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Abstract—Today’s Internet hosts are threatened by large
scale Distributed Denial-of-Service (DDoS) attacks. The
Path Identification (Pi) DDoS defense scheme has been re-
cently proposed as a deterministic packet marking scheme
that allows a DDoS victim to filter out attack packets on a
per packet basis with high accuracy after only a few attack
packets are received [1].

In this paper, we propose the StackPi marking, a new
packet marking scheme based on Pi, and new filtering
mechanisms. The StackPi marking scheme consists of two
new marking methods that substantially improve Pi’s incre-
mental deployment performance: Stack based marking and
Write-ahead marking. Our scheme almost completely elim-
inates the effect of legacy routers in small quantities and
performs 2-4 times better than the original Pi scheme with
large quantities. For the filtering mechanism, we derive an
optimal threshold strategy for filtering with the Pi marking.
We also develop a new filter, the PiIP filter, which can be
used to detect IP spoofing attacks with just a single attack
packet.

Finally, we discuss in detail StackPi’s compatibility with
IP Fragmentation, applicability in an IPv6 environment,
and several other important issues relating to potential de-
ployment of StackPi.

Index Terms—Security, system design, distributed denial
of service defense, DDoS.

I. Introduction

A. IP Spoofing and DDoS Attacks

INTERNET security is of critical importance in our so-
ciety today, as the government and economy increas-

ingly rely on the Internet to conduct its business, and ev-
eryday citizens use the Internet as a convenient vehicle for
simplifying a wide range of tasks, from banking to shop-
ping. Unfortunately, the current Internet infrastructure is
vulnerable to a technically simple attack whose frequency
and severity will only increase with time — the Dis-
tributed Denial of Service (DDoS) attack. Because DDoS
attacks typically rely on compromising a large number of
hosts to generate traffic to a single destination, the sever-
ity of DDoS attacks will likely increase as greater num-
bers of poorly secured computers are connected to high
bandwidth Internet connections. For example, an attacker
who could compromise the popular SETI@Home [2] dis-
tributed computation software, would be able to harness

several hundreds of thousands of hosts to generate traffic
for an attack.1

The weakness of the current Internet infrastructure that
facilitates DDoS attacks is the inability for a packet re-
cipient to authenticate that packet’s claimed source IP ad-
dress. In other words, an attacker can intentionally mod-
ify, or spoof, the source address of the packets it sends
from a compromised host. Two examples of DDoS at-
tacks that rely on IP address spoofing are:

• TCP SYN Flooding: In this attack, an attacker sends
TCP SYN packets as if to initiate a TCP connection
with its victim. These SYN packets contain spoofed
source IP addresses, which cause the victim to waste
resources that are allocated to half-open TCP con-
nections which will never be completed by the at-
tacker [3].

• Reflector Attack: In this attack described by Pax-
son [4], the attacker attempts to overwhelm the vic-
tim with traffic, by using intermediate servers to am-
plify the attacker’s bandwidth and/or hide the at-
tacker’s origin. The attacker simply sends requests to
the intermediate server with a spoofed source IP ad-
dress matching the victim’s IP address. The interme-
diate server only sees that a number of requests are
supposedly coming from the victim, and so sends its
responses to the victim. When properly coordinated,
a group of attackers can cause a flood of packets to
hit the victim, without sending any packets directly
to the victim. To amplify the traffic, the attacker
selects intermediate servers whose responses to the
spoofed requests are longer than the requests them-
selves. For example, in DNS server based reflector
attacks, attackers send short DNS lookup requests
(50 bytes each), whose replies can be over a thou-
sand bytes long, thus giving the attacker a 20 time
traffic amplification. Other popular reflectors are In-
ternet game servers, where attackers can use similar
methods to gain two orders of magnitude of traffic
amplification [5].

These types of DDoS attacks, which use large amounts
of traffic to disable a victim server, are the focus of this

1As of 30 June 2003, SETI@home has roughly 4.5 million users
signed up.
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paper. However, source IP address spoofing is also used
in many other attacks. An attacker who wants to evade
source IP address based packet filtering will use source
IP spoofing. Finally, some DDoS attacks do not rely on
source IP address spoofing, because the attacker simply
does not care whether or not the machine that it has com-
promised is implicated in the attack, so long as the at-
tacker itself remains unknown. However, as source IP ad-
dress filtering mechanisms become widely deployed (e.g.,
the Pushback framework [6], [7]), it is likely that attack-
ers will have to resort to source IP address spoofing to
increase the effectiveness of their attacks.

B. Desired Properties of Defense Mechanisms against
DDoS Attacks

Because the current Internet infrastructure has few capa-
bilities to defend against DDoS attacks, we need to de-
sign a new network level defense mechanism against these
attacks. In particular, a good solution to defend against
these attacks should satisfy the following properties:

• Fast response: The solution should be able to rapidly
respond to and defend against attacks. Every second
of Internet service disruption causes economic dam-
age. We would like to immediately block the attack.

• Scalable: Some attacks, such as TCP SYN flooding,
involve a relatively small number of packets. How-
ever, many DDoS attacks are large scale and involve
thousands of distributed attackers and an even larger
number of attack packets. A good defense mecha-
nism must be effective against low packet count at-
tacks but scalable to handle much larger ones.

• Victim filtering: Almost all DDoS defense schemes
in the literature assume that once the attack path is
revealed, upstream routers will install filters in the
network to drop attack traffic. This is a weak assump-
tion because such a procedure may be slow, since
the upstream ISPs have no incentive to offer this ser-
vice to non-customer networks and hosts. We ob-
serve that because large Internet servers are process-
ing, not bandwidth, constrained, the servers them-
selves should be responsible for filtering out attack
traffic that reaches them.

