
RC23064 (W0401-082) January 16, 2004
Computer Science

IBM Research Report

Design and Implementation of a TCG-Based Integrity
Measurement Architecture

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, Leendert Van Doorn
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Design and Implementation of a TCG-based

Integrity Measurement Architecture

Reiner Sailer and Xiaolan Zhang and Trent Jaeger and Leendert van Doorn
IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532
{sailer,cxzhang,jaegert,leendert}@watson.ibm.com

Abstract

We present the design and implementation of a se-
cure integrity measurement system for Linux. All
executable content that is loaded onto the Linux sys-
tem is measured before execution and these measure-
ments are protected by the Trusted Platform Mod-
ule (TPM) that is part of the Trusted Computing
Group (TCG) standards. Our system is the first
to extend the TCG trust concepts to dynamic exe-
cutable content from the BIOS all the way up into
the application layer. In effect, we show that many
of the Microsoft NGSCB guarantees can be obtained
on today’s hardware and today’s software and that
these guarantees do not require a new CPU mode
or operating system but merely depend on the avail-
ability of an independent trusted entity, a TPM for
example. We apply the measurement architecture
to a web server application where we show how our
system can detect undesirable invocations, such as
rootkit programs, and that measurement is practical
in terms of the number of measurements taken and
the performance impact of making them.

1 Introduction

With the introduction of autonomic computing, grid
computing and on demand computing there is an in-
creasing need to be able to securely identify the soft-
ware stack that is running on remote systems. For
autonomic computing, you want to determine that
the correct patches have been installed on a given
system. For grid computing, you are concerned that
the services advertised really exist and that the sys-
tem is not compromised. For on demand computing,
you may be concerned that your outsourcing part-
ner is providing the software facilities and perfor-
mance that have been stipulated in the service level

agreement. Yet another scenario is where you are
interacting with your home banking or bookselling
webservices application and you want to make sure
it has not been tampered with.

The problem with the scenarios above is, who do you
trust to give you that answer? It cannot be the pro-
gram itself because is could be modified to give you
wrong answers. For the same reason we cannot trust
the kernel or the BIOS on which these programs are
running since they may be tampered with too. In-
stead we need to go back to an immutable root to
provide that answer. This is essentially the secure
boot problem [1], although for our scenarios we are
interested in an integrity statement of the software
stack rather than ensuring compliance with respect
to a digital signature.

The Trusted Computing Group (TCG) has defined
a set of standards [2] that describe how to take in-
tegrity measurements of a system and store the re-
sult in a separate trusted coprocessor (Trusted Plat-
form Module) whose state cannot be compromised
by a potentially malicious host system. This mecha-
nism is called trusted boot. Unlike secure boot, this
system only takes measurements and leaves it up to
the remote party to determine the system’s trustwor-
thiness. The way this works is that when the system
is powered on it transfers control to an immutable
base. This base will measure the next part of BIOS
by computing a SHA1 secure hash over its contents
and protect the result by using the TPM. This pro-
cedure is then applied recursively to the next portion
of code until the OS has been bootstrapped.

The TCG trusted boot process is composed of a set
of ordered sequential steps and is only defined up to
the bootstrap loader. Conceptually, we would like
to maintain the chain of trust measurements up to
the application layer, but unlike the bootstrap pro-

1

cess, an operating system handles a large variety of
executable content (kernel, kernel modules, binaries.
shared libraries, scripts, plugins, etc.) and the order
in which the content is loaded is seemingly random.
Furthermore, an operating system almost continu-
ously loads executable content and measuring the
content at each load time incurs a considerable per-
formance overhead.

The system that we describe in this paper addresses
these concerns. We have modified the Linux kernel
and the runtime system to take integrity measure-
ments as soon as executable content is loaded into
the system, but before it is executed. We keep an
ordered list of measurements inside the kernel. We
change the role of the TPM slightly and use it to
protect the integrity of the in-kernel list rather than
holding measurements directly. To prove to a re-
mote party what software stack is loaded, the sys-
tem needs to present the TPM state using the TCG
attestation mechanisms and this ordered list. The
remote party can then determine whether the or-
dered list has been tampered with and, once the list
is validated, what kind of trust it associates with the
measurements. To minimize the performance over-
head, we cache the measurement results and elim-
inate future measurement computations as long as
the executable content has not been altered. The
amount of modifications we made to the Linux sys-
tem were minimal, about 1000 lines of code.

Our enhancement keeps track of all the software
components that are executed by a system. The
number of unique components is surprisingly small
and the system quickly settles into a steady state.
For example, the workstation used by this author
which runs RedHat 9 and whose workload consists
of writing this paper, compile programs and browse
the web does not accumulate more than 500 mea-
surement entries. On a typical web server the ac-
cumulated measurements are about 250. Thus, the
notion of completely fingerprinting the running soft-
ware stack is surprisingly tractable.

Contributions: This paper makes the following
contributions:

• A non-intrusive and verifiable remote software
stack attestation mechanism that uses standard
(commodity) hardware.

• An efficient measurement system for dynamic
executable content.

• A tractable software stack attestation mecha-

nism that does not require new CPU modes or
a new operating system.

Outline: Next, we introduce the structure of a typ-
ical run-time system, for which we will establish an
integrity-measurement architecture throughout this
paper. In Section 3, we present related work in
the area of integrity protecting systems and attes-
tation. In Sections 4 and 5, we describe the de-
sign of our approach and its implementation in a
standard Linux operating environment. Section 6
describes experiments that highlight how integrity
breaches are made visible by our solution when val-
idating measurement-lists. It also summarizes run-
time overhead. Finally, Section 7 sketches enhance-
ments to our architecture that are being imple-
mented or planned. Our results show and validate
that our architecture is efficient, scales with regard
to the number of elements, successfully recognizes
integrity breaches, and offers a valuable platform for
extensions and future experiments.

2 Problem Statement

To provide integrity verification services, we first ex-
amine the meaning of system integrity, in general.
We then describe a web server example system to
identify the types of problems that must be solved
to prove integrity to a remote system with a high
degree of confidence. We show that the operating
system lacks the context to provide the level of in-
tegrity measurement necessary, but with a hardware
root of trust, the operating system can be a founda-
tion of integrity measurement. Currently, we sur-
mise that it is more appropriate for finding integrity
bugs than full verification, but we aim to define an
architecture that can eventually be extended to meet
our measurement requirements.

2.1 Integrity Background

Our goal is to enable a remote system (the chal-
lenger) to prove that a program on another system
(the attesting system owned by the attestor) is of
sufficient integrity to use. The integrity of a pro-
gram is a binary property that indicates whether the
program and/or its environment have been modified
in an unauthorized manner. Such an unauthorized
modification may result in incorrect or malicious be-
havior by the program, such that it would be unwise
for a challenger to rely on it.

2

While integrity is a binary property, integrity is a
relative property that depends on the verifier’s view
of the ability of a program to protect itself. Biba
defines that integrity is compromised when a pro-
gram depends on (i.e., reads or executes) low in-
tegrity data [3]. In practice, programs often pro-
cess low integrity data without being compromised
(but not all programs, all the time), so this defini-
tion is too restricted. Clark-Wilson define a model
in which integrity verification procedures verify in-
tegrity at system startup and high integrity data is
only modified by transformation procedures that are
certified to maintain integrity even when their in-
puts include low integrity data [4]. Unfortunately,
the certification of applications is too expensive to
be practical.

