ResistingSYN flood DoS attacks with a SYN cache

JonatharLemon

jlemon@FreeBSD.gr

FreeBSD Project

Abstract

Machinesthat provide TCP servicesare often suscepti-
ble to varioustypesof Denial of Serviceattacksfrom
external hostson the network. One particulartype of
attackis known asa SYN flood, where external hosts
attemptto overwhelmthe sener machineby sendinga
constanstreamof TCP connectiorrequestsforcing the
senerto allocateresource$or eachnew connectioruntil
all resourcesreexhaustedThis paperdiscusseseveral
approache$or dealingwith the exhaustionproblem,in-
cluding SYN cachesandSYN cookies. The advantages
anddrawbacksof eachapproachare presentedandthe
implementatiorof the specificsolutionusedin FreeBSD
is analyzed.

1 Intr oduction

Thelnternettodayis drivenby machineghatcommuni-
cateusingservicedayeredon top of the TCP/IP proto-
cols,thesdncludeHTTR, ftp andssh,amongothers.The
accessibilityof theseservicess dependenbn how well
theunderlyingtransporprotocolperformswhichin this
casds TCPR If TCPisunableor unavailableto deliverthe
layeredserviceto a remotemachine the userperceves
the site as being deador inaccessible.Perhapanerely
anincorveniencen the past,thisis amuchmoreserious
problemtodayasmachinesarebeingusedfor commerce
andbusiness.
Onewaythatamalicioushostcanattemptto dery ser
vicesprovidedhby a sener machineis by sendingalarge
numberof TCP openrequestsTheseareknown asSYN
paclets, namedafter the specificbit in the TCP speci-
fication, hencethis type of Denial of Serviceattackis
oftencalledSYN bombingor SYN flooding. Whenthe
sener recevesthis paclet, it is interpretedasa request
by the remotehostto initiate a TCP connection,andat
this point, the OS on the sener machinecommonlyallo-
catesresourceso trackthe TCP state.By sendingthese

requestsn rapid successionan attacler canexhaustthe
resource®n the machineto the point whereit becomes
unresponsie, or crashes.

The sener can attemptto reducethe impact of the
floodingby changingheresourceallocationstratgy that
it uses.Oneapproachs to allocateminimal statewhen
theinitial requests receved,andonly allocateall there-
sourcegequiredwhenthe connectioris completedthis
is termeda SYN cache. Another approachis to allo-
catenostate putinsteadsendacryptographisecreback
to the originator, calleda cookie; hencethe nameSYN
cookie. Both approacheareintendedto allow the ma-
chineto continueto provide its servicego valid users.

The restof this paperis structuredas follows: Sec-
tion 2 examinesthe detailsinvolved in the SYN flood
Denial of Serviceattacksand examinesthe approaches
of differentdefensesSection3 detailsthe experimental
setupusedfor testing,while Section4 describeshe cur-
rentsystembehaior andmotivationfor change Section
5 discusseshe SYN cacheimplementatiorandpresents
the performancemeasurementBom the changewhile
Section6 doesthe samefor SYN cookies. Section7
discusseselatedwork, andthe paperconcludeswith a
summaryin Section8.

2 TCP Denial of Service

A traditional TCP 3 way handsha&for establishingon-
nectionds shovn in Figurel, wherestateis allocatedon
thesener sideuponreceiptof the SYN to hold informa-
tion associatewvith theincompleteconnection.Thegoal
of aSYN flood is to tie up resource®n the sener ma-
chine,sothatit is unableto respondo legitimateconnec-
tions. Thisis accomplishedy having the client discard
thereturningSYN,ACK from thesenerandnotsendthe
final ACK. This resultsin the sener retainingthe partial
statethatwasallocatedfrom theinitial SYN.

