well as a high communication overhead. Since we assume broadcast set-
tings where the sender does not retransmit lost packets, and the receiver still
wants to immediately authenticate each packet it receives, we would need to
attach a digital signature to each message. Because of the high overhead of
asymmetric cryptography (as we show in Section 2.3), this approach would
restrict us to low-rate streams and senders and receivers with powerful work-
stations. To deal with the high overhead of asymmetric cryptography, we can
try to amortize one digital signature over multiple messages. We discuss this in
Section 1.2.2. However, such an approach is still expensive in contrast to sym-
metric cryptography, since symmetric cryptography is in general 3 to 5 orders
of magnitude more efficient than asymmetric cryptography.

To achieve higher efficiency with asymmetric cryptography, a sender could
use short keys during a short time period (too short for an attacker to break
the key with high probability), and to keep the sender and receivers time syn-
chronized. Unfortunately, such an approach has many drawbacks. Consider a
system that uses the RSA digital signature algorithm with ����� -bit long keys,
where the sender signs every packet with the current private key [RSA78]. As-
sume that every public/private key pair is valid for � minutes. Using a ����� -bit
long RSA key is probably about the smallest permissible key size today (even
for short-time usage applications), as those keys can be factored today using
only ��� of the computation required to break a �	� bit DES key [CWI99].

2In fact, Boneh, Durfee, and Franklin show that a general broadcast authentication protocol can be converted
into a signature protocol [BDF01].



���������	��
��
������� �

With today’s resources and factoring technology, such a key can be factored
in a few hours. The advantage is that the receiver can immediately verify the
signature of the packet right after reception (i.e., no authentication delay). This
approach also provides robustness to packet loss, as long as the receiver has a
reliable mechanism to get the current public verification key. Unfortunately,
this approach also has many drawbacks:

High computation overhead. Despite the short key, a ����� MHz Pentium
III workstation today can only sign about ����� messages per second, and
verify about ������� messages per second. For most applications, this would
tie up the majority of computation resources. The computation overhead is
overwhelming on smaller architectures. For example, a Palm Pilot or RIM
pager can only generate between �	� ��
 and �	��� signatures per second, and
verify between ��� � and �
� signatures per second [BCH � 00].

Despite recent progress in digital signatures, RSA still provides one of
the fastest signature verification for digital signatures based on number-
theoretic assumptions.

High communication overhead. With a ����� bit RSA key, each signature
is ��� bytes long, which is too long for many applications. Recent signa-
ture algorithms have shorter signatures, but most of them have a higher
computation overhead than RSA [CGP01, LV00]. Furthermore, the sender
needs to update the public key every �
� minutes, which has an additional
overhead.

Long-lived devices. Some of the devices will be deployed for several
years. Unfortunately, ����� bit long RSA keys will not be secure as factoring
algorithms advance and processors continue to double in speed every ���
months.

Not perfectly robust to packet loss. If the packets that carry the new
public key are lost, the receivers cannot authenticate subsequent packets.

Time synchronization requirement. The receivers need to be loosely time
synchronized with the sender; however, the time synchronization error can
be on the order of minutes.

For efficient broadcast authentication, we design two protocols that rely on
purely symmetric cryptography: the TESLA protocol (Chapter 3) and the BiBa
broadcast authentication protocol (Chapter 4). Both protocols require time syn-
chronization between the sender and the receiver. Furthermore, both protocols



� ���������	��
���
���������������
��������	����� �!��
"�

use novel techniques to provide the asymmetric property required for broad-
cast authentication. TESLA achieves the asymmetry through time delayed key
disclosure, and BiBa is a new combinatorial signature.

To summarize, a viable broadcast authentication protocol must have the fol-
lowing properties:

Low computation overhead for generation and verification of authentication
information.

Low communication overhead.

Limited buffering required for the sender and the receiver (timely authenti-
cation for each individual packet).

Strong robustness to packet loss.

Scales to a large number of receivers.

�����>��� )�+=%���-:.0��#21 ��;�!>�"� 1,8/+,�

Some applications require that each message of the broadcast stream is digi-
tally signed, to provide non-repudiation of origin in a court of law, for example
stock market data, on-line auctions. Digital signatures require an asymmetric
property, such that the signer can generate a signature, and the receivers can
only verify (i.e., not generate) the signature. Compared to symmetric cryp-
tography, asymmetric cryptographic primitives are orders of magnitude slower
as we show in Section 2.3. Hence, if the receiver needs to compute an asym-
metric cryptographic primitive for each packet it receives, the receiver needs
substantial computation power. A more efficient approach is to amortize one
asymmetric operation over multiple packets. We present the EMSS and MESS
protocols which amortize one digital signature over thousands of packets.