More recent efforts focus on measuring code and as-
sociating integrity semantics with the code. The
IBM 4758 explicitly defines that the integrity of a
program is determined by the code of the program
and its ancestors [5]. In practice, this assumption
is practical because the program and its configura-
tion are installed in a trusted manner, it is isolated
from using files that can be modified by other pro-
grams, and it is assumed to be capable of handling
low integrity requests from the external system. To
make this guarantee plausible, the IBM 4758 envi-
ronment is restricted to a single program with a well-
defined input state and the integrity is enforced with
secure boot. However, even these assumptions have
not been sufficient to prevent compromise of applica-
tions running on the 4758 which cannot handle low
integrity inputs properly [6]. Thus, further measure-
ment of low integrity inputs and their impact appear
to be likely.

The key differences in this paper are that: (1) we
endeavor to define practical integrity for a flexible,
traditional systems environment under the control of
a potentially untrusted party and (2) the only special
hardware that we leverage is the root of trust pro-
vided by the Trusted Computing Group’s Trusted
Platform Module (TCG/TPM). In the first case, we
may not assume that all programs are loaded cor-
rectly simply by examining the hash because the
untrusted party may try to change the input data
that the program uses. For example, many pro-
grams enable configuration files to be specified in
the command line. Ultimately, applications define
the semantics of the inputs that they use, so it is
difficult for an operating system to detect whether
all inputs have been used in an appropriate manner
by an application if its environment is controlled by

an untrusted party. However, a number of vulnera-
bilities can be found by the operating system alone,
and it is fundamental that the operating system col-
lect and protect measurements.

Second, the specialized hardware environment of the
IBM 4758 enables secure boot and memory lock-
down, but such features are either not available or
not practical for current PC systems. Secure boot
is not practical because integrity requirements are
not fixed, but defined by the remote challengers.
If remote parties could determine the secure boot
properties of a system, systems would be vulnerable
to a significant denial-of-service threat. Instead the
TCG/TPM supports trusted boot, where the attest-
ing system is measured and the measurements are
used by the challengers to verify their integrity re-
quirements. Since trusted boot does not terminate a
boot when a low integrity process is loaded, all data
could be subject to attack during the “untrusted”
boot. Since multiple applications can run in a dis-
cretionary access control environment currently, it is
difficult to determine whether the dynamic data of
a system (e.g., a database) is still acceptable. Dis-
cretionary integrity mechanisms, such as sealed stor-
age [7], do not solve this problem in general.

2.2 Example

We use as an example a server machine running an
Apache Webserver and Tomcat Web Containers that
serve static and dynamic content to sell books to
clients running on remote systems. The system is
running a RedHat 9.0 Linux environment. Figure 1
illustrates the runtime environment that affects the
Web server.

Kernel Space

Basic Input Output System (BIOS)

Linux GRUB Bootstrap Loader

Linux 2.4.21 System Kernel

Kernel
Modules

...

User Space

apachectrl, httpd
Static Data:
- httpd.conf
- java.security/policy
- java classes

Libraries
LibrariesLibraries/

Unstructured / Dynamic Data:

- Inter Process Communication
- File / Network /User I|O

- ...

Executables

Modules

catalina.sh, java

e100.o autofs.o agpart.o

startup.sh

Figure 1: Runtime System Components

3

The system is initiated by booting the operating
system. The boot process is determined by the
BIOS, grub bootloader, and kernel configuration file
(/boot/grub.conf). The first two can alter the sys-
tem in arbitrary ways, so they must be measured.
An interesting point is that measurement of config-
uration files, such as grub.conf, is not necessary as
long as they do not: (1) modify code already loaded
and (2) all subsequent file loads can be seen by the
measurement infrastructure. Since the BIOS and
grub bootloader are unaffected, we only need to en-
sure that the kernel and other programs whose loads
are triggered by the configuration are measured.

The boot process results in a particular ker-
nel being run. There are a variety of different
types of kernels, kernel versions, and kernel con-
figurations that determine the actual system be-
ing booted. For example, we load Linux 2.4.21
from /boot/vmlinuz-2.4.21-tcg which includes a
TCPA driver and our measurement hooks. Further,
the kernel may be extended by loadable kernel mod-
ules. The measurement infrastructure must be able
to measure the kernel and any modules that are
loaded. The challenger must be able to determine
whether this specific kernel booted and the dynam-
ically loaded modules meet the desired integrity re-
quirements.

Once the kernel is booted, then user-level services
and applications may be run. In Linux, a program
execution starts by loading an appropriate inter-
preter (i.e., a dynamic loader, such as ld.so) based
on the format of the executable file. Loads of the
target executable’s code and supporting libraries are
done by the dynamic loader. Executables include
the following files on our experimental system:

• Apache server (apachectl, httpd, ...)

• Apache modules (mod access.so, mod auth.so,
mod cgi.so, ...)

• Tomcat servlet machine (startup.sh,
catalina.sh, java, ...)

• Dynamic libraries (libjvm.so, libcore.so, lib-
java.so, libc-2.3.2.so, libssl.so.4, ...)

All of this code impacts system integrity, so we need
to measure them, but the operating system does not
see a distinction between these files and typical data
files (i.e., they are all opened and read). An advan-
tage is that the dynamic loader (for that file format)

understands that these files are being loaded as ex-
ecutable code. Dynamic loaders are trusted by the
system, typically, so they trigger the measurement
of library files.

Some other files loaded by the application itself also
define its execution behavior. For example, the Java
class files that define servlets and web services must
be measured because they are loaded by the Tom-
cat server to create dynamic content, such as shop-
ping cart or payment pages. Application config-
uration files, such as the startup files for Apache
(httpd.conf) and Tomcat (startup scripts) may also
alter the behavior of the Web server. These files in
our example system include:

• Apache configuration file (httpd.conf)

• Java virtual machine security configuration
(java.security, java.policy)

• Servlets and web services libraries (axis.jar,
servlet.jar, wsdl4j.jar, ...)

While each of these files may have standard contents
that can be identified by the challenger, it is diffi-
cult to determine which files are actually being used
by an application and for what purpose. Even if
http.conf has the expected contents, it may not be
loaded as expected. For example, Apache has a com-
mand line option to load a different file, links in the
file system may result in a different file being loaded,
and races are possible between when the file is mea-
sured and when it is loaded. Thus, a Tripwire-like [8]
measurement of the key system files is not sufficient
because the users of the attesting system (attestors)
may change the files that actually determine its in-
tegrity, and these users are not necessarily trusted
by the challengers. As in the dynamic loader case,
the integrity impact of opening a file is only known
to the requesting program. However, unlike the case
for the dynamic loader, the problem of determining
the integrity impact of application loads involves in-
strumentation of many more programs, and these
may be of varying trust levels.

The integrity of the Web server environment also
depends on dynamic, unstructured data that is con-
sumed by running executables. The key issue is
that even if the application knows that this data
can impact its integrity, its measurement is useless
because the challenger cannot predict values that
would preserve integrity. In the web server exam-
ple, the key dynamic data are: (1) the various kinds

4

of requests from remote clients, administrators, and
other servlets and (2) the database of book orders.
The sorts of things that need to be determined are
whether the order data or administrator commands
can be modified only by high integrity programs (i.e.,
Biba) and whether the low integrity requests can
be converted to high integrity data or rejected (i.e.,
Clark-Wilson). Sealed storage is insufficient to en-
sure the first property, information flow based on
mandatory policy is necessary in general, and en-
forcement of the second property requires trusted
upgraders or trust in the application itself.

2.3 Measuring Systems

Based on the analysis of the web server example, we
list the types of tasks that must be accomplished to
achieve a Clark-Wilson level of integrity verification.

• Verification Scope: Unless information flows
among processes are under a mandatory restric-
tion, the integrity of all processes must be mea-
sured. Otherwise, the scope of integrity impact-
ing a process may be reduced to only those pro-
cesses upon which it depends for high integrity
code and data.