The attacler doesnot necessariljhave to be on a fast
machineor network to accomplishthis. StandardTCP

client server

initiate

connection %

SYN,ACK
&

incomplete
connection

complete
connection

complete
connection

Figurel: Standardr CP 3 way handshak.

will not time out connectionauntil a certainnumberof

retransmitshave beenmade,which usuallyis a total of

511 seconds[J. Assuminga machinepermitsa max-

imum of 1024 incompleteconnectionger soclet, this

meansanattacler hasonly to send2 connectiorattempts
per secondto exhaustall allocatedresources.In prac-
tice, this doesnot form a DoS attack,asexisting incom-

pleteconnectionsaredroppedwhenanen SYN request
is received. The time requiredfor the sener to send
a SYN,ACK and have the client reply is known asthe

roundtrip time (RTT); if an ACK arrivesat the sener

but doesnotfind acorrespondingncompleteconnection
state thesenerwill notestablisha connectionBy forc-

ing the sener to drop incompleteconnectionstateat a

ratelargerthanthe RTT, anattacleris ableto insurethat
no connectionareableto complete.

Eachconnectioris droppedwith 1/N probability, and
if thegoalis to regycle every connectiorbeforetheaver
ageRTT, anattacler would needto flood the machineat
arateof N/RTT pacletspersecond For alistenqueue
sizeof 1024,anda 100 millisecondRTT, this resultsin
about10,000pacletsper second.A minimal size TCP
paclet is 64 bytes, so the total bandwidthusedis only
4Mb/secondwithin therealmof practicality

As the sendemayforgetheir sourcelP addressa de-
fensethatrelieson filtering pacletsbasedon the source
IP will not be effective in all cases. Using a random
sourcelP addresawill alsocausemoreresourcego be
tied up on the sener if a perlIP route structureis allo-
cated.

Oftenit is not possibleto distinguishattacksfrom real
connectiorattemptsptherthanby observinghevolume
of SYNsthatarearriving at the sener, so the machine
needgo beableto handlethemin somefashion.

In order to defend againstthis type of attack, the
amountof the amountof statethat is allocatedshould

be reduced,or even eliminatedcompletelyby delaying
allocationuntil theconnectioris completed.Two known

approacheto dothisareknown asSYN cacheandSYN

cookies. The cachingapproachis similar to the exist-

ing behavior, but allocatesamuchsmallerstatestructure
to recordtheinitial connectiorrequestwhile the cookie
approachattemptgo encodethe statein a smallquantity
whichis returnedby the clientwhenthe TCP handshak
is completed.

2.1 Defenses

SYN cachingallocatessomestateon the machine,but
even with this reducedstateit is possibleto encounter
resourceexhaustion.The codemustbe preparedo han-
dle stateoverflows and choosewhich itemsto drop in
orderto preserefairness.

Theinitial SYN requestarriesa collectionof options
which apply the TCP connection,thesecommonlyin-
cludethedesiredMSS, requesteavindow scalingfor the
connectionuseof timestampsandvariousotheritems.
Partof thepurposeof theallocatedstatels to recordthese
options,which are not retransmittedn the return ACK
from theclient.

SYN cookiesdo not storeary stateon the machine,
but keepall stateregardingtheinitial TCP connectiorin
the network, treatingit asaninfinitely deepqueue.This
is doneby useof a cryptographidunctionto encodeall
informationinto a valuethatis sentto the client with the
SYN,ACK andreturnedto the senerin thefinal portion
of the 3 way handshak. While this approachappears
attractve, it hasthedrawvbackof notbeingableto encode
all the TCPoptionsfrom theinitial SYN into the cookie.
Theseoptionsare thenlost, derying the useof certain
TCP performanceenhancements.

A secondaryproblemrelatedto cookiesis that the
TCP protocol requiresunacknavledgeddatato be re-
transmitted. The sener is supposedo retransmitthe
SYN,ACK beforegiving up and droppingthe connec-
tion, whereupora RST is sentto the clientin orderto
shutdavn the connection.WhenSYN,ACK arrivesat a
clientbutthereturnACK is lost, thisresultsin adisparity
aboutthe establishedtatebetweerthe clientandsener.
Ordinarily, this casewill be handledby sener retrans-
mits, but in the caseof SYN cookies,thereis no state
keptonthesener, andaretransmissiotis not possible.