• Efficient: The solution should have very low process-
ing and state overhead for both the routers in the In-
ternet and, to a lesser degree, the victims of the at-
tacks.

• Support incremental deployment: The solution is
only useful and practical if it provides a benefit when
only a subset of routers in the network implement
it. As an increasing number of routers deploy the
scheme, there should be a corresponding increase in
performance.

Many of the current DDoS defense schemes address
only a few of these properties. We review these schemes
in detail in Section VII. The Pi scheme is the first that

satisfies all of the above properties.

C. Our Contributions

This paper makes the following contributions. In this
paper, we propose the StackPi marking, a new packet
marking scheme based on Pi, and new filtering mech-
anisms. The StackPi marking scheme consists of two
mew marking methods that substantially improve Pi’s in-
cremental deployment performance: Stack based mark-
ing and Write-ahead marking. Our scheme almost com-
pletely eliminates the effect of legacy routers when they
constitute less than 20% of the topology, and performs 2-4
times better than the original Pi scheme at higher percent-
ages. For the filtering mechanism, we derive an optimal
threshold strategy for filtering based on the Pi marking.
We also develop a new filter, the PiIP filter, which can be
used to detect IP spoofing attacks with just a simple attack
packet. We also examine the conflicts between IPv4 frag-
mentation and Pi marking and Pi deployment in an IPv6
environment.

The remainder of this paper is organized as follows:
In Section II we review the essential elements of the Pi
scheme. In Section III we introduce our improvements to
the Pi scheme, and evaluate them in Section IV. In Sec-
tion V, we describe the PiIP filter, and in Section VI we
discuss IP Fragmentation, IPv6 deployment and other is-
sues. In Section VII we describe related work in the DDoS
defense literature. Finally, we conclude the paper in Sec-
tion VIII.

II. Overview of Pi

In this section, we present the key design elements of the
Path Identification (Pi) scheme. More details on Pi are in
our earlier paper [1].

A. Pi Properties

The Pi DDoS defense scheme is composed of a packet
marking algorithm that encodes a complete path identifi-
cation marking in each packet; and a packet filtering al-
gorithm, that determines how a DDoS victim will use the
markings of the packets it receives to identify and filter at-
tack packets. The uniqueness of Pi lies in the fact that the
Pi marking scheme is deterministic at the path level: all
packets traversing the same path carry the same marking.
Because each packet contains the complete path marking,
and the marking for a path is constant, the victim needs
only to identify a single attack packet or flow (through
some high level algorithm based on packet contents or
flow behavior) in order to block all subsequent packets ar-
riving from the same path, and presumably, from the same
attacker. The next two sections describe Pi marking and
filtering in more detail.
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B. The Pi Marking Scheme

The Pi marking scheme defines how the Pi-marks are gen-
erated as a packet traverses the routers along its path to
its destination. Each Pi enabled router marks n bits into
the IP Identification field of every packet it forwards —
where n is a global constant equal to either 1 or 2. The
IP Identification field is broken into b16/nc sections, and
each router marks its n bits into the section indexed by
the packet’s current TTL, modulo b16/nc. Because the
IP Identification field is 16 bits in length, each Pi-mark
can hold markings from the last 8 or 16 routers away from
the packet’s destination — a new router marking simply
overwrites the marking of a previous router.

Our research on Pi shows that the markings of the last
8 or 16 routers suffice for filtering out the majority of
DDoS traffic, even though many different paths carry the
same marking. Our analysis of the Internet map [8] and
the Skitter traceroute maps [9] indicates that the average
Internet path length is roughly 15, which is almost dou-
ble the number of hops that the n = 2 bit scheme can
hold. Thus, the victim receives the markings from only
the last 8 routers in the n = 2 bit scheme. We find that
the filtering power of Pi improves if we prevent the lo-
cal domain routers from marking, thus keeping the mark-
ings from routers further away. For example, if the last
3 hops are routers within our domain, we assume that we
can configure them not to mark packets destined for our
domain. Internet packets would thus carry the markings
from routers 4 to 11 hops away.

It is critically important that the individual router’s
markings have as high an entropy as possible, so that the
probability of two distinct paths sharing — or, colliding
at — the same Pi marking is as small as possible. For this
reason, the router’s marking bits are computed as the last
n bits of the MD5 hash of the current router’s IP address
concatenated with the last-hop router’s IP address. A Pi
enabled router would cache its marking bits for each in-
terface to avoid recalculating the hash for each forwarded
packet.

The original Pi mark works well in a network where
all routers implement Pi marking. Unfortunately, perfor-
mance degrades substantially if legacy routers are present,
as they decrement the TTL but do not mark the packet. In
this paper, we introduce two new techniques that greatly
enhance the performance of Pi in the presence of legacy
routers: the Stack marking and the Write Ahead improve-
ment, which we describe in Section III.

C. The Pi Filtering Scheme

The Pi filtering scheme defines how a DDoS victim uses
the Pi-marks of the packets it receives to accept the least
amount of attack traffic while accepting the most amount
of legitimate traffic. The simplest Pi filtering scheme is
as follows: upon identifying a particular Pi-mark as be-
longing to an attacker (by observing malicious behavior

in a packet or flow of packets sharing a Pi mark), the
victim drops all subsequent packets bearing the same Pi-
mark. Unfortunately, because there are a constant number
of Pi marks (216), as the number of attackers increases it
is more and more likely that any given Pi mark will re-
ceive some attack packets, hence causing all legitimate
user traffic to be dropped as well. This effect is called
marking saturation.