• Executable Content: For each process, all
code executed must be of sufficient integrity re-
gardless of whether it is loaded by the operating
system, dynamic loader, or application.

• Structured Data: For each process, data
whose content has an identifiable integrity se-
mantics may be treated in the same manner as
executable content above. However, we must be
sure to capture the data that is actually loaded
by the operating system, dynamic loaders, and
applications.

• Unstructured Data: For each process, the
data whose content does not have an identifiable
integrity semantics, the integrity of the data
is dependent on the integrity of the processes
that have modified it or the integrity may be
upgraded by explicit upgrade processes or this
process (if it is qualified to be a transformation
procedure in the Clark-Wilson sense).

The first statement indicates that for systems that
use discretionary policy (e.g., NGSCB), the integrity
of all processes must be measured because all can im-
pact each other. Second, we must measure all code

including modules, libraries, and code loaded in an
ad hoc fashion by applications to verify the integrity
of an individual process. Third, some data may have
integrity semantics similar to code, such that it may
be treated that way. Fourth, dynamic data cannot
be verified as code, so data history, security policy,
etc. are necessary to determine its integrity. The
challengers may assume that some code can handle
low integrity data as input. The lack of correct un-
derstanding about particular code’s ability to handle
low integrity data is the source of many current secu-
rity problems, so we would ultimately prefer a clear
identification of how low integrity data is used.

Further, an essential part of our architecture is the
ability of challengers to ensure that the measurement
list is:

• fresh and complete, i.e., includes all measure-
ments up to the point in time when the attes-
tation is executed,

• unchanged, i.e., the fingerprints are truly from
the loaded executable and static data files and
have not been tampered with.

An attestor that has been corrupted can try to
cheat by either truncating measurements or deliv-
ering changed measurements to hide the programs
that have corrupted its state. Replaying old mea-
surement lists is equivalent to hiding new measure-
ments.

This analysis indicates that integrity verification for
a flexible systems environment is a difficult prob-
lem that requires several coordinated tasks. Rather
than tackle all problems at once, a more practical
approach is to provide an extensible approach that
can identify some integrity bugs now and form a ba-
sis for constructing reasonable integrity verification
in the future. This approach is motivated by the
approach adopted by static analysis researchers in
recent work [9]. Rather than proving the integrity
of a program, these tools are design to find bugs and
be extensible to finding other, more complex bugs in
the future. Finding integrity bugs is also useful for
identifying that code needs to be patched, illegal in-
formation flows, or cases where low integrity data
is used without proper safeguards. For example, a
challenger can verify that an attesting system is us-
ing high integrity code for its current applications.

In this paper, we define operating systems support
for measuring the integrity of code and structured

5

data. The operating system ensures that the code
loaded into every individual user-level process is
measured, and this is used as a basis for dynamic
loaders and applications to measure other code and
data for which integrity semantics may be defined.
Thus, our architecture ensures that the breadth of
the system is measured (i.e., all user-level processes),
but the depth of measurement (i.e., which things are
subsequently loaded into the processes) is not com-
plete, but it is extensible, such that further measure-
ments to increase confidence in integrity are possi-
ble. At present, we do not measure mandatory ac-
cess control policy, but the architecture supports ex-
tensions to include such measurements and we are
working on how to effectively use them.

3 Related Work

Related work includes previous efforts to measure
a system to improve its integrity and/or enable re-
mote integrity verification. The key issues in prior
work are: (1) the distinction between secure boot
and authenticated boot and (2) the semantic value of
previous integrity measurement approaches.

Secure boot enables a system to measure its own
integrity and terminate the boot process if an ac-
tion compromises this integrity. The AEGIS system
by Arbaugh [1] provides a practical architecture for
implementing secure boot on a PC system. It uses
signed hash values to identify and validate each layer
in the boot process. It will abort booting the system
if the hashes cannot be validated. Secure boot does
not enable a challenging party to verify the integrity
of a boot process (i.e., authenticated boot) because
it simply measures and checks the boot process, but
does not generate attestations of the integrity of the
process.

The IBM 4758 secure coprocessor [10] implements
both secure boot and authenticated boot, albeit in
a restricted environment. It promises secure boot
guarantees by verifying (flash) partitions before acti-
vating them and by enforcing valid signatures before
loading executables into the system. A mechanism
called outgoing authentication [5] enables attestation
that links each subsequent layer to its predecessor.
The predecessor attests to the subsequent layer by
generating a signed message that includes the cryp-
tographic hash and the public key of the subsequent
layer. To protect an application from flaws in other
applications, only one application is allowed to run

at a time. Thus, the integrity of the application
depends on hashes of the code and manual verifi-
cation of the application’s installation data. This
data is only accessible to trusted code after installa-
tion. Our web server example runs in a much more
dynamic environment where multiple processes may
access the same data and may interact. Further, the
security requirements of the challenging party and
the attesting party may differ such that secure boot
based on the challenging party’s requirements is im-
practical.

The Trusted Computing Group [11] is a consortium
of companies that together have developed an open
interface for a Trusted Platform Module, a hardware
extension to systems that provides cryptographic
functionality and protected storage. By default, the
TPM enables the verification of static platform con-
figurations, both in terms of content and order, by
collecting a sequence of hashes over target code. For
example, researchers have examined how a TPM can
be used to prove that a system has booted a valid
operating system [12]. The integrity of applications
running on the operating system is outside the scope
of this work and is exactly where we look to expand
the application of the TPM.

Terra [13] and Microsoft’s Next Generation Secure
Computing Base (NGSCB [7]) are based on the same
hardware security architecture (TCG/TPM) and are
similar in providing a “whole system solution” to au-
thenticated boot. NGSCB partitions a platform into
a trusted and untrusted part each of which runs its
own operating system. Only the trusted portion is
measured which limits the flexibility of the approach
(not all programs of interest should be fully trusted)
and it depends on hardware and base software not
yet available.

Terra is a trusted computing architecture that is
built around a trusted virtual machine monitor that
–among other things– authenticates the software
running in a VM for challenging parties. Terra
tries to resolve the conflict between building trusted
customized closed-box run-time environments (e.g.,
IBM 4758) and open systems that offer rich function-
ality and significant economies of scale that, how-
ever, are difficult to trust because of their flexibil-
ity. As such, Terra tries to solve the same problem
as we do, however in a very different way. Terra
measures the trusted virtual machine monitor on
the partition block level. Thus, on the one hand,
Terra produces about 20 Megabyte of measurement
values (i.e., hashes) when attesting an exemplary 4

6

Gigabyte VM partition. On the other hand, because
those measurements are representative of blocks, it
is difficult to interpret varying measurement values.
Thus, our system measures selectively those parts
of the system that contribute to the dynamic run-
time system; it does so on a high level that is rich
in semantics and enables remote parties to interpret
varying measurements on a file level.

4 Design of an Integrity
Measurement Architecture

Our integrity Measurement architecture consists of
three major components:

• The Measurement Mechanism on the attested
system determines what parts of the run-time
environment to measure, when to measure, and
how to securely maintain the measurements.

• An Integrity Challenge Mechanism that allows
authorized challengers to retrieve measurement
lists of a computing platform and verify their
freshness and completeness.

• An Integrity Validation Mechanism, validating
that the measurement list is complete, non-
tampered, and fresh as well as validating that
all individual measurement entries of runtime
components describe trustworthy code or con-
figuration files.