The requirements are similar to the requirements of broadcast authentica-
tion. The properties of an ideal signature protocol for broadcast streams are:

Low computation overhead for generation and verification of authentication
information

Low communication overhead

No buffering required for the sender and the receiver

Instant signature verification for each individual message

Strong robustness to packet loss

Scales to large number of receivers



���������	��
��
������� �

�����>��� )�+=%���-:.0��#21�� � 1 ��� �>1 � !>+ ;�1��

Data integrity ensures that the data was not modified or deleted in any unau-
thorized way. In this work, we achieve integrity through authentication. Au-
thentication ensures that the data originates from the claimed source, and that
the data was not modified in transit. To detect unauthorized data deletion, we
can use a variety of techniques, for instance adding a counter to data will allow
the recipient to detect missing data. However, in most broadcast settings, the
sender does not retransmit lost packets (or missing data) as we discuss in Sec-
tion 1.1, so we do not need a counter. Hence, we achieve data integrity through
data authentication.

�����>��� �4%>�
	 -/� �>1=;���� )�+=%���-:.0��#21 # ���"-�� �$#21,+ ;<. 1=;���!

 . .0�$# #&1 %�
 �$!>;�1=;�5 � 1 ��� �$.0� ;��(� +=#

Most contemporary broadcast environments allow any receiver to receive
broadcast information. For instance, wireless environments allow anybody
within the sending range to receive the broadcast. In IP multicast, for example,
any receiver can subscribe to a multicast group. However, in many applications
the sender wants to restrict access and to control which receivers can receive
broadcast information, for example in subscription-based information distribu-
tion such as stock quote feeds, weather information, news, or sports broadcasts.
The general approach for achieving this requirement is to encrypt broadcast in-
formation with a secret key � . Only the sender and legitimate receivers know
� . Any illegitimate receiver that does not know � will not be able to de-
crypt the broadcast information. This approach also provides confidentiality
of the broadcast information. So we can solve the access control problem for
broadcast information if we can solve the key distribution problem.

Unfortunately, distributing a secret key efficiently to a large number of re-
ceivers is a challenge. The main problem is to update the key in dynamically
changing groups, since a receiver should only be able to decrypt the broad-
cast stream while it is a member of the group. More concretely, the group key
that the receiver gets when it joins the group should not allow it to decrypt
content that was sent before it joined the group (we call this the backward se-
crecy property), and similarly, the member should not be able to decrypt any
broadcast content after it leaves the group (we call this the forward secrecy
property). Group key secrecy is another important property, which means that
no outsider can find any group key. We discuss these properties in more detail
in Section 6.1.1.



��� ���������	��
���
���������������
��������	����� �!��
"�

To achieve forward and backward secrecy, the sender updates the key after
each member join or member leave event and sends the new group key to all
legitimate receivers. Updating the group key in a secure, scalable, and reliable
manner is challenging. In particular, achieving reliability is crucial in most
current key distribution schemes, since a missing group key prevents a receiver
from decrypting subsequent messages. Chapter 6 discusses these issues in
more detail. To summarize, a viable key distribution protocol provides the
following properties:

Secure key update

– Group key secrecy

– Backward secrecy

– Forward secrecy

Scalability for large dynamic groups

Reliability of key update messages

Low computation overhead

Low communication overhead (small key update messages)

����� �6� . 8/+ ;�1�� � ����8:;<+,� 5 � �>1,# '	%(+ )�+=%���-:.0��#21

���� ��;<.0� 1=;�%>�/#

We now discuss current and emerging broadcast applications and analyze
their security requirements.