To cope with marking saturation, the victim needs to
have more flexibility in deciding whether or not to reject
all packets with a particular Pi-mark. This flexibility can
be defined in terms of a threshold: a value measured as
the maximum allowable ratio of attack packets bearing a
particular Pi mark to the total number of packets arriving
with that Pi mark. In a threshold filter, the victim will
only drop all packets with a particular Pi-mark if the ratio
of attack to total traffic on that Pi-mark equals or exceeds
the threshold value.

III. StackPi: A New Marking Scheme for Pi

The Pi marking scheme presented in the previous sec-
tion performs well under the idealistic assumption that all
routers in the Internet implement it. However, one of the
criterion for a DDoS defense presented in Section I-B was
that the scheme support incremental deployment; where
not all routers in the Internet participate in the marking
algorithm. In this section, we first explain the weak-
ness of the original Pi marking algorithm (referred to as
the TTL marking algorithm), and then present two new
schemes, Stack marking and router write-ahead, which
both dramatically improve Pi’s incremental deployment
performance.

A. Incremental Deployment Issues

An important property in the Pi marking scheme is that all
packets traversing the same path produce a single mark-
ing. This property rests on there being enough routers
in a given path to completely overwrite the IP Identifica-
tion field with their markings. Because the IP Identifica-
tion field is initialized by the end-hosts (the attackers in
our DDoS attack), any bits that are not overwritten by the
routers in the path can be used by an attacker to change be-
tween different markings. In the ideal scenario of 100%
deployment of the marking scheme, this effect is limited
only to short paths. However, as the percentage of non-
marking (legacy) routers increases, the likelihood of com-
pletely overwriting the IP Identification field correspond-
ingly diminishes. In fact, TTL marking is particularly
vulnerable to this effect, because of the fact that legacy
routers decrement the TTLs of the packets that they for-
ward. Thus, a single legacy router can cause a section of
the IP Identification field to go unmarked, at least until the
TTL pointer wraps around again. However, with an n = 2
bit scheme, this requires 8 more hops to be present in the
path, the 8th of which must not be a legacy router. These
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Fig. 1. The basic Stack Marking Scheme. This figure shows how the Pi mark evolves as the packet traverses routers R1 through R9. Initially,
the marking field contains arbitrary data. In this example, each router marks with n = 2 bits and the field has space for four router markings.

unmarked sections are called marking holes because they
often go unfilled and leave attacker initialized bits in the
Pi marking. We show the impact of legacy routers on TTL
marking in Section IV.

B. Stack Marking
The intuition behind Stack marking is the same as that for
TTL marking: in order to generate a path identifier that is
representative of a particular path from a source to desti-
nation in the Internet, each router along the path must con-
tribute some small amount of information whose aggre-
gate among the routers of the path will be the Pi marking.
However, instead of using the packet’s TTL to aggregate
the markings from different routers, each router instead
treats the IP Identification field as though it were a stack.
Upon receipt of a packet, a router shifts the IP Identifica-
tion field of the packet to the left by n bits and writes its
marking bits (calculated in the same way as in TTL mark-
ing) into the least significant bits that were cleared by the
shifting (as shown in Figure 1). In other words, the router
simply pushes its marking onto the stack. Because of the
finite size of the Identification field, the n most significant
bits, which represent the oldest mark in the packet, are
lost in this process; just as in TTL marking. In fact, Stack
marking and TTL marking are equivalent in the case of
100% deployment.

The differences between TTL and Stack marking be-
come evident when legacy routers are introduced into the
topology. Unlike TTL marking, which interacts poorly
with legacy routers because of its reliance on the packets
TTL which is modified by legacy routers, Stack marking
does not rely on the TTL, and hence, has no interaction
with legacy routers at all. There are no longer any mark-
ing holes because each marking router places its mark ad-
jacent to the last marking router’s mark, in the least signif-
icant bits of the IP Identification field. Completely mark-
ing the whole field using Stack marking requires only that
there be b16/nc non-legacy routers anywhere in the path.

C. Router Write-Ahead
Stack marking eliminates the interaction between Pi-
enabled routers and legacy routers that is present in TTL

marking. However, Stack marking is still limited in that a
path which has too few marking routers will still result in
end-host initialized bits arriving at the victim; which al-
lows attackers to shift between different Pi markings. We
can add an extra step to our marking scheme to improve
this situation slightly. We already assume that each router
knows the IP address of the last-hop routers or hosts from
which it receives packets (this knowledge is necessary for
generating the marking bits of each router, as explained in
Section II-B). If we also assume that each router knows
the IP address of the next-hop routers or hosts to which it
is forwarding packets, then the router is capable of mark-
ing the packets on their behalf. All the router needs to
do is substitute its own IP address for the last-hop IP ad-
dress and the next-hop IP address for its IP address when
calculating the bits to mark (of course, the results of this
calculation should also be cached so that they need not be
repeated for each forwarded packet). This second marking
is called Write-ahead marking.

The benefits of Write-ahead marking are immediately
evident when considering a Pi-enabled router followed by
a legacy router in a path. In this case, the Pi-enabled
router will mark not only for itself but also for the next-
hop router, the legacy router, so that its marks will be in-
cluded as well.