SYN cookiesalso have the property that the entire
connectionestablishmenis performedby the returning
ACK, independensf the precedingSYN andSYN,ACK
transmissionsThis opensthe possibility of flooding the
sener with ACK requestsjn hopesthat one will con-
tain the correctvalue which allows a connectionto be
established. This also provides an approachto bypass
firewalls which restrictexternalconnectiondy filtering

outincomingpacletswhich have the SYN bit set,since
initial SYN paclet is no longerrequiredto establisha
connection.

Another difficulty with cookiesis that they are in-
compatiblewith transactionallCP[g. T/TCP works by
sendingmonotonicallyincreasingsequenceaumbersto
thepeerin the TCP optionsfield, andusespreviouslyre-
cevedsequencaumbergo establishconnection®nthe
initial SYN, eliminatingthe 3 way handshak. However,
useof the T/TCPsequencaumberds mandatoryoncea
TCP connectionis initiated, andthis requiresthe sener
to recordthe initial sequencaenumber and whetherthe
T/ITCPoptionwasrequested.

Thuscookiescannotbe usedasthe normalline of de-
fensein a high performancesener. The usualapproach
isto useastateallocationmechanismandfall backto us-
ing cookiesonly aftera certainamountof statehasbeen
allocated. This is the approachtaken by the the Linux
kernelimplementation.

3 Experimental Setup

The code base used was FreeBSD 4.4-stable, from
sourcesasof Novemberl4th,2001. Thetargetmachine
usedfor testingwas an Intel P111/850, with 320MB of
memory andwasequippedvith anonboardntel Ether
Expressl00Mb/schip,anintel 1000/ProGigabitadapter
and a NetGearGA620 Gigabit adapter The NetGear
adapterwas attacheddirectly to a secondmachinethat
actedasa paclet source while the Intel adaptewasdi-
rectly attachedo a third machinethatactedasa paclet
sink. A fourth machinewas connectedvia the 100Mb
portandwasusedfor takingtiming measurementsf real
connectiorrequestdo thetestmachine.

A default route was installed on the test ma-
chine so that all incoming traffic from the source
was sent out to the sink via the other gigabit link.
The kern.ipc.somaxconparameterwhich controlsthe
maximum listen backlog, was raisedto 1024, while
net.inet.tcp.mskvas turneddown to 30 millisecondsin
ordernotto run out of TCP ports. Mbufs andmbuf clus-
terswere setto 65536and 16384 respectiely, andthe
systemwasmonitoredto insurethatthe mbuf limit was
notreached.

When SYN flooding the box, the sourcewas config-
uredto generateSYN pacletsatarateof 15,000paclets
per second.This ratewaschosemasa load thatthe box
could reasonablyhandlewithout becomingsusceptible
to recever livelock. Underthis load, the box washan-
dling upwardsof 30,000paclets per second,incoming
andoutgoing. The sourceaddressesf the SYN paclets
wererandomlychoserfrom the 10.x.x.xsubnetandthe
sourceportnumbersandISSwerealsorandomlygener
ated.

A small programthat acceptedand closedincoming
connectionsvasrunonthetestmachinejn orderto pro-
vide a listen soclet for incoming paclets. Timing mea-
surementsvere taken on the control machinethat was
attachedo the 100Mb port, which involvedtaking 2000
samplesof the amountof time requiredfor a connect()
call to completeto thetargetmachine.

4 Motivation

Initial testswereperformedon the targetmachineusing
an unmodified4.4-stablekernelwhile undegoing SYN
flooding. Thesizeof thelistensocletbacklogwasvaried
from thedefault 128entriesto 1024entries,aspermitted
by kern.ipc.somaxconnThe resultsof the testare pre-
sentedn Figure2.