An important broadcast application is software distribution. Distribution
of software over the Internet is increasing rapidly. For popular and large soft-
ware packages, broadcast distribution is probably the most effective and eco-
nomical distribution mechanism, in particular for security critical updates. For
example, consider the dissemination of anti-virus software updates and op-
erating system patches. Modern computer viruses and worms use the Inter-
net to propagate, and can spread quickly and infect hundreds of thousands
of connected computers within hours. For instance, the recent Code Red
worm infected over a quarter million Microsoft Windows NT servers within
hours [CER01a, CER01b]. To counteract these worms, we could distribute
anti-virus software updates or operating-system patches through broadcasts,
with the hope that we can protect the computers before they are attacked.
The important security requirement for software distribution is that all re-
ceivers must authenticate the origin of the data, such that an adversary could



���������	��
��
������� � �

not distribute rogue code. It may appear that a digital signature on the en-
tire data suffices. In practice, however, the sender usually uses a technique
such as forward error correction (FEC) to achieve reliable content distribution
[BLMR98, DF02, RMTR02]. These techniques encode the data into many
small chunks, the receivers collect the chunks, and reconstruct the data. If
an adversary injects a single bad chunk, the reconstruction fails, or produces
garbled data and the signature verification would fail. Hence, injecting bogus
packets poses a serious risk for a denial-of-service attack. Due to the exceed-
ingly large number of combinations, it is computationally infeasible for the
receiver to try to guess good chunks and attempting to reconstruct the data
until the digital signature matches. A better approach is to use authentication
on each chunk, so the receiver can authenticate the origin of every individual
chunk before it further processes it.

An additional requirement may be to restrict access, so only legitimate re-
ceivers receive the data, which is necessary in many software distribution set-
tings. We discuss the access control issue further in Section 1.2.4.

Another important application that requires broadcast communication is the
distribution of audio and video data. Due to server limitations, current net-
work bandwidth limits, and the relatively high bandwidth requirements of
high-fidelity video streams, popular content requires broadcast for scalability.
For instance popular sports events (e.g., the soccer world cup final), interna-
tional events (e.g., the opening ceremony of the Olympic games), new video
clips by music celebrities, or important political speeches, may attract up to
hundreds of millions of viewers. Such events would require a tremendous
server infrastructure to distribute the information by point-to-point communi-
cation. In most applications each receiver needs to authenticate the data origin
of each message it receives to prevent an attacker from sending bogus content
and potentially hijacking the entire stream. In settings where the information
distributor restricts access to receivers who pay for the content, the sender may
use access control techniques, which we discuss further in Section 1.2.4.

Audio and video broadcasts are also important in corporate environments,
for instance for employee training and information distribution. Content au-
thentication may not be necessary within a closed corporate network. Restrict-
ing access to legitimate receivers, however, may be necessary for sensitive and
competition-critical information.

Another important broadcast application is real-time stock market quote
feeds. Distributing the current market information such that millions of re-
ceivers get the data simultaneously is a challenge. Security is also an important



� � ���������	��
���
���������������
��������	����� �!��
"�

requirement in this setting: data authenticity is paramount for the receivers,
and the information distributors want confidentiality, such that only the paying
receivers get the information.

Sensor networks are an emerging technology. Sensors may monitor a wide
variety of events, such as sound, temperature, light, cars passing by, motion,
water level, etc. The number of applications are endless. These sensors usually
communicate over a wireless channel, hence broadcast is a natural communica-
tion method. Because wireless communication is easy to eavesdrop or to spoof
a message, many sensor networks require confidentiality and authentication.
We discuss sensor networks and their applications in detail in Chapter 7.

The air traffic control system used today relies heavily on broadcast: GPS
signals, airport landing system signals, and radio communications. Unfortu-
nately, the infrastructure deployed today does not use cryptographic methods
to protect against eavesdropping or fake signals. To guarantee maximum secu-
rity for the flights, air traffic control should at the least use strong authentication
on all broadcast signals, and if possible, restrict access to legitimate receivers.

����� �3% �(� � �4%>�>1,+ ;�� 8�1,;�%6�"#

This book introduces the following novel contributions:

We propose to use time to achieve the asymmetry necessary in broadcast
authentication (receivers can only verify, but not generate any valid au-
thentication information). The TESLA broadcast authentication protocol
achieves asymmetry through delayed key disclosure. Through the use of
one-way key chains or Merkle hash trees, we achieve perfect robustness
to packet loss. The TIK extension exploits precise time synchronization
and enables receivers to instantly authenticate a packet. In case of loosely
synchronized clocks, we introduce TESLA-IA (TESLA with instant au-
thentication), where we shift from receiver-side buffering to sender-side
buffering.

We introduce use of multi-way collisions for a signature. This is a novel
approach for constructing signatures based on one-way functions without
trapdoors. The resulting signature provides low verification overhead. We
design the BiBa broadcast authentication protocol based on the BiBa sig-
nature, which achieves a previously unachieved set of properties (instant
authentication, scalability, robustness to packet loss, efficient authentica-
tion, reasonable communication overhead, loose time synchronization).