Figure 2 shows how these mechanisms interact to
enable remote attestation. Measurements are initi-
ated by so-called measurement agents, which induce
a measurement of a file, (a) store the measurement
in an ordered list in the kernel, and (b) report the
extension of the measurement list to the TPM.

Measurement
Agent

TPM (RTR)

Platform Configuration Register 0

Platform Configuration Register N

...

RTM

Measurement
Agent

Measurement
Agents

Trusted BIOS
Measurements

Report

b) Report 2.
 Q

u
o

te
R

eq

Kernel + Run-Time + File Systems

Trusted Platform

Attestation
Service

1. IntegrityChallenge

5. IntegrityResponse

3.
 Q

u
o

te
R

es

Measurement
List

a) Store
4. R

etri
eve

Challenger

6. validate
Response

Attesting System Platform

Figure 2: TPM-based Integrity Measurement

The integrity challenge mechanism allows remote
challenger to request the measurement list together
with the TPM-signed aggregate of the measurement
list (step 1 in Fig 2). Receiving such a challenge, the
attesting system first retrieves the signed aggregate
from the TPM (steps 2 and 3 in Fig 2) and after-
wards the measurement list from the kernel (step 4
in Fig 2). Both are then returned to the attesting
party in step 5. Finally, the attesting party can vali-
date the information and reason about the trustwor-
thiness of the attesting system’s run-time integrity
in step 6.

4.1 Assumptions

Before we describe these three components of our
architecture, we establish assumptions about the
attacker model because without such restrictions,
there would always be attackers that are able to fool
a remote client.

We use services and protection offered by
the Trusted Computing Project Architecture
(TCPA [11]) in order to: (1) enable challenging
parties to establish trust into the platform con-
figuration of the attesting system (measurement
environment) and (2) ensure challengers that the
measurement list compiled by the measurement
environment has not been tampered with. We
assume that the TPM hardware works according to
the TPM specifications [11] and that the TPM is
embedded correctly into the platform, ensuring the
proper measurement of the BIOS, bootloader, and
following system environment parts.

The TPM cannot prevent direct hardware attacks
against the system, so we assume that these are not
part of the threat model.

We assume that code measurements are sufficient to
describe its behavior. Thus, self-changing code can
be evaluated because the intended ability of code to
change itself is reflected in the measurement and can
be taken into account in verification. The same holds
for the kernel code that is thought to be changed
only through loading and unloading modules. Ker-
nel changes based on malicious DMA transfers over-
writing kernel code are not addressed; however, the
code setting up the DMA is measured and thus sub-
ject to evaluation.

We also assume that the challenging party holds a
valid and trusted certificate binding a public RSA

7

identity key AIKpub of the attesting system’s TPM.
AIKpub will be used by the challenging party to val-
idate the quoted register contents of the attesting
system’s TPM before using those registers to vali-
date the measurement list.

We assume that there are no confidentiality require-
ments on measurement data that cannot be satisfied
by controlling the access to the attestation service.

Finally, for the interpretation of system integrity
measurements, we rely on the challenger’s run-time
because the validation results must be securely com-
puted, interpreted, and acted upon. We assume
that the challenger can safely decide which measure-
ments to trust either by comparing them to a list of
trusted measurements or by off-loading the decision
to trusted parties that sign trusted measurements
according to a common policy (i.e., common evalu-
ation criteria).

4.2 Measurement Mechanism

Our measurements mechanism consists of a base
measurement when a new executable is loaded and
the ability to measure other executable content and
sensitive data files. The idea is that BIOS and boot-
loader measure the initial kernel code and then en-
able the kernel to measure changes to itself (e.g.,
module loads) and the creation of user-level pro-
cesses. The kernel uses the same approach with re-
spect to user-level processes, where it measures the
executable code loaded into processes (e.g., dynamic
loader and httpd loaded via execve). Then, this
code can measure subsequent security sensitive in-
puts it loads (e.g., libraries by the dynamic loader
and scripts by httpd). The challenger’s trust is de-
pendent on its trust in the measured code to mea-
sure its security sensitive inputs, protect itself from
unmeasured inputs, and protect data it is depen-
dent upon across reboots. The operating system can
provide further protection of applications through
mandatory access control policy which can limit the
sources of malicious, unmeasured inputs and protect
data from modification. However, the use of such
policy is future work.

In this section, we discuss how measurements are
made. The application of these measurements to a
complete measurement system is described in Sec-
tion 5.

To uniquely identify any particular executable con-

tent, we compute a SHA1 hash over the complete
contents of the file. The resulting 160bit hash value
unambiguously identifies the file’s contents. Differ-
ent file types, versions, and extensions can be distin-
guished by their unique fingerprints.

The individual hashes are collected into a measure-
ment list that represents the integrity history of the
attesting system. Modifications to the measurement
list are not permissible as that would enable an at-
tacker to hide integrity-relevant actions. As our ar-
chitecture is non-intrusive, it does not prevent sys-
tems from being corrupted and then tamper with
the measurement list. However, to prevent such ma-
licious behavior from going unnoticed (preventing
corrupted systems from cheating), we use a hard-
ware extension on the attesting system, known as
Trusted Platform Module, to make modifications of
the measurement list visible to challenging parties.

The Trusted Computing Group’s (TCG [11])
Trusted Platform Module (TPM) provides some pro-
tected data registers, called Platform Configuration
Registers, which can be changed only by two func-
tions: The first function is rebooting the platform,
which clears all PCRs (value 0). The second func-
tion is the TPM extend function, which takes one
160bit number n and the number i of a PCR register
as arguments and then aggregates n and the current
contents of PCR[i] by computing a SHA1(PCR[i] ||
n). This new value is stored in PCR[i]. There is
no other way for the system to change the value of
any PCR register, based on our assumptions that
the TPM hardware behaves according to the TCG
specification and no direct physical attacks occur.

We use the Platform Configuration Registers to
maintain an integrity verification value over all mea-
surements taken by our architecture. Any mea-
surement that is taken is also aggregated into a
TPM PCR (using TPM extend) before the mea-
sured component can affect and potentially cor-
rupt the system. Thus, any measured software is
recorded before taking control directly (executable)
or indirectly (static data file of the configuration).
For example, if i measurements m1..mi have been
taken, the aggregate in the chosen PCR contains
SHA1(..SHA1(SHA1(0||m1)||m2)..||mi). The pro-
tected storage of the TPM prevents modification by
devices or system software. While it can be extended
with other chosen values by a corrupted system, the
way that the extension is computed (properties of
SHA1) prevents a malicious system from adjusting
the aggregate in the PCR to represent a prescribed

8

system. Once a malicious component gains control,
it is too late to hide this component’s existence and
fingerprint from attesting parties.

Thus, corrupted systems can manipulate the mea-
surement list, but this is detected by re-computing
the aggregate of the list and comparing it with the
aggregate stored securely inside the TPM.

4.3 Integrity Challenge Mechanism

The Integrity Challenge protocol describes how chal-
lenging parties securely retrieve measurements and
validation information from the attesting system.
The protocol must protect against the following ma-
jor threats when retrieving attestation information:

• Replay attacks: a malicious attesting system
can replay attestation information (measure-
ment list + TPM aggregate) from before the
system was corrupted.

• Tampering: a malicious attesting system or in-
termediate attacker can tamper with the mea-
surement list and TPM aggregate before or
when it is transmitted to the challenging party.

• Masquerading: a malicious attesting system or
intermediate attacker can replace the original
measurement list and TPM aggregate with the
measurement list and TPM aggregate of an-
other (non-compromised) system.