In this test, with a backlogof 128 connections90%
of the 2000 connectiondnitiated to the target machine
completewithin 500ms. Whenthe applicationspecifies
a backlogof 1024 connectionsn the listen() call, only
2.5% of the connectioncompletewithin the sametime
period.

Thedropof in performancéneremay be attributedto
thefactthatthe sodropablereqg(functiondoesnot scale.
Thegoalof this functionis to provide a randomdrop of
incompleteconnectiongrom thelistenqueuejn orderto
insurefairness.

However, thequeuss keptonalinearlist, andin order
to drop a randomelement,a list traversalis requiredto
reachthe target element. This meansthat on average,
1/2 of the total length of the queuemustbe traversed
to reachthe element;for a listen queuebacklogof 1024
elementsthisleadsto anaverageof (3 (1024/2))/2, or
768elementdraversedior eachincomingSYN.

Profiling resultsshaow thatin this particularcase,the
systemspends30% of its time in sodropablereq()and
subjectvely, is almost completely unresponsie. Ex-
amining the graph, we seethat thereis a considerable
dropof in performancdetweerthebacklogcase®of 768
entriesand 1024 entries,the reasonof which is unclear
It is likely thatthereis a’knee’ in the performanceurve
is betweerthesepoints,andsystemmay have reacheda
point of saturation.

For the rest of the paper a listen queuebacklog of
1024 entriesis used,asthis is a realisticvalue usedon
productionsystems[4 It alsosenesto illustratetheper
formancegainsfrom asyncacher syncookiemplemen-
tation.

4.1

The new implementatiorfor FreeBSDprovidesa SYN
cacheasthe first approachfor handlingincoming con-
nections, and has every connectionpassthrough the

Implementation

Time needed to connect() to RELENG_4 system

100

90 |

80

70

60

40 +

% of connections completed
n
o
T

30 |

20

10

e backlog = 128 ———

backlog = 256 -------

backlog =512 -------- —

backlog = 768 - -
backlog = 1024 -—--

1500 2000

2500 3000

microseconds

Figure 2: Time neededto connect()to a RELENG.4 systemundera SYN flood attack. The kern.ipc.somaxconn
parametepntheremotemachinewassetto 1024,andthesizeof thelistenbacklogwasvariedfor eachrun.

cache. If an existing entry in the cacheneedsto be
evicted, a sysctltunablecontrolsthe optional behavior
of sendingoacka SYN cookieinsteadof evicting theen-
try from the cache.In thefollowing discussionfirst the
implementatiorof the syncachewill be presentedinde-
pendeniof syncookieswith the next sectionexplaining
how syncookiesnodify thebehavior of thesyncache.

5 SYN Cache

The syncacheimplementationreplacesthe persoclet
linear chain of incompletequeuedconnectionswith a
global hashtablewhich providestwo forms of protec-
tion againstrunningout of resources.Thesearea limit
onthethetotalnumberof entriesin thetable,which pro-
videsanupperboundon theamountof memorythatthe
syncachdakesup,andalimit onthenumberof entriesin
a givenhashbucket. Thelatterlimit boundsthe amount
of time thatthe machineneedsto spendsearchingor a
matchingentry, aswell aslimiting replacemenbf the
cacheentriesto asubsebf theentirecache A globalta-
ble waschosennsteadof a persoclettableasit wasfelt
thiswould beamoreefficientuseof systenresourcesA
currentimplementatiorrestrictionthatall kernelvirtual
addresspacdor thememoryusedatinterrupttime must
be pre-allocatedvasalsoa factorin this decision.
Oneof the major bottlenecksn the original codewas
the random drop implementationfrom the linear list,

which did not scale. This bottleneckavoided in the
syncachesincethe queueis split amonghashbuckets,
which arethentreatedas FIFO queuesnsteadof using
randomdrop. Anotherway of viewing this is to con-
siderthe original linearlist partitionedup into a number
of sublistsequivalentto the sizeof the hashtable,where
choosinga bucket enablesisto choosewhich sectionof
the list to drop. Sincethe hashdistribution acrossthe
bucketsshouldbe uniform, thisis anapproximatenodel
of choosingarandomlist entryto drop.