There is, however, a slight complication with the Write-
ahead scheme: what happens when two Pi-enabled routers
are adjacent to each other in a path? It would be a waste
of space for the second Pi enabled router to add its own
mark to the packet, since the first Pi-enabled router would
have added that mark already. Therefore, we are forced
to change our scheme slightly to accommodate this situ-
ation. Upon receipt of a packet, a router peeks (the pro-
cess of looking at the item in the top of the stack without
modifying the stack itself) at the least significant n bits
and compares the marking it finds there to what its own
marking would be. If the markings are identical, then the
router will assume that the last hop router is Pi-enabled
and has already marked the field on the current router’s
behalf. In this case, the current router will skip pushing
its own marking and will only push the next-hop router’s
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Fig. 2. The stack marking scheme with write-ahead. The new scheme allows the inclusion of markings from router R3, despite the fact that it
is a legacy router. Each router along the path first (a) checks the topmost marking in the stack to see if it equals the router’s incoming link, and
if it doesn’t, the router adds its incoming link to the marking; and then (b) adds the incoming link of the next-hop router to the stack.

marking onto the stack. If the topmost marking is different
from what the router’s marking would be, then the router
will assume that the last-hop router was a legacy router
and will push its own marking as well as the next-hop
router’s marking onto the stack. There is a chance that a
legacy router placed between two Pi-enabled routers will
go undetected if it has the same marking as the Pi-enabled
router after it; this probability is equal to 1

2n where n is the
number of bits in each router’s marking. Figure 2 shows
an example of the stack based scheme with write ahead.

It is important to note that we could build a mechanism
that would allow a router to detect that its predecessor is a
legacy router. Then, that router could simply push its own
markings onto the stack without performing any compar-
ison. Such a mechanism could be as simple as noting a
variation, between packets, in the least-significant bits of
the incoming Pi mark (because a non-legacy router would
always mark the incoming link of the next-hop router).
With this detection mechanism, there is no longer a 1

2n

probability of missing a legacy router. However, even
without this mechanism, when a legacy router is missed in
the Write-ahead scheme, there is no wasted space in the IP
Identification field; it is simply as though the Write-ahead
scheme were not used at all. Therefore, the Stack marking
scheme with Write-ahead is a strict improvement over the
stack marking scheme alone.

IV. Analysis and Evaluation of the StackPi Im-
provements

In this section, we evaluate the performance of the Pi
scheme under a simulated DDoS attack. We first review
the DDoS attack model that we use in our simulations.
We then derive an equation for the optimal value of the
Pi threshold filter under attacks of varying severity and
evaluate its performance. Finally, we evaluate the effect
of the StackPi marking improvements on Pi’s incremental
deployment performance.

A. DDoS Attack Model

In order to model Pi’s performance under a DDoS attack,
we must have some way for the DDoS victim to identify
attack packets, so that it can bootstrap the Pi filter. Un-
fortunately, this requires the simulation of a higher-level
algorithm that is likely to be dependent on the content of
the traffic (HTTP or DNS etc.) to make its classifications.
Simulating such an algorithm is beyond the scope of this
paper.

To compensate for this, we model our DDoS attack in
two phases: the learning phase and the attack phase. In
the learning phase, the victim is considered omniscient,
and can determine, for each packet received, whether that
packet originated from an attack or a legitimate user. This
phase of the attack is used to simulate the effect of a high-
level traffic and content analysis algorithm, without spec-
ifying the algorithm itself. The knowledge gained in the
learning phase is used to bootstrap the Pi filter with the
Pi markings of known attackers. In the attack phase, the
victim can no longer differentiate attack and user packets
and is forced to use the Pi filter to make accept or drop
decisions for every packet it receives. All of the results
presented are taken during the attack phase. The length of
the learning phase is 3 packets per legitimate user and 30
packets per attacker. The length of the attack phase is 20
packets per legitimate user and 200 packets per attacker.

For our experiments, we use Burch and Cheswick’s In-
ternet Mapping Project [10], [11] topology and the Skitter
Project topology distributed by Caida [9]. 2

Our DDoS simulations proceed as follows: a certain
number of paths are selected, at random, from the topol-
ogy file and assigned to be either attack or legitimate user
paths. All of the DDoS simulations have 5,000 legiti-
mate users and vary the number of attackers. We use an
n = 2 bit marking scheme and assume, as discussed in
Section II-B, that the last three hops of any path are under

2Due to space limitations, we only show the results from the Skitter
Map topology.
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the victim’s ISP control and thus, do not add their marks
to the packet. The results presented are the averages of 6
runs of each attack.

B. Threshold Filtering Performance in StackPi

Recall from Section II-C that the threshold value of the
Pi filter is used to give a DDoS victim some flexibility
in deciding whether or not to drop all packets arriving
with a particular Pi mark by setting a minimum accept-
able level of user traffic to that Pi mark. In [1] we showed
that the greater the severity of the attack, the better higher
threshold values performed. In this section, we derive the
formula for the optimal threshold value as a function of
attack and user traffic, and confirm the optimality of our
result using our DDoS simulation.

In order to quantify the performance of the Pi filter,
we first define two metrics, representing the two different
types of errors a Pi filter can make: false positives, where
legitimate users’ packets are dropped; and false negatives,
where attackers’ packets are accepted. For the purpose of
our evaluation, we refer to the following two metrics: the
user acceptance ratio; which is 1 minus the false positive
rate, and the attacker acceptance ratio; which is exactly
the false negative rate. We define these two metrics in
terms of the following simulation variables:

pj - The total number of packets sent by entity j
vj - The total number of packets sent by j accepted by

the victim.
The acceptance ratio, aj , for a given entity j is defined as:

aj =
vj

pj

Thus, for the set of all users, U , and all attackers, A, the
acceptance ratios are defined as aU = vU

pU
and aA = vA

pA

for the users and attackers, respectively.
Under a DDoS attack, the victim would like to maxi-

mize the user acceptance ratio and minimize the attacker
acceptance ratio. The two acceptance ratios are correlated
in threshold filtering schemes, as a decrease in one can
result in the increase of the other. The goal of the victim,
then, is to maximize the difference between the two ratios:

∆ =
vU

pU
−

vA

pA

which we refer to as, ∆, the acceptance ratio gap. The
acceptance ratio gap is a useful metric to determine how
a particular StackPi filter performs relative to other filters
or to no filter at all. Without Pi marking and filtering, the
victim can only make accept/drop decisions at random,
which intuitively gives an equal user and attacker accep-
tance ratio, or an acceptance ratio gap of zero. Relative
to other filters, a better filter has a higher acceptance ratio
gap.