Fig. 3 depicts the integrity challenge protocol used
by the challenging party C to securely validate in-
tegrity claims of the attesting system AS. In steps
1 and 2, C creates a non-predictable 160bit random
nonce and sends it in a challenge request message
ChReq to AS. In step 3, the attesting system loads
a protected RSA key AIK into the TPM. This AIK
is encrypted with the so-called Storage Root Key
(SRK), a key known only to the TPM. The TPM
specification [11] describes, how a 2048bit AIK is
created securely inside the TPM and how the corre-
sponding public key AIKpub can be securely certified
by a trusted party. This trusted party certificate
links the signature of the PCR to a specific TPM
chip in a specific system. Then, the AS requests a
Quote from the TPM chip that now signs the se-
lected PCR (or multiple PCRs) and the nonce orig-
inally provided by C with the private key AIKpriv.
To complete step 3, the AS retrieves the ordered

list of all measurements (in our case from the ker-
nel). Then, AS responds with a challenge response
message ChRes in step 4, including the signed aggre-
gate and nonce in Quote, together with the claimed
complete measurement list ML.

1. C : create non-predictable 160bit nonce
2. C → AS : ChReq(nonce)
3a. AS : load protected AIKpriv into TPM
3b. AS : retrieve Quote = sig{PCR, nonce}AIKpriv

3c. AS : retrieve Measurement List ML
4. AS → C: ChRes(Quote, ML)
5a. C : determine trusted cert(AIKpub)
5b. C : validate sig{PCR, nonce}AIKpriv

5c. C : validate nonce and ML using PCR

Figure 3: Integrity Challenge Protocol

In step 5a, C first retrieves a trusted certificate
cert(AIKpub). This AIK certificate binds the verifi-
cation key AIKpub of the QUOTE to a specific sys-
tem and states that the related secret key is known
only to this TPM and never exported unprotected.
Thus masquerading can be discovered by the chal-
lenging party by comparing the unique identifica-
tion of AS with the system identification given in
cert(AIKpub). This certificate must be verified to
be valid, e.g., by checking the certificate revocation
list at the trusted issuing party. C then verifies the
signature in step 5b.

In step 5c, C validates the freshness of the QUOTE
and thus the freshness of the PCR (the measure-
ment aggregate). Freshness is guaranteed if the
nonces match as long the nonce in step 2 is unique
and not predictable. As soon as AS receives a nonce
twice or can predict the nonce (or predict even a
small enough set into which the nonce will fall), it
can decide to replay old measurements or request
TPM-signed quotes early using predicted nonces. In
both cases, the quoted integrity measurements ML
might not reflect the actual system status, but a past
one. If the nonce offers insufficient security, then the
validity of the signature keys can be restricted, be-
cause the replay window for signed aggregates is also
bound to using a valid signature key.

Validating the signature in step 5b, C can detect
tampering with the TPM aggregate, because it will
invalidate the signature (assuming cryptographic
properties of a digital 2048bit-signature today, as-
suming the secret key is known only to the TPM,
and assuming no hardware tampering of the TPM).

9

Tampering with the measurement list is made visible
in step 5c by walking through the measurement list
ML and re-computing the TPM aggregate (simulat-
ing the TPM extend operations as described in Sec-
tion 4.2) and comparing the result with the TPM ag-
gregate PCR that is included in the signed Quote re-
ceived in step 4. If the computed aggregate matches
the signed aggregate, then the measurement list is
valid and untampered, otherwise it is invalid.

4.4 Integrity Validation Mechanism

The challenging party must validate the individual
measurements of the attesting party’s platform con-
figuration and the dynamic measurements that have
taken place on the attesting system since it has
been rebooted. The aggregate for the configuration
and the measurement list has already been validated
throughout the integrity challenge protocol and is
assumed here. The same holds for the validity of
the TPM aggregate.

Concluding whether to trust or distrust an attesting
system is based on testing each measurement list en-
try independently, comparing its measurement value
with a list of trusted measurement values. More
sophisticated validation models can relate multiple
measurements to reach an evaluation result. Testing
measurement entries is logically the same regardless
of whether the entry is code or data. The idea is that
the entry matches some predefined value that has
known integrity semantics. Unknown fingerprints
can result from new program versions, unknown pro-
grams, or otherwise manipulated code. As such, fin-
gerprints of program updates can be measured by
the challenging party and added to the database; in
turn, old program versions with known vulnerabili-
ties [14] might be reclassified to distrusted.

The challenging party must have a policy in place
that states how to classify the fingerprints and how
to proceed with unknown or distrusted fingerprints.
Usually, a distrusted fingerprint leads to distrust-
ing the integrity of the whole attesting system if
no additional policy enforcement mechanisms guar-
antee isolation of the distrusted executable. Alter-
natively, trustworthy fingerprints can be signed by
trusted third parties, e.g., regarding their suitability
to enforce certain security targets (Common Criteria
Evaluation) related to their purpose.

Transaction Integrity Usually, the integrity of the
attesting system is of interest when it processes a

transaction that is important to a challenging party.
To verify the integrity of a transaction that is tak-
ing place between the challenging and the attesting
party (e.g., a Web request), the challenging party
can challenge the integrity of the attesting system
before and after the transaction was processed, e.g.,
before sending the Web request and after receiving
the Web response. If the attesting system is trusted
both times, then– so it seems –the transaction can
be trusted, too.

This is, however, not entirely true because it as-
sumes that both measurements have taken place in
the same epoch (validity period), i.e., that any sys-
tem change throughout the transaction would have
been recorded in the second measurement. How-
ever, the attesting system could have been compro-
mised just after the first challenge and before the
transaction took place. Then, the attesting system
could have rebooted before the second challenge took
place. Thus, though trusted at two points in time,
the reboot covered the distrusted attesting system
state against the challenger. Even if the possibility
seems small, systems can reboot very fast and actu-
ally come up into an exactly pre-defined state (thus
exhibiting the same measurement list as in earlier
measurements) 1.

Fortunately, there is a way to discover if an epoch
changes, i.e., whether the system rebooted between
two attestations. For this purpose, we can use so-
called TPM counters. As opposed to the PCRs,
these counters are never cleared or decreased but can
only increase throughout the lifetime of a TPM. In-
creases of one of these counters could be triggered by
the BIOS each time the system reboots. The BIOS
is also responsible to disable the TPM as soon as
the counter has reached its maximum value. Typi-
cal TPM have multiple counters that can be com-
bined and thus are sufficient for normal platform
lifetimes 2. Thus, a trusted kernel including such
a counter into the measurement list ensures that the
prefixes of two measurement lists differ at least in
this single counter measurement once the system is
rebooted.

Consequently, in this enhanced version, transaction
integrity can be validated by ensuring that the mea-
surement list validated at the first challenge before

1This is used in another TPM mechanism allowing to seal
a secret to a platform configuration, though originally this
did not include any dynamic measurements.

2The TPM specification [11] demands that the externally
accessible counters must allow for 7 years of increments every
5 seconds without causing a hardware failure.

10

the transaction is a prefix of the measurement list
validated at the second challenge after the trans-
action. Then, the system did not reboot and thus
(given our assumptions) any distrusted system com-
ponent potentially impacting the transaction on the
attesting system, would show in the measurement
list of the second challenge. In effect, our architec-
ture does not offer predictable security as long as it
is non-intrusive, yet it can offer retrospective assur-
ance of the integrity state of a system.

5 Implementation

This section describes the enhancements we made
to the Linux system to implement the measurement
functionalities. Before any of our dynamic measure-
ments are initiated (i.e., before linuxrc or init are
started), our kernel pre-loads its measurement list
with the expected measurements for BIOS, boot-
loader, and kernel and uses the aggregate of the real
boot process, found in a pre-defined TPM PCR, as
the starting point for our own measurement aggre-
gate. If the actual boot process differs from the ex-
pected one, the validation of the measurement list
will fail. We focus on the stages following the ini-
tial OS boot and refer interested readers to another
paper [12] that covers detailed measurement steps
before booting as well as their validation.