The hashvalue is computedon the incoming paclet
using the sourceand destinationaddressesthe source
anddestinatiorport, andarandomlychosersecret.This
valueis thenusedas anindex into a hashtable, where
syncacheentriesarekepton alinkedlist in eachbucket.
The secretis usedto perturbthe hashvalue so that an
attacler cannottarget a specifichashbucket and dery
serviceto aspecificmachine.

While on the surfaceit may appearthat an attacler
could implementa DoS by targeting a hashbucket so
thatalegitimateconnectiordoesnotresideonthe queue
long enoughto establistaconnectiontherisksaremigi-
tatedby the useof the hashsecret. Additionally, since
the port numberof the connectingmachineis usedin
the hashcalculationsa secondconnectiomattemptfrom
theclientmachinetendsto resultin aseconchashbucket
chosenfurtherstymingary attempty anattaclerto tar-
getaspecificbucket.

Time needed to connect() to remote system

100

80

60

40 +

% of connections completed

20

0 I3} o

T
syncache, idle
syncache, SYN flooded -------
RELENG_4, idle --------
RELENG_4, SYN flooded - -

0 200 400

600 800 1000

microseconds

Figure3: Time neededo connect(Xo remotesystem.

If theentryis notfoundin the bucket,anew syncache
entry is createdand addedto the cache. If the new en-
try would overflow the perbucket limit, the oldesten-
try within that bucket is dropped. If the total number
of entriesin the cacheis exceededthe oldestentry in
the cacheis dropped.This way, boththe memoryusage
of the syncacheandthe amountof CPUtime neededo
searchthe hashtable are bounded. The useris ableto
controlthesizingof thesdimits via thefollowing loader
tunablesestablishedtboottime:

net.inet.tcp.syncache. hashsi ze
net.inet.tcp.syncache. cachelinit
net.inet.tcp.syncache. bucketlimt

The cachelimit settingdetermineshe maximumnum-
berof syncachentrieshatmaybeallocatedandbounds
the overall memoryusageof the system. hashsize con-
trolsthesizeof thehashtableandshouldbeapower of 2.
Finally, bucketlimit capsthe sizeof eachhashchain,and
limits the numberof entriesthatmustbe searchedvhen
lookingfor amatchingSYN entry. However, asthelist is
handledin FIFO order anentry muststayon thelist for
atleastoneroundtrip time (RTT) to theremotesystenin
orderto successfullyestablisha connectionsothis must
be consideredvhenchoosinga valuefor bucketlimit.

Therearetwo additionalsysctlparametersf interest:

net.inet.tcp. syncache. count
net.inet.tcp.syncache.rexntlinit

The first entry is read-only andindicateshow mary
entriesare currently presentin the syncache.The sec-
onddeterminesiow mary timesa SYN,ACK shouldbe
retransmittedto the remotesystem,and defaults to 3.
Threeretransmitscorrespond¢o 1 + 2 +4 4+ 8 = 15
secondsandthe oddsarethatif a connectioncannotbe
establishedby then,the userhasgivenup.

5.1 Syncacheperformance

Thesyncachaestswereperformedonthetargetmachine
using the following systemdefault values: hashsize=
512, cachelimit= 15359, bucketlimit = 30. Theresults
of thetestarepresentedn Figure3.

As the graphshows, the syncachas effective at han-
dling aSYN flood while still allowing incomingconnec-
tions. Here,99% of theincomingconnectionsarecom-
pletedwithin 300 microsecondswhich is on par with
the time requiredto connectto anidle unmodifiedsys-
tem. For comparisonthe performancef anunmodified
systemexperiencinga SYN flood is alsoshown. All of
thetrials in the testwere performedwith alisten queue
lengthof 1024.