In order to maximize the acceptance ratio gap, we must
find an optimal threshold value. We derived the optimal
threshold value as follows:
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Fig. 3. Performance Comparison of threshold values.

fi =

{

1 if
pUi

pAi

< pU

pA
,

0 otherwise.

topt =
pU

pA

The details of the derivation are in the Appendix.
This result indicates that in order to maximize the

acceptance ratio gap, unless the ratio of user traffic to
attack traffic at a particular Pi mark is greater than the
ratio of user traffic to attack traffic over all Pi marks,
then all packets bearing that marking should be dropped.
Because we prefer to deal with thresholds as percentages,
we normalize our optimal threshold value to be:

topt =
pU

pA + pU

To calculate the value of the threshold the victim uses
the information from packets in the learning phase of the
DDoS attack to set the value of the threshold in the at-
tack phase of the DDoS attack. Figure 3 shows the per-
formance of the optimal threshold filter relative to select
constant threshold values for attacks of increasing sever-
ity. Each of the constant threshold value curves is tangen-
tial to the curve of the optimal threshold and intersecting
at a single point on the curve where the optimal value of
the threshold equals the value of the constant threshold.

C. Legacy Router Analysis

We now apply the optimal threshold filter to the two mark-
ing schemes: the TTL marking scheme from [1] and
the StackPi marking scheme introduced in Section III.
Figures 4 and 5 show the acceptance ratio gaps for the
TTL and StackPi marking schemes, respectively, under
increasing percentages of legacy routers. 3

3Unfortunately, our algorithm for introducing legacy routers into the
topology results in a uniform distribution, which may be unrealistic. It
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The TTL marking scheme performs as expected (and
similarly to its performance in [1]), with a roughly con-
stant decrease in performance per added percent of legacy
routers. This confirms our assertion from Section III-A
that marking holes generated by legacy routers go mostly
unfilled, and result in more Pi markings per attacker and
hence, less filtering accuracy at the victim.

The situation is much improved using the StackPi
marking scheme. The slow performance degradation at
low percentages of legacy routers is due to two phe-
nomenon. The first is the elimination of the marking holes
due to the stack based marking. Because most paths con-
tain more routers than there is space for in the IP Iden-
tification field, when some routers stop marking, other
routers’ marks simply take their place. The second phe-
nomenon is the effect of the write-ahead improvement. At
low percentages of legacy routers, it is likely that a legacy
router will appear between two Pi-enabled routers. In this
case, the write-ahead improvement allows for that legacy
router’s markings to be included by the Pi-enabled router
appearing before it, so the legacy router has no effect on
the Pi mark for that path. As the percentage of legacy
routers goes beyond 60%, these two effects are minimal,
and the performance degradation per percent increase in
legacy routers is equivalent between the TTL and StackPi
marking schemes.

Overall, the StackPi marking scheme outperforms the
TTL marking scheme at all percentages of legacy routers,
particularly the low percentages. With StackPi marking,
the Pi scheme provides some DDoS protection, even when
as little as 20% of routers in the Internet implement the
scheme.
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Fig. 4. TTL marking incremental deployment performance.

is more likely that clumps of routers in a path - perhaps belonging to
a particular organization - will be updated over a short period of time.
A uniform distribution also biases the results in favor of the StackPi
marking scheme because it is more likely that a single legacy router,
rather than a series of them, will appear in a uniform distribution. We
are working on experiments that utilize different distributions to model
the occurrence of legacy routers in the network topology.
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Fig. 5. StackPi marking incremental deployment performance.

V. PiIP Filter: Filtering on the < Pi Mark, Source
IP Address > Tuple

The optimal threshold filtering we describe in Section IV-
B is a great general filtering technique with low filtering
overhead. In this section, we present a more powerful fil-
ter, the PiIP filter, which can detect IP spoofing attacks
on a per-packet basis. Note that an attacker can always
spoof an IP address that is from the same network at the
attacker. In this section, we only focus on IP spoofing at-
tacks where the attacker tries to spoof an IP address that
is not from the same network as the attacker.

A. PiIP Filter Design

The key observation is that assuming relatively stable In-
ternet forwarding paths, packets originating from an IP
network will arrive at the destination with a small set of
distinct Pi marks. Conversely, assuming that the Pi marks
are approximately uniformly distributed, a given Pi mark
will only be produced by a relatively small number of
origin networks. These assumptions hold in particular
for networks where packets traverse sufficiently many Pi
routers such that all bits in the IP identification field are
marked.

We observe that packets from a given IP network will
all arrive at the destination with a small number of distinct
Pi marks — we can use this to design a powerful filter to
reject packets with spoofed IP addresses. We consider the
following setup. During peace time (when a server is not
under attack), the server stores the tuple < Pi mark, source
IP address >, or <Pi,IP> for short.4

When the server is under attack, it uses the <Pi,IP>
database to filter out packets with spoofed source IP ad-
dresses. For each incoming packet, the server checks

4Since in general all packets from a network have the same Pi marks,
the server can store the network address instead of the source IP ad-
dress. However, for simplicity we discuss the case where the server
stores the IP address.
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whether the <Pi,IP> tuple of the arriving packet matches
an entry in the database; if the tuple does not match the
corresponding entry in the database, it rejects the packet.
A nice feature of this PiIP filter is that the server can fil-
ter out the very first malicious attacker packet. However,
the forwarding path of a legitimate receiver may change
and the arriving packet’s <Pi,IP> tuple may not be in the
database. Thus, the application writer needs to consider
the output of the PiIP filter as a hint on whether the source
IP address is spoofed or not. As long as the server has suf-
ficient capacity, questionable packets may also get served,
and if the packet originator turns out to be a legitimate
user, the server can add the <Pi,IP> tuple to its database.
Note that the PiIP filter cannot be used to detect IP spoof-
ing attacks if the IP address in the packet is not in the
database. We have several ways to address this issue. Be-
cause packets from the same network (even if not from the
same IP addresses) usually have the same Pi mark, from
the Pi mark of one IP address we can derive the Pi mark
of other IP addresses on the same network.