���������	��
��
������� � �

The EMSS/MESS stream signature protocols use multiple hash links to
achieve robustness to packet loss. The HTSS stream authentication pro-
tocol features a previously unachieved low communication overhead with
instant authentication. This efficiency stems from observing the sending
order of packets, and nodes of the Merkle hash tree; and by minimizing the
redundancy of sending the Merkle hash tree nodes.

The ELK large-group key distribution protocol introduces several novel
ideas. The ELK protocol reduces the broadcast communication overhead
for group key updates and introduces several mechanisms for achieving re-
liability. ELK introduces a protocol that does not require any broadcast
message after a member joins the group at any time, or after a member
leaves the group at a predicted time. A novel key update protocol enables
us to reduce the key size, without introducing a vulnerability to dictionary
attacks. The key update protocol also enables us to compress key update
messages, by exploiting receiver computation. Finally, we reduce the size
of redundant key update packets (for achieving robustness to packet loss)
by selecting only the key update components which are useful for the ma-
jority of group members.

As a case study, we consider sensor networks with highly resource-starved
devices. Despite the hardware constraints, we design secure protocols for
point-to-point communication, and adapt the TESLA broadcast authentica-
tion protocol to this environment.

����� � .0% � � %�'*1=�:;<# ) % %��

This book presents a number of new protocols to secure broadcast com-
munication. The emphasis of the text is on the new mechanisms that these
protocols introduce. We describe our mechanisms at a fairly high level, so
that the description is general enough to apply to a wide variety of settings.
We omit detailed security proofs of our mechanisms, but we give general se-
curity arguments and refer to publications containing more detailed security
arguments.

����� ) % %���� �(� + �";��	�

This book presents new methods and protocols for secure broadcast com-
munication. Rather than present protocols for specific settings, we present a
flexible framework and a set of building blocks appropriate to a wide variety of
settings. To ensure generality of our methods, we intentionally leave out spe-



� � ���������	��
���
���������������
��������	����� �!��
"�

cific implementation details. However, we do consider specific applications
for each protocol, we do walk through a specific solution, and we do discuss
performance and tradeoffs. The tools in this book support secure protocols for
any broadcast network, including IP multicast, wireless networks, and satellite
distribution networks. Here is an outline of this book.

Chapter 1 is this introduction. We present applications for broadcast net-
works and discuss their security requirements. We identify broadcast au-
thentication, broadcast signature, and key distribution as the essential and
fundamental security requirements for broadcast networks.

Chapter 2 introduces the basic cryptographic primitives that we use.

Chapter 3 presents the TESLA protocol, a highly efficient broadcast authen-
tication protocol. TESLA uses time (delayed key disclosure) to achieve the
asymmetry property required for secure broadcast authentication. The main
features of TESLA are: low sender and receiver computation overhead
(around one MAC function computation per packet), low communication
overhead, and perfect robustness to packet loss. TESLA requires loosely
synchronized clocks between the sender and the receiver, and the authen-
tication is slightly delayed. However, we describe a variant of TESLA
with instant authentication, which requires sender buffering instead of re-
ceiver buffering, but the receiver can authenticate the message as soon as
the packet arrives.

Chapter 4 presents the BiBa signature algorithm, a new approach to de-
sign signature algorithms based on one-way functions without a trapdoor
(these signatures are sometimes called one-time signatures). BiBa is an
acronym for bins and balls signature. We use bins and balls as an analogy
to describe BiBa: to sign a message, the signer uses the message to seed a
random process which throws a set of balls into bins. When enough balls
fall into the same bin, the combination of those balls constitute a signature.
To achieve an asymmetry between the signer and the forger, the BiBa sig-
nature exploits the property that the signer who has a large number of balls
finds a signature with high probability, but a forger who only has a small
number of balls has a negligible probability to find a signature. To the best
of our knowledge, the BiBa signature is one of the fastest signatures today
for verification. Signature generation is more expensive, but only requires
two sequential hash function computations if the signer has many parallel
processors. BiBa is about twice as fast than most previous one-time signa-



���������	��
��
������� � �

ture algorithms, and the signature size is less than half as large than most
previous signatures based on one-way functions without trapdoors.

Using the BiBa signature as a basis, we design the BiBa broadcast authen-
tication protocol. BiBa requires loose time synchronization between the
sender and receivers, but in contrast to TESLA, the authentication is instant
and neither the sender nor the receiver need to buffer messages. BiBa is
also perfectly robust to packet loss, and scales well. The BiBa broadcast
authentication protocol thus achieves a unique set of properties.