Our prototype implementation is done on a RedHat
9.0 Linux distribution running a 2.4.21 kernel 3. The
prototype implementation is divided into three ma-
jor components: inserting measurement points into
the system that measures a given file (Section 5.1),
the actual measurement (Section 5.2), and how to
validate the measurements to ensure that an imple-
mentation of our architecture is actually in place on
the attesting system (Section 5.3).

5.1 Inserting Measurement Points

The actual measurement is performed in the kernel
and is exported to user-level applications via a new
measure system call. The main task is thus to iden-
tify points in the system (be it user or kernel level)
where execution-related contents are loaded, and in-
sert a measure system call (or a direct call to the
measurement code when in kernel) at those places.

3The mechanisms presented here are sufficiently generic
that porting to a Unix-like system should be straightforward.

In Section 4.2, we outline the approach to measure-
ment, where the load of measured code gives the op-
portunity to more fine-grained measurement to that
code. If that code is not of high integrity, it will be
detected (because it is already in the measurement
list). If it is of high-integrity, then it may be trusted
to measure its loads. As we discussed in Section 2,
the operating system call interface lacks the seman-
tic richness to express the integrity impact of reading
a file.

At present, we have implemented the following mea-
surement points discussed below. We have not yet
explored adding measurements within an applica-
tion. The fundamental mechanism would be the
same, but we anticipate the need for more support
for application programmers.

Kernel Modules: Kernel modules are extensions
to the kernel that can be dynamically loaded after
the system is booted. The basic tool for loading
a kernel module is insmod. insmod functions as a
relocating linker/loader – it resolves external refer-
ences in the kernel module and makes the module
known to the kernel. One can invoke insmod directly
as a regular command to explicitly load a module.
The kernel can also implicitly load a module via the
modprobe mechanism if automatic module loading
is enabled. In the latter case, when the kernel de-
tects a module is needed, it automatically finds and
loads the appropriate module by invoking modprobe
in the context of a user process. Typically, mod-
probe is just a symbolic link to insmod. To measure
kernel modules, we instrument the insmod program
with a measure system call at the point between the
successful opening of the object file containing the
kernel module and the loading of the kernel module.

User-level Executables: User-level executables
are loaded through the user-level loader. When
a binary executable is invoked via the system call
execve, the kernel calls the binary handler routine,
which then interprets the binary and locates the ap-
propriate loader for the executable. The kernel then
maps the loader into the memory and sets up the
environment such that when the execve system call
returns, execution resumes with the loader. The
loader in turn performs normal loading functionali-
ties and finally passes control to the main function
of the target executable. In the case of a statically
linked binary, the only file being loaded is the target
binary itself. To measure such binaries, we added a
call to the measurement routine in the execve sys-
tem call. The case of a dynamically linked binary is

11

more complicated and is elaborated below.

Dynamically Loadable Libraries: A dynami-
cally linked binary typically requires loading of ad-
ditional libraries that it depends on. This process
is done by the user-level loader and is transparent
to the kernel. Thus, to measure these dynamically
loaded libraries, we instrument the loader with a
measure system call after each successful loading of
a dynamic library and before it can be used.

Scripts: Scripts are loaded through the execve sys-
tem call exactly like a binary executable, except that
the loader in this case is the interpreter of the partic-
ular script language. For example, if the script lan-
guage is PERL, then the interpreter /bin/perl will
be invoked.

Script interpreters may load additional code, so we
would prefer that the script interpreters also be ca-
pable of measuring their integrity-relevant input. At
present, we have not instrumented them yet, so we
restrict the scripts that we trust.

5.2 Taking Measurements

This section describes the implementation of the
measure system call used at the measurement points
to initiate the measurement of a file. The measure
system call takes one argument, namely, the descrip-
tor of the file to be measured. From the file descrip-
tor one can look up the corresponding inode and
data blocks, and take a SHA1 over the data blocks.

The consistency between the measurement and what
is loaded depends on: (1) accurate identification of
the inode loaded and (2) detection of any subsequent
writes to the inode. Clearly, the relationship be-
tween a file descriptor and an inode can be changed
between when the measure system call is made and
the actual contents are read. However, we have mea-
sured the code requesting the measurement, so if it is
of high integrity, it is trusted not to swap the inode
associated with a file descriptor. The replacement
of the file by a malicious attestor will not change
the mappings of the process, so this is not a prob-
lem either. Second, there could be a race between
the measure and read and a write system call that
modifies the data. While the measurement may not
be exactly what is loaded, the subsequent modifica-
tion of the inode will be measured by our system as
described below. Once a file is measured, any sub-
sequent modifications are captured. Remote NFS

files cannot be measured dependably unless the file’s
complete contents are cached on the local system.
We do not implement such caching at present.

In addition to the content of the loaded file, the name
of the file, user or group ID of the loading entity,
as well as the file system type (local, remote NFS)
might be useful environment information for later
evaluation of the impact of loading this file or match-
ing it with local security policies. At this time, our
implementation supports gathering this additional
data for information purposes but does not include
it in the measurement.

A naive implementation would be to take a finger-
print for every measure system call. This approach
would, however, incur significant performance over-
head (see Section 6.2).

Instead, we use caching to reduce performance over-
head. The idea is to keep a cache of measurements
that have already been performed, and take a new
measurement only if the file has not been seen before
(cache-miss) or the file might have changed since last
measurement. For the latter case, we only record a
new file measurement if the file has actually changed.
Recording identical measurements each time an ap-
plication runs would have severe impact on the man-
agement (storage, retrieval, validation) of the list.

We store all measurements in a singly-linked, or-
dered list. The order of measurements is essential
to detect any modification to the measurement list.
If the measurements are not checked in order, then
the aggregate hash will not match the TPM aggre-
gate that results from the TPM extend operation.

For efficiency reasons, we overlay the linked list with
two hash tables, one keyed with the inode number
and device number of the measured file, the second
keyed with the resulting fingerprint (SHA1 value) of
the measured file. Thus, each measurement entry
can be reached by traversing the measurement list,
by its inode, or by its fingerprint. Each measurement
entry contains a dirty flag bit, indicating whether
the file is CLEAN (not modified), or DIRTY (possibly
modified). The measure system call uses the inode
corresponding to the file descriptor of the target file
to quickly look up the file in the hash table and see
if it has been measured before.

Measuring new files: If the file is not found in the
inode-keyed hash table, then we measure the file by
computing a SHA1 hash over its complete content.

12

At this point, we use the computed fingerprint to
check whether it is present in the hash table keyed
by the SHA1 hash value of existing measurements.
If the measured fingerprint is not found, then we
create a new measurement entry, and add it to the
list and adjust the hash table structures. We finally
extend the relevant Platform Configuration Register
in the protected TPM hardware by the SHA1 hash
before returning from the call and allowing the load-
ing of the executable content. If the fingerprint was
already measured before, then we return from the
system call without extending the TPM or the mea-
surement list. This can happen if executable files
are copied and thus yield the same fingerprint. In
this case, we assume for our purpose that both exe-
cutables are equivalent.

Remeasuring files: If the file is found in the inode-
keyed hash table, then it was measured before. If the
dirty flag of the found measurement entry is CLEAN
(clean-hit), then nothing needs to be done, and the
system call returns. If the dirty flag bit is DIRTY
(dirty-hit), then we compute the SHA1 value of the
file. If the measured fingerprint is identical to the
one stored in the measurement list, then we set the
dirty flag to CLEAN. We do not extend the PCR or
record this measurement as it is known already.