B. PiIP Filter Evaluation

To evaluate the performance of the PiIP filter, we compute
the probability of a false negative, i.e., the probability an
attacker can send a packet with a spoofed IP address that
the victim accepts. A false negative occurs if the attacker
spoofs the IP address of an end-host that happens to have
the same Pi mark as the attacker itself. It is clear that the
PiIP filter performs best if a given IP address has very few
possible Pi marks, and if Pi marks are well distributed. For
example, assuming uniformly distributed Pi marks and as-
suming that a given IP address has 4 possible Pi marks for
a certain destination, an attacker has a 4/216 = 1/214

probability to spoof the IP address to that destination so
that its packet will be accepted.

We conduct the following experiment: each end-host
sends 10 packets with non-spoofed source IP addresses to
the victim to build the <Pi,IP> tuple database. Figure 6
shows a histogram of the number of Pi markings with
a particular number of unique IP addresses that map to
them (note that the y-axis is logarithmic). The histogram
shows us that the IP addresses are somewhat uniformly
distributed over the possible Pi marks, with the large ma-
jority of Pi marks having 1 to 4 unique IP addresses that
map to them and very few Pi marks with greater than 20
unique IP addresses that map to them.

Given this distribution, we can calculate the probability
that a randomly chosen end-host from the topology will
succeed in spoofing the IP address of another end-host.
Because we are dealing with a topology that only contains
a small subset of all the possible legitimate IP addresses,
we assume that our attacker has access to a list of the
unique IP addresses of all end hosts in our topology and
selects addresses from this list when spoofing a packet.
We begin by calculating the probability that an attacker
with a particular IP address, k, will succeed in spoofing a
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Fig. 6. Histogram of the frequency of Pi marks with a particular
number of IP addresses that map to them, after 10 packets are sent
from each end-host in the Internet Map topology.

packet that will be accepted by the filter. This probabil-
ity depends on how many Pi markings have been recorded
at the victim for address k. We define the set of n distinct
Pi markings recorded for address k as {m0,m1, . . . ,mn}.
For each Pi mark recorded at the victim for IP address k,
there is a set of other IP addresses that also map to the
same Pi mark. If the attacker were to spoof any of these,
the attack packet would be accepted by the filter. Thus, the
probability of an attacker with IP address k successfully
spoofing is:

Pk =

∑n
i=0

uniqueIPs(mi, k)

N

where the uniqueIPs() function returns the number of
unique IP addresses that map to Pi mark mi, excluding IP
address k as well as any duplicates between function calls,
and N represents the number of end-hosts in the topol-
ogy; which is the size of the list of possible IP addresses
that the attacker can spoof. Given the probability of an
attacker with a specific IP address of successfully spoof-
ing a packet, we can now calculate the probability of an
attacker with a random IP address successfully spoofing:

P =

∑N
k=0

Pk

N

Using the values from the 10 packet bootstrapping exper-
iment, we calculated this probability to be 0.005 for the
Internet Map topology and 0.003 percent for the Skitter
topology. Although this result is two orders of magnitude
worse than the ideal case, it still shows that in real topolo-
gies an attacker has a very small chance to successfully
spoof another IP address that is not from the same net-
work as the attacker.

VI. Discussion
The Pi scheme has great potential as a DDoS and IP spoof-
ing defense mechanism. In this section, we discuss a num-
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ber of issues and extensions relating to Pi that could sub-
stantially improve on the results we have obtained thus far.
In Section VI-A we discuss an extension to the StackPi
marking scheme that allows routers to mark with a vari-
able number of bits. In Section VI-B we show how Pi-
IP filters can be used to implement a form of standard IP
traceback. In Section VI-C we discuss Pi’s compatibility
with IP fragmentation. In Section VI-D we explain briefly
how Pi can be applied in an IPv6 environment. Finally,
in Section VI-E we discuss why the Pi scheme is funda-
mentally different from other IP traceback schemes from
a deployment perspective.

A. Variable Bit Marking

Thus far, we have assumed that the Pi marking scheme
has a global parameter n, which is the number of bits that
each router uses to mark a single link. We may gain more
space efficiency if routers are allowed to choose for them-
selves a particular n to use for marking. For example, in
the current Pi marking scheme, a router with only two in-
terfaces would mark two bits in the packet, although that
router does not truly affect the path at all, since it can be
abstracted simply as a link between its last-hop and next-
hop neighbors. In a variable bit marking scheme, such
a router would not mark the packet. Each router would
calculate its own n, possibly as a function of the number
of interfaces it has. We are working on simulations that
incorporate the variable bit marking scheme into Pi.

B. Enabling Traceback with PiIP filters

A properly bootstrapped PiIP filter (as described in Sec-
tion V) can be used to perform standard traceback, that is,
complete path reconstruction from a packet’s destination
to its sender. When a destination receives a packet that is
flagged because its source IP address does not match its Pi
marking in the Pi-IP filter’s database, the victim can con-
sult the database to generate a list of IP addresses that cor-
respond to the packet’s Pi mark. The victim can then de-
termine the path by simply executing traceroute and
recording the path. Although this method does not guar-
antee a unique path to the packet’s origin (there may be
multiple IP addresses that map to the same Pi mark), it
does greatly reduce the space of potential attackers.