TESLA and BiBa feature new approaches to achieve the asymmetric prop-
erty required by the broadcast authentication: TESLA uses time delay, and
BiBa is a new combinatorial signature.

Chapter 5 introduces a set of broadcast signature protocols: EMSS, MESS,
and HTSS. EMSS and MESS use sequences of hashes to amortize one ex-
pensive digital signature operation over many messages. In a nutshell, the
sender computes the hash of a packet and adds it to later packets. Pe-
riodically, the sender signs data packets with a digital signature. Due to
the sequence of hashes, the signature extends transitively over the previous
packets, i.e., the receiver can follow the sequence of hashes to verify pre-
vious packets. Because the hash of a packet appears redundantly in later
packets, we achieve tolerance to packet loss. Given a loss probability, we
analyze in how much redundancy we need to achieve a high probability
that we can verify the signature of a packet. For the special case where the
sender knows the entire stream content in advance, we design the broadcast
signature protocol HTSS. HTSS constructs a hash tree over all the mes-
sages and the sender only needs to sign the root of the tree. Naively, such
an approach would seem to require high communication overhead, but we
present an efficient method of encoding to make this approach viable.

Table 1.1 shows an overview of the features of our broadcast authentica-
tion and signature protocols presented in Chapters 3 through 5. To select
an appropriate protocol, we can choose from three broadcast signature pro-
tocols if we need non-repudiation: EMSS, MESS, HTSS. However, many
broadcast applications require authentication, so TESLA is ideally suited if
loose time synchronization is possible and a short authentication delay is
tolerable. If time synchronization is less accurate, or if we want the lowest
possible end-to-end authentication delay, the BiBa broadcast authentication
protocol is appropriate. If the data may be cached for extended time peri-



� � ���������	��
���
���������������
��������	����� �!��
"�

TESLA

TESLA-IA

TIK BiB
a

EM
SS

/ M
ESS

HTSS

Authentication (A) or signature (S) A A A A S S
Time synchronization Y Y Y Y N N
Authentication delay Y N N N Y N
Sender buffering N Y N N N Y
Receiver buffering Y N N N Y N
Real-time streams Y Y Y Y Y N
Robustness to packet loss Y N Y Y N N
Communication overhead (bytes) 24 32 24 128 40 32
Generation overhead 1 1 1 2048 1 2
Verification overhead 2 2 30 100 1 10

���������
	��
	��
This table compares the authentication and signature schemes we propose. TESLA

is the basic protocol we describe in Chapter 3. TESLA-IA is the instant authentication extension
we present in Section 3.5.1. BiBa is the stream authentication protocol we present in Chapter 4.
Chapter 5 presents the EMSS, MESS, and HTSS stream signature schemes. The communication
overhead row lists the approximate per-packet size of the authentication or signature informa-
tion. The unit for the generation and verification overheads is the approximate number of hash
function computations.

ods and time synchronization is not possible, we suggest use of one of the
signature protocols to provide authentication.

Chapter 6 discusses the problem of how to distribute a key securely and
reliably to large numbers of receivers, in a scalable manner. We identify re-
liability as a crucial factor to achieve scalability, and design multiple proto-
cols that greatly enhance reliability. For instance, we design a new protocol
for adding a new receiver to the group that does not require any broadcast
message. We also design a new protocol that updates the group key after a
member leaves the group at a predicted time, without sending a broadcast
message. These two protocols greatly enhance scalability, because fewer
messages need to be sent reliably. We furthermore present a new key up-
date protocol that features compressed key update messages. Our protocol
enables such short key update messages that the sender can send them along
with regular data messages. We present the ELK protocol, which uses all



���������	��
��
������� � �

these protocols to achieve a highly efficient and scalable key distribution
protocol.

Chapter 7 examines a case study in an extremely resource-constrained sen-
sor network. We analyze the security requirements of sensor networks. We
present the Sensor Network Encryption Protocol (SNEP). SNEP secures
point-to-point communication links and provides confidentiality, authenti-
cation, and freshness. Broadcast is a natural method of communication in
wireless networks, and authentication of broadcast messages is important
for many applications. By designing the � TESLA protocol, we demon-
strate that the TESLA protocol can scale down to minimal environments
and that broadcast authentication is practical even in sensor network envi-
ronments.

Chapter 8 reviews related work.

Chapter 9 concludes this book. We end with a discussion of open research
problems in the area of secure broadcast.