If the measured fingerprint differs from the one
stored in the found measurement entry for the in-
ode, then we look up the new fingerprint in the hash
table using the SHA1 value as the key. If the SHA1
value exists, then the same file contents was mea-
sured before (copy of the current file). We return
without recording the measurement, as above. If
the SHA1 value does not exist in the hash table,
then the current file has changed. A new measure-
ment entry is created and added to the table, and
the PCR is extended before the system call returns.

Dirty flagging: We set the dirty flag bit to DIRTY
whenever the target file (a) was opened with write,
create, truncate, or append permission, (b) was lo-
cated on a file system we can’t control access to (e.g.,
NFS), or (c) belongs to a file system which was un-
mounted. This seems a bit conservative, since an
open for write (or unmounting a file) does not neces-
sarily result in modifications to the file. The SHA1-
keyed hash table enables us to clear the dirty flag if
a file did not change after an open with write per-
mission. If we control access to the file, then we
clear the dirty flag in such cases. Experiments show
that on a non-development system using local file
systems, the percentage of dirty-hits on the cache is

far less than 1%.

In summary, the performance optimization requires
us to modify two system calls, namely open and
umount to implement the dirty flagging.

Fail-safe mechanisms: To protect our dirty flag-
ging, we set the dirty-flag of a measurement to DIRTY
as soon as we detect a writable open on the related
partition’s device file, e.g., /dev/hda1. For this pur-
pose, as well as for dirty-flagging of unmounted file
systems, we keep the superblock pointer of a file in
the file’s measurement structure. Walking through
the whole measurement list to dirty-flag entries re-
lated to the mount point imposes overhead, but this
happens rarely (e.g., on shutdown) on most correctly
setup and configured systems and the measurement
lists are usually not very large (<1000 entries).

In case of any error throughout the recording of
measurements, e.g., caused by out-of-memory errors
when allocating a new measurement structure, we
invalidate the TPM aggregate by extending it with
random values without extending the measurement
list and deleting the random value to protect it from
later use. Thus, from this time on, validations of the
aggregate will fail against the measurement list. We
do not interfere with the system (non-intrusive) but
we disable such a system from successful attestation
until it reboots.

In case of suspicious behavior, e.g., when recognizing
writable access to /dev/kmem, we also invalidate the
TPM aggregate as described above. This is neces-
sary to prevent the kernel from being changed with-
out this change being measured. The only allowed
way to change the kernel is through loading mod-
ules, in which case the loaded modules are measured
and can be evaluated by challenging parties. Such
suspicious cases are rarely necessary or observed in
normal systems. Thus, disabling successful attesta-
tion in these cases seems justified.

5.3 Validating Measurements

Our architecture uses the TPM’s protected storage
of the TPM aggregate to protect the integrity of the
measurement list. Once a measurement is taken,
it cannot be changed or deleted without causing
the aggregate hash of the measurement list to differ
from the TPM aggregate. However, the challenging
party must also ensure that the attesting system has
the measurement architecture correctly in place so

13

that all necessary measurements are actually initi-
ated and carried out. As our architectural compo-
nents are measured as well when they are executed,
challenging parties can determine whether the archi-
tecture is in place by inspecting these measurements.

The major portion of the measurement architecture
is in the static kernel. Thus, the challenging party
trusts only such kernels that implement the kernel
part of our measurement architecture. Other kernels
will be unacceptable to challenging parties because
they can skip important measurements.

When validating individual measurements, the chal-
lenging party must enforce the following rules:

Insmod program: The instrumented insmod program
measures kernel modules before they are loaded into
the kernel. Only insmod programs instrumented
with the measure call are acceptable. If a finger-
print of any other program with insmod functional-
ity is seen, then it must not be trusted and thus the
validation fails.

Dynamic library loader: The instrumented dynamic
loader ensures that all dynamically loaded libraries
are measured. Only dynamic loaders instrumented
with the measure call are thus acceptable. A fin-
gerprint of any other dynamic loader must not be
trusted and thus the validation fails if such a finger-
print is included in the measurement list.

Fingerprints of any other part of the system can be
trusted according to known vulnerabilities of corre-
sponding programs or libraries as described in Sec-
tion 4.4. As any unknown fingerprint could result
from a changed insmod or dynamic loader, we can-
not trust any fingerprint whose corresponding pro-
gram’s functionality is unknown.

6 Results

6.1 Experiments

To test our system’s ability in detecting possible at-
tacks, we construct a small experiment using lrk5,
a popular Linux rootkit. We start with a perfectly
good target system, and take measurements of this
system. Then we launch a rootkit attack against
the target system, and take measurements again af-
ter the attack. Figure 4(a) shows a (partial) list of
measurements for the good system, and Figure 4(b)

shows the corresponding list of the same system
that is compromised by a rootkit. The italicized
entries show that after the attack, the signature of
the syslogd program is different, indicating that the
rootkit had replaced the original syslogd with a tro-
jan version. This example illustrates how such at-
tacks can be discovered reliably using our system.

#000: D6DC07881A7EFD58EB8E9184CCA723AF4212D3DB boot_aggregate
#001: CD554B285123353BDA1794D9ABA48D69B2F74D73 linuxrc
#002: 9F860256709F1CD35037563DCDF798054F878705 nash
#003: 84ABD2960414CA4A448E0D2C9364B4E1725BDA4F init
#004: 194D956F288B36FB46E46A124E59D466DE7C73B6 ld-2.3.2.so
#005: 7DF33561E2A467A87CDD4BB8F68880517D3CAECB libc-2.3.2.so
...

#110: F969BD9D27C2CC16BC668374A9FBA9D35B3E1AA2 syslogd

...

(a)

...
#110: F969BD9D27C2CC16BC668374A9FBA9D35B3E1AA2 syslogd
...

#525: 4CA3918834E48694187F5A4DAB4EECD540AA8EA2 syslogd

...

(b)

Figure 4: Detecting a Rootkit Attack.

6.2 Performance Evaluation

We measure the runtime performance with a set of
micro-benchmarks. We first measure the latencies
of the measure system call in three different cases,
namely, no_SHA1, SHA1, SHA1+extend. no_SHA1 rep-
resents the case when the target file is found in the
cache and is clean. The measure system call thus
returns without further work. In the SHA1 case, the
target file is remeasured and the SHA1 fingerprint is
recalculated. However, the TPM is not extended
because the fingerprint is found to be already in
the cache. SHA1+extend represents the case when
a brand new file is measured and the resulting fin-
gerprint needs to be extended. Since the goal is to
measure the latency, we use a test file size of 2 bytes.
Implementation of the micro-benchmarks is based on
the HBench framework [15].

Table 1 shows the results. For reference purposes,
we include the running times of two normal system
calls (call pairs): gettimeofday, and open/close.
It is clear from the table that the overhead for the

14

System Call Overhead (stdev)
no SHA1 0.5 µs (0.0)

measure SHA1 2.7 µs (0.0)
SHA1+extend 9971.8 µs (0.3)
gettimeofday 0.6 µs (0.0)reference
open/close 2.6 µs (0.0)

Table 1: Overhead of the Measure System Call.

measure system call in the case of a clean cache hit
(no_SHA1) is minimal - it takes 0.5 microseconds to
run, less time than the gettimeofday system call,
which is often quoted as the basic system call layer
overhead (entering and leaving the kernel mode).
Fortunately, our experiences indicate that this is the
majority case, even for servers that tend to run for
a long time, accounting for more than 99.9% of all
measure system calls.