C. Compatibility with IP Fragmentation

Placing a deterministic marking in the IP Identification
field of every packet in the network is incompatible with
the current IPv4 fragmentation mechanism (except under
very strict network assumptions such as no packet reorder-
ing or loss). Despite the fact that fragmented traffic rep-
resents between 0.25% and 0.75% of packets in the Inter-
net [12] [13], we must at least consider a mechanism to
allow Pi to coexist with fragmentation.

We offer a solution, proposed by Vern Paxson, that
routers only mark packets that will never get fragmented

and that are not fragments themselves. The latter class is
simple to identify, as these packets will have a non-zero
Fragment Offset field in their header or a more frag-
ments flag which is set. Determining which packets will
never get fragmented is more challenging. The simplest
classification is those IP packets that have the Do Not
Fragment (DF) bit set in the Flags field of the IP header.
This classification is adequate for servers with a majority
of TCP traffic – as most modern TCP implementations set
the DF bit by default [14], as specified by the Path MTU
Discovery standard in RFC 1191 [15]. During a DDoS at-
tack, a server can easily filter out packets that do not match
this classification and are thus not marked. If an attacker
intentionally does not set the DF bit to evade marking, fil-
tering out those packets at the victim will only adversely
affect 1.76% of legitimate traffic.

Unfortunately, the DF classification is inadequate for
UDP traffic, which has a much smaller percent of traf-
fic that carries the DF bit. Without the DF bit, classi-
fying packets that will never be fragmented is no longer
100% accurate. An alternative method would be to only
mark UDP traffic that is smaller than the smallest Max-
imum Transmission Unit (MTU) for common Internet
traffic links. A widely accepted value for this is 576
bytes [16], however, lower MTU links are possible and
perhaps likely, with the expected proliferation of web-
enabled phones. We show the percent of markable traffic
from a 31 day trace of packets from the Lawrence Berke-
ley Lab DMZ in Table I. In either case, the networking
community will need to agree on a specific value before
Pi can be deployed to protect UDP specific services.

Packet Classification Percent markable
TCP with DF 98.24%
UDP with DF 26.69%

UDP ≤576b or DF Set 87.12%
UDP ≤250b or DF Set 79.06%
UDP ≤100b or DF Set 64.75%

TABLE I
PERCENT OF PACKETS THAT CAN BE MARKED BY

CLASSIFICATION. AVERAGE OVER 31 DAYS OF TRAFFIC FROM

LAWRENCE BERKELEY LAB DMZ, MAY 1-31, 2003.

D. StackPi in IPv6

Although the Pi scheme has been specifically designed for
deployment in IPv4, its principal ideas are equally appli-
cable in an IPv6 environment. The IPv6 protocol does
not support en-route packet fragmentation, and thus does
not have an equivalent field to the IP Identification field
of IPv4. There are, however, two possibilities for marking
space in IPv6: in the flow identification field or in a hop-
by-hop option. The advantage of marking in the flow iden-
tification field of the header is that because the field is part
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of the standard header, router markings will not add to the
packet’s size (which might cause the packet to exceed the
MTU of an intermediate network and be dropped). The
flow identification field is 20 bits in length, which allows
more routers to include their markings in each Pi-mark. 5

Of course, this is not the purpose that the flow identifica-
tion field was meant to serve [17].

The other option is to include the Pi marking in a hop-
by-hop option inserted by the first Pi enabled router in the
path. The benefit of this approach is that the length of the
option need not be limited to 20 bits, as is the flow iden-
tification field. However, inserting such an option into the
packet may cause it to exceed the MTU of a link some-
where along the path. In either case, DDoS protection is a
critical feature that should be present at the network level,
and IPv6’s current limited deployment makes it a good
candidate for modification to include the Pi scheme.

E. Incentives for Deployment

Previous DDoS defense mechanisms do not provide a
good incentive structure to foster adoption. For example,
consider the benefits to an ISP deploying ingress filter-
ing [18]. That ISP protects other ISPs’ customers from
its own customers, as ingress filtering stops its customers
from spoofing their source IP address. Ingress filtering
does not directly benefit the customers of the ISP, yet it
introduces more complexity, higher router management
overhead, lower performance due to filtering, and poten-
tial customer problems (when some legitimate customer’s
packets get filtered out).

In contrast, the Pi scheme offers very good incentives
for deployment that encourage adoption. First of all, if
an ISP deploys Pi marking on all its routers, a customer
can immediately start using the filtering techniques we
describe in this paper to determine from where the at-
tack traffic enters its ISP’s topology. As we demonstrate
in Section IV-C, a victim can already perform filtering if
only 20% of the routers implement Pi marking. Ideally,
this creates a market pressure for ISPs to deploy Pi en-
abled routers. If ISPs want to deploy Pi, this creates an
incentive for router manufacturers to produce Pi-enabled
routers. We anticipate that the benefits of Pi will produce
these market incentives that drive deployment. The main
difference with previous techniques is that Pi deployment
immediately benefits the customers of an ISP, and helps
those customers defend against DDoS attacks.

VII. Background and Related Work

There have been several studies of the frequency and na-
ture of Internet DoS attacks [19], [20], [21], [22].

5Unlike other IP Traceback schemes, which reconstruct the IP ad-
dresses of the routers in the path to the attackers, the fact that IPv6
addresses are 128 bits instead of 32 bits is transparent to the Pi scheme.

Many approaches have been proposed for securing
against DoS and DDoS attacks. Ferguson and Senie pro-
pose to deploy network ingress filtering to limit spoofing
of the source IP address [18]. However, unless every ISP
implements this scheme, there will still be entry points
in the Internet where spoofing can occur. Also, the ad-
ditional router configuration and processing overhead to
perform this filtering is another reason why it is rarely
used. Other earlier work includes [23], [8].