One interestingresultis that the connectionlateng
decreasesven whenthe target box is not experiencing
SYN flooding. This is shavn by comparingthe 'syn-
cacheidle’ and 'RELENG_4 idle’ lines on the graph,
which indicatehow long it takesto connectto a quies-
centsystem.This resultmay be attributedto the smaller

Figure5: Layersof datain the syncookie.

datastructureusedto hold the syncacheasthe size of
theTCPandsocletstructuresllocatedandinitialized on
anunmodifiedsystemtotal 736 bytes,while the smaller
syncachestructures only 160bytes.

6 SYN Cookies

Whenasyncachducketdoesoverflow, afallbackmech-
anismexists which permitssendingbacka SYN cookie
insteadof performingoldestFIFOdropof anentryonthe
hashlist. This sectionexplainsthe syncookieapproach,
andoutlineshow the cookieis constructed.

Thecookieis sentto theremotesystemasthesystems
Initial Sequencé&lumber(ISN), andthenreturnedn the
final phaseof TCP’s threeway handsha&. As connec-
tion establishmenis performedby thereturningACK, a
secretshouldbe usedto validatethe connectionwhich
is concealedrom the remotesystemby useof a non-
invertible hash.To preventanintermediatesystemfrom
collectingcookiesandreplayingthemat a laterdate,the
cookie shouldalso containa time component. The so-
lution chosenherewasto keepa table of secretswvhich
have a boundedifetime, which hasan addedbenefitof
regularly changingthe secretwhich is sentbackto the
remotesystem.Figure5 shows the internalstructureof
thecookie.

The basisof theimplementatioris a tableof 128 32-
bit valuesobtainedfrom arc4random(). Eachentry is
usedfor a durationof 31.25milliseconds,andhasa to-
tal lifetime of 4 secondswhich waschoserasareason-
able upperboundfor the RTT to the remotesystem,as
SYN,ACK containingthe cookie mustreachthe system
andbereturnedbeforethe secretexpires.

In orderto generatea cookie, the systemtick timer is
scaledinto units of 31.25millisecondsby useof divide
and shift operationswith the resultusedto choosethe
correctwindow index. If the secretin the currentwin-
dow hasexpired, a new 32-bit secretis obtainedfrom
arc4random()andthetimeoutis reset.

Thelocal addressforeign addresslocal port, foreign
portandsecretarepassedhroughMD5 to createtheini-
tial basisof the cryptographichash,with 25 bits being
usedin the cookie,and7 bits containingthe window in-
dex. The peerMSSfrom the TCP optionssectionof the

initial SYN is fit into one of 4 predefinedVSS values,
andthe resulting2 bit index is xor'ed into the mix, as
showvn by (A) in Figure5. Finally, the peers 32-bit ISS
is xor'ed in to generatethe final cookie, which is sent
backto the connectingsystemastheISN.

Sinceno stateis kept on the sener machine,ary re-
turning ACK which containsthe correct TCP sequence
numbersmay sene to establisha connection. Validat-
ing the ACK is thereverseof theabove processFirstthe
peerssequencaumberis removed,andthenthe7 bit in-
dex is usedto selectthe correctwindow. If thesecrethas
expired,thenthe ACK is immediatelydiscardedvithout
furtherprocessingThis insuresthatthe systemdoesnot
have to checkevery incoming ACK unlessa syncookie
wasrecentlysent.If thetimeoutindicatesthatthe secret
is valid, it is usedin the MD5 hashcomputation. The
ACK is consideredalid if the remaining23 bits evalu-
ateto 0.

In practice this meanghata remotesystemhas4 sec-
ondsto try andbruteforce a spaceof 222 entries.

6.1 SYN cookieperformance

Thesyncachaestswereperformedonthetargetmachine
by enablingthefollowing sysctl

net.inet.tcp.syncookies

andthenperformingthetestsin theusualfashion.The
resultsof thetestarepresentedn Figure4.