When the file is remeasured, the measure system
call takes about 2.7 microseconds, about the same
time it takes for opening and closing a file. This case
shows the overhead of setting up the file for measure-
ment, and searching the hash table for a matching
fingerprint. Notice that this case does not measure
the overhead of the fingerprinting itself, since the file
size is only 2 bytes. Fingerprinting performance will
be discussed later. The extend operation is clearly
the most expensive, taking about 10 milliseconds to
execute. This is understandable, because the ex-
tend operation interacts with the TPM chip. As
mentioned before, these two cases adding together
represent less than 0.1% of all measure system calls.
Thus we are confident that the performance penalty
our system imposes upon the user will be negligible.

Next we present the fingerprinting performance as
a function of file sizes. We measure the measure
system call’s running time in the SHA1 case, varying
the input file sizes. The results are shown in Table 2.
When the file size is large, the fingerprinting over-
head can be significant. For example, measuring a
128 Kilobytes file takes about 2 milliseconds. The
running time increases close to a linear fashion as
the size of file increases. These latencies translate
to a throughput performance of about 55MB per
second. These experiments were run with a hash ta-
ble containing about 1000 entries. Our experiences
show that a standard RedHat 9.0 Linux system in-
cluding the Xwindow server and the Gnome Desktop
system accumulates about 500 measurement entries
after running about one week. Thus we believe our

File Size (Bytes) Overhead (stdev)
2 2.7 µs (0.0)
512 11.5 µs (0.0)
1K 20.1 µs (0.1)
16K 280.5 µs (0.3)
128K 2226.3 µs (1.7)
1M 18312.3 µs (18.1)

Table 2: Performance of the SHA1 Fingerprinting
Operation as a Function of File Sizes.

performance results are representative of a normal
Linux environment.

7 Discussion

Our architecture is non-intrusive and does not pre-
vent systems from running malicious programs.
However, we modify our approach to enforce secu-
rity as well. In this case, we pre-load the measure-
ment cache with a set of expected fingerprints for
trusted programs. The measurement call then fin-
gerprints the file to be measured and compares it to
the set of expected fingerprints. If the fingerprint
does not match any of them, it aborts the load and
reports the illegal fingerprint. Note that the attest-
ing system’s enforcement requirements may be dif-
ferent than those of the challenger, so the challenger
still needs to perform a validation.

Our measurement architecture is not restricted to
measuring executable code. Adding measurement
hooks into applications, we can include structured
input data, such as configuration files and java
classes, into our measurements. Changes are simple–
instrumenting applications, such as Apache or the
Java classloader, means adding a measurement call
before loading relevant files.

In order to establish confidence in a system, privacy
is impacted by our approach. The attestation pro-
tocol releases detailed information of the attesting
system to allow challengers or trusted third parties
to establish trust. However, the attesting system has
full control over the release of this information, and
can run code that it trusts not to release such infor-
mation. Also, a system agent could be configured
to release attestations to authenticated challengers
and the operating system could only provide quotes
to that agent.

15

Inducing frequent changes in loaded executable files
can cause the measurement list to grow beyond prac-
tical limits, resulting in a denial of service attack.
To prevent this attack, a maximum length of the
measurement list can be configured. Any additional
measurement is aggregated into the TPM-protected
PCR register, but the measurement is not stored
in the kernel. Consequently, a system that exceeds
this maximum number of measurements will not be
able to successfully convince challenging parties of
its integrity because the measurement list will not
validate against the aggregate any more.

8 Conclusions

We presented the design and implementation of a se-
cure integrity measurement system for Linux. This
system extends the TCG trust concepts from the
BIOS all the way up into the application layer for
a general operating system. We extend the oper-
ating system with hooks to measure when the first
code is loaded into a process (execve), provide a
measure system call for subsequent measurements,
and detect when changes to measured inodes are
taken. This mechanism enables the measurement of
dynamic loaders, shared libraries, and kernel mod-
ules in addition to the executed files. Further, the
approach is extensible, such that applications can
measure their specialized loads. The result is that we
show that many of the Microsoft NGSCB guarantees
can be obtained on today’s hardware and today’s
software and that these guarantees do not require a
new CPU mode or operating system but merely de-
pend on the availability of an independent trusted
entity. Such a system can already detect a variety
of integrity issues, such as the presence of rootk-
its or vulnerable software. Our measurements show
that the non-development systems can be practically
measured and that the measurement overhead is rea-
sonable.

The measurement system is extensible and we be-
lieve that we can ultimately achieve guarantees be-
yond those of Microsoft NGSCB. The application
of mandatory access control policy can ensure that
dynamic data cannot be modified except by trusted
sources [16]. Identification of low integrity data flows
can enable the possibility of control over whether
these flows should be allowed, whether effective re-
striction can be put on them at the system-level or
within applications.

References

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A
Secure and Reliable Bootstrap Architecture,” in IEEE
Computer Society Conference on Security and Privacy.
IEEE, 1997, pp. 65–71.

[2] “Trusted Computing Group,”
http://www.trustedcomputinggroup.org.

[3] K. J. Biba, “Integrity considerations for secure computer
systems,” Tech. Rep. MTR-3153, Mitre Corporation,
Mitre Corp, Bedford MA, June 1975.

[4] D. D. Clark and D. R. Wilson, “A comparison of com-
mercial and military computer security policies,” in
IEEE Symposium on Security and Privacy, 1987.

[5] S. W. Smith, “Outgoing authentication for pro-
grammable secure coprocessors,” in ESORICS, 2002,
pp. 72–89.

[6] M. Bond, “Attacks on cryptoprocessor transaction sets,”
in Proceedings of the 2001 Workshop on Cryptographic
Hardware and Embedded Systems, May 2001.

[7] P. England, B. Lampson, J. Manferdelli, M. Peinado,
and B. Willman, “A Trusted Open Platform,” IEEE
Computer, vol. 36, no. 7, pp. 55–62, 2003.

[8] G. Kim and E. Spafford, “Experience with Tripwire:
Using Integrity Checkers for Intrusion Detection,” in
System Administration, Networking, and Security Con-
ference III. USENIX, 1994.

[9] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking
systems rules using system-specific, programmer-written
compiler extensions,” in Proceedings of the 4th Sympo-
sium on Operating Systems Design and Implementation
(OSDI 2000), October 2000.

[10] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van
Doorn, S. W. Smith, and S. Weingart, “Building the
IBM 4758 Secure Coprocessor,” IEEE Computer, vol.
34, no. 10, pp. 57–66, 2001.

[11] Trusted Computing Group, Trusted Platform Mod-
ule Main Specification, Part 1: Design Princi-
ples, Part 2: TPM Structures, Part 3: Com-
mands, October 2003, Version 1.2, Revision 62,
http://www.trustedcomputinggroup.org.

[12] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer,
S. Munetho, and S. Yoshihama, “Trusted Platform on
demand (TPod),” in Technical Report, Submitted for
Publication, 2004, In submission.

[13] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh, “Terra: A Virtual Machine-Based Platform
for Trusted Computing,” in Proc. 9th ACM Symposium
on Operating Systems Principles, 2003, pp. 193–206.

[14] CERT Coordinatin Center, “CERT/CC Advisories,”
http://www.cert.org/advisories.

[15] A. B. Brown and M. Seltzer, “Operating System Bench-
marking in the Wake of Lmbench: A Case Study of the
Performance of NetBSD on the Intel x86 Architecture,”
in Proceedings of the 1997 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Sys-
tems, June 1997, pp. 214–224.

[16] T. Jaeger et. al., “Leveraging information flow for in-
tegrity verification,” in SUBMITTED for publication,
2004.

16