Park and Lee propose a distributed packet filtering
(DPF) mechanism against IP address spoofing [24]. DPF
relies on BGP routing information to detect spoofed IP
addresses. Their approach is interesting, but will likely
suffer in accuracy unless a majority of routers implement
it. DPF would be quite easy to circumvent by an attacker,
and would benefit from the approaches we propose in this
work.

Bellovin et al. suggested adding a new type of ICMP
message for traceback [25], [26], and Mankin et al.
present an improvement to this scheme [27]. Several re-
searchers propose to embed traceback information within
the IP packet [28], [29], [30], [31], [32], [33], [34], [35],
[36]. Most of these schemes use the 16-bit IP Identifica-
tion field to hold traceback information. Routers along the
packet’s path probabilistically mark certain bits in the IP
Identification field in certain ways. While the traceback
schemes could be used to find the origins of the attacks,
they often require a huge number of packets and thus can-
not be used to filter out packets on a per packet basis. A
fundamental limitation of these IP traceback schemes is
that they cannot detect spoofed IP addresses.

Snoeren et al. propose a solution using router state to
track the path of a single packet [37], [38]. Upon receipt
of a packet, each router hashes specific, invariant fields of
the packet and stores the hash in a table. When trace-
back is needed, the victim presents its upstream router
with the hash of the packet to be traced. The routers at
each hop away from the victim then recursively query the
routers at the next hop away for the presence of the hash of
the packet in their hash tables. This mechanism requires
routers storing states and requires the victim to contact the
routers for traceback.

Ioannidis and Bellovin, and Mahajan et al. propose
Pushback, a packet filtering infrastructure leveraging
router support to filter out DDoS streams [6], [7]. The
mechanisms we propose in this paper can be used to
greatly increase the effectiveness of Pushback, as the fil-
ters can take the packet markings into account and thus
distinguish packets from various origins (increasing the
accuracy of filtering).

Sung and Xu propose an altered IP traceback approach,
where the victim tries to reconstruct the attack path but
also attempts to estimate if a new packet lies on the attack
path or not [39]. Their scheme is probabilistic and each
router either inserts an edge marking for the IP traceback
scheme or a router marking identifying the router. Un-
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fortunately, their approach requires the victim to collect
on the order of 105 attack packets to reconstruct a path,
and once the path is reconstructed, this scheme will likely
have a high false positive rate as the routers close to the
victim will all lie on some attack path and frequently mark
legitimate packets which will then get rejected.

We have recently proposed a marking scheme Pi, a Path
Identification algorithm [1]. The original Pi marking is
based on the use of the packet’s TTL field as an index into
the IP Identification field where a router should add its
marks. This method is not as lightweight as the StackPi
method. Legacy routers have a harmful affect on the origi-
nal Pi scheme because they decrement the TTL of a packet
but do not add any markings. The StackPi scheme is ro-
bust to legacy routers and even includes the write-ahead
scheme to incorporate markings for single legacy routers
in the path.

VIII. Conclusion

In this paper, we present new approaches for packet mark-
ing and filtering in the Pi DDoS defense scheme [1]. The
StackPi marking improvements, stack-based and write-
ahead marking, eliminate the marking holes generated
by legacy routers and include the markings from single
legacy routers immediately following Pi-enabled routers
in a path. We derive an equation that allows a DDoS vic-
tim to select the optimal threshold value for the Pi filter.
We also introduce a novel filter which relies on the 〈Pi,
IP〉 tuple of each packet, making it far more unlikely that
an attacker will successfully bypass the filter. With these
improvements, our evaluation shows that Pi provides mea-
surable DDoS protection, even when only 20% of routers
in the Internet participate in the marking scheme. Finally,
we discuss how Pi can be made compatible with IPv4
fragmentation, and propose ways to integrate Pi marking
into IPv6. The Pi scheme is very general and quite promis-
ing in performance. These properties promise to make Pi
a critical deterrent to today’s most common Internet at-
tacks.
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APPENDIX

OPTIMAL THRESHOLD FILTERING

We derive the optimal threshold filtering as follows.
Let vji

and pji
equal the number of packets accepted by

the victim and the total number of packets sent by entity
j, with StackPi mark i, respectively.

The acceptance ratio gap, ∆, is then:

∆ =
vU

pU

−
vA

pA

=

∑

216
−1

i=0
vUi

pU

−

∑

216
−1

i=0
vAi

pA

=

216
−1

∑

i=0

(

vUi

pU
−

vAi

pA

)

When the ratio of user traffic to attacker traffic at a par-
ticular StackPi mark is above the threshold value, then
all packets arriving with that StackPi mark are accepted.
Thus, we can introduce our threshold filtering function,
fi, which will return 1 if the user traffic ratio at StackPi
mark i is above the threshold and 0 if it is below. We can
now define the packets accepted by the victim at a partic-
ular StackPi mark in terms of the total packets arriving at
that mark:

vUi
= fi · pUi

vAi
= fi · pAi

We include these definitions in our acceptance gap
equation:

∆ =
2
16
−1

∑

i=0

(

fi · pUi

pU

−
fi · pAi

pA

)

=

216
−1

∑

i=0

fi

(

pUi

pU
−

pAi

pA

)

To maximize ∆, it is clear that we must only accept
packets with StackPi mark i where the ratio of user pack-
ets with StackPi mark i to the total number of user packets,
pUi

pU
is greater than the ratio of attack packets with StackPi

mark i to the total number of attack packets,
pAi

pA
. In terms

of our filtering function fi:

fi =

{

1 if
pUi

pU
<

pAi

pA
,

0 otherwise.