Theresultsshawv thatsyncookiegprovidesslightly bet-
ter performancehansyncachealone. This may be due
to the fact that the syncachecalls arc4random(¥or ev-
ery SYN,ACK it sendswhile thesyncookieroutinespri-
marily call MD5(). Investigationinto the reasorfor the
performancadisparityis ongoing,but the resultsarenot
availableatthistime.

Therearealsoa few unusualresultshere: Theredoes
not appearto be a straightforvard explanationfor the
jump in completedconnectionsat 700 microseconds.
This is not dueto TCP retransmissionsas the first re-
transmissiortimeoutis setat one second. A possible
explanationis that the systemis busy executingthe in-
terrupthandlerfor eitherof the Gigabitadaptersandis
delayedn servicingthe 100Mbadapter

Also of interestto noteis thatwhile 100%o0f the syn-
cacheconnectiondiave completedn 1 secondthesame
isn't true for syncookies. This shouldnt happenasno
paclet loss on the 100Mb sggmentwas obsered, and
the systemdid not run out of mbufs. Upon further in-
vestigationthis turnedout to be a minor bugin the VM
systemwheretheinitial boot-timeallocationrequestvas
roundedimproperly leadingto a shortageof syncache
structureentries.With thecurrentcode atleastoneentry
is alwaysneededn orderto sendthe SYN,ACK reply.

Time needed to connect() to remote system

100

90 |

80

70

60

40 .

% of connections completed
n
o
T

30 |

20

10

0 1 1

syncache & syncookies, idle box
syncache, SYN flood -------
synclache & syncookies, ISYN flood --------

0 200 400

600 800

microseconds

Figured: Performanceomparisorof a systemwith syncachendsyncookiever oneusingonly syncache.

6.2 Roundtrip performance

Prior measurementwere taken by timing how long it
takesfor a connect()call to completeon the client ma-
chine.This correspondso thetime requiredto complete
2 stagesof a TCP handshag, sincethe client machine
entersthe ESTABLISHED stateassoonasit recevesa
SYN,ACK. An unanswereduestions how longit takes
the sener to enterthe ESTABLISHED state,from the
time the initial SYN is sentfrom the client. This time
maybeaffectedby thedifferentprocessingequirements
to verify the ACK, andmayfail if the original syncache
recordno longerexists.

To verify failure wasnot a concern the experimental
setupwasmodifiedto includethetime requiredto read()
a byte from the sener, which canbe viewed asa 4 way
handshak: transmitSYN, receive SYN,ACK, transmit
ACK, receve data.Theresultsfor this testarepresented
in Figure6.

On an unloadedbox, thereis no measurabldiffer-
encein performancdetweerthesyncachendsyncook-
ies approaches However, whenthe box is loaded,the
combinationof syncacheand syncookiesoutperformsa
puresyncachesonfiguration Again, asthereareno TCP
retransmitoccurring,the performancelifferenceis not
due to entriesgetting droppedfrom the syncachehash
buckets. This alsoindicatesthat the bucket depthof 30
entriesthatis usedin thesetestsis sufficient to handle
the RTT acrossthe local LAN; connectionsare getting
establishedbeforethey aredropped.

The differencebetweenthe two algorithmscould be
explainedby the differencein ISS generationpr by the
factthatthe standalonsyncachaeedso performFIFO
drop for a bucket, which is bypassedvhen syncookies
arein use.However, it is not expectedthatthelist man-
agementrequirementswhich consistof few TAILQ _*
calls, would be significant. The investigationinto the
performancalifferences still ongoing.

In comparisorto the unmodifiedsystempresentedn
Figure 2, thereis a dramaticimprovement. In this ex-
periment,clientswereableto connectto the sener and
performusefulwork (readingonebyte),with all attempts
completingwithin 1 second.In the unmodifiedsystem,
90% of the connectionstill hadnot completedhe TCP
handshak after 1 second. Even with reducedqueue
depths,the performanceof the unmodifiedsystemdoes
not matchthe new code.

7 Previous Work

David Bormanwrote a patch for BSDi which imple-
menteda SYN cachein October1996, which wasre-
leasedasan official BSDi patch[2]. This implementa-
tion usedthecacheonly asafallbackmechanisnin case
the listen queueoverfloved, and did not retransmitthe
SYN,ACK to the peer The justificationgivenwasthat
sincethe hostwas underattack,performingretransmits
would be awasteof CPUtime [3].

This codewas incorporatednto NetBSD[5] in May

Time needed to connect() and read() 1 byte from remote system

100 T

90 |

80

70

60

40 +

% of connections completed
n
o
T

20

10

0 1 1 L”"" i

syncache, idle box
syncookies, idle box ------- B
syncache, SYN flood --------
syncookies, ISYN flood -

0 200 400

600 800 1000

microseconds

Figure6: Time requiredto connect()to remotesystemandread()onebytein responseNo errorsat the systemcall

level wereobsenedduringthetest.

1997andsubsequentlgnhancedo performretransmits,
aswell as having the cachehandleall incoming con-

nections,jnsteadof only thosewhich overflow thelisten

gueue.Theimplementatiordescribedn this paperbears
astrongresemblancéo their existing code.

An alternateapproachwas taken by Linux, which
chose to incorporate syncookies[l as their defense
againstthis style of attack. On thesesystemsthe syn-
cookie defensemechanisnengage®nly whenthe nor-
mal listenqueueoverflows.

8 Further Work and Conclusion

Whensyncookiesareenabledtheexisting codedoesnot
drop ary entriesfrom the syncachegchoosingto senda
syncookieresponsenstead. However, in practicethis
leadsto the syncachebeingfull of bogusentriesfrom a
SYN flood, andforcesall legitimate connectiongo be
handledby syncookies.Essentially the systemendsup
behaing asif thereis no syncachewhichis notanideal
situation.

An alternateapproachhatmayprovefeasibles to use
asyncookieasthe ISN for all connectionsinsteadusing
arc4random()n the syncachecase. This would permit
the replacemenmechanismof entrieswithin the syn-
cacheto operateasnormal,asthe returningACK could
be acceptedy eitherby virtue of passinghe syncookie
check,or by matchingan existing syncacheentry. This

approachs currentlyunderinvestigation;oneissuethat
needgo be addresseds whetherthe reducedentroyy of
a syncookielSN providesadequaterotectionfrom re-
moteattaclersascomparedo onefrom arc4random().

In this paper we have seenthat an unmodifiedma-
chineprovidesunacceptableesponséimesunderasim-
ple 10Mb/sSYN flood attack. Two approacheto hand-
ing this load are presentedand evaluated,andwe shav
thatbothareableto extensively migitatethe effectsof a
SYN flood and allow the systemto continueoperating.
This goal is reachedby the dual approachof reducing
memoryconsumptionand stateon the sener side, and
the useof betteralgorithmsto handlea large numberof
incompletedconnections.With the new code,the same
hardwareis now able to withstanda SYN flood attack
while maintaininganacceptabldevel of serviceto legit-
imateclients.

References

[1] BERNSTEIN, D. J. Syncookieshttp://cr.yp.
t o/ syncooki es. ht i .

[2] BORMAN, D. Bsdi implementation of syn
cache. ftp://ftp.bsdi.con private/
44- syn-di ffs. gz.

[3] BORMAN, D. tcpip-impl posting. http:
/I ww. kohal a. coni start/ bor man.
97j un06. t xt .

[4] Freebsd,tuning(7) man page. http://wwv
FreeBSD. or g/ cgi / man. cgi ?query=
t uni ng&apr opos=0&sekt i on=7&man%
pat h=Fr eeBSD+4. 4- RELEASE&f or nat =
htm .

[5] Netbsd.htt p://ww. net bsd. org/ .
[6] Rfc 1644.Transactional CP

[7] STEVENS, W. R. Tcp/ipillustrated.

