PKI (PuBLIC KEY
INFRASTRUCTURE)

15.1 INTRODUCTION

In the early days of the Indian Territory, there were no such things as birth
certificates, You being there was certificate enough. —Will Rogers

A public key infrastructure (PKI) consists of the components necessary to securely distribute
public keys. Ideally, it consists of certificates (see §9.7.2 Certification Authorities (CAs)), a reposi-
tory for retrieving certificates, a method of revoking certificates, and a method of evaluating a chain
of certificates from public keys that are known and trusted in advance (trust anchors) to the target
name. There have been some public-key-based systems deployed that leave out components such as
revocation, or even certificates. Whether such systems are worthy of being called PKIs is a matter
for debate (and a fairly dull debate at that). In practice, many people do use public key technology
for protecting communication and don’t use a PKL Instead, they exchange public keys in email, or
download the public key from the IP address at which they assume their target is located. In theory,
if an active attacker were watching when the initial exchange occurred, the attacker could change
the public key in the message and act as a man-in-the-middle. But in practice, this mechanism is
reasonably secure.

In this chapter we assume certificate-based PKls, and focus on the generic issues as well as
the details of the standards. In subsequent chapters we discuss choices made in deployed systems,
such as S/MIME, PGP, SSL, and Lotus Notes. This chapter assumes each entity knows its own pri-
vate key. We address the particular problem of getting the private key to a human in §12.4 Strong
Password Credentials Download Protocols.

A certificate is a signed message vouching that a particular name goes with a particular public
key, as in [Alice’s public key is 829348]c,,. If Bob does not know Carol or Carol’s key, then
such a certificate will not help him gain confidence that 829348 is Alice's key. But if Bob knows
Ted’s key, then the chain

[Carol's key is 348203}y, — [Alice's public key is 829348] .,

371

372 PKI(PUBLIC KEY INFRASTRUCTURE) 15.2

would mathematically allow Bob to verify Alice’s key. However, there are several potential prob-
E.b_nﬁnnvwawgﬂ__gnd«nnﬂ&ﬁgﬂmqoag.aw.nw.é—ﬁE..ﬂ!c_ma-.ca-.n_f
Emnﬂb—wﬂ.msqzuwzEwuggigvnﬁniﬁaﬁnﬁ_mu% nnnn?..mﬁ
key. Maybe she can be bribed. E?Ewaﬂﬁwﬁaggﬁuuésgg
oanunmu_n:ﬁn_uw—.oo&nwngg.15.92393:9:5&352”“5@.

In this chapter we'll discuss issues such as these, as well the details of the certificate formats

as designed by commitiee.

15.2 SOME TERMINOLOGY

If Alice signs a certificate <o=nE=unﬂwa&.nguﬂ_r&.nﬁn>_mﬁwnﬁ§iw1~oﬂhﬁ
subject. If Alice wants to ngsgsg.aw&.sg.mgsqﬂg_ns_m .._.H
ating a chain of centificates, she is the verifier, sometimes na_._ﬂ_ the 1@53 QSEMM. A
Eug_._nruww_ﬁoiuﬁuv%.>E§En&:£!5.&!uﬁwg o
decided through some means is trusted to sign certificates. In a verifiable chain of certificates,
first certificate will have been signed by a trust anchor.

15.3 PKI TRUST MODELS

Suppose Alice wants to send an encrypted email message to Bob. She needs to securely find out
wac.a_u:w:nwn%;vﬁgg_ﬁmﬁaﬁg;ﬂmﬂwgigpﬂ_!.B__Bzﬁ
would create a legal chain from a trust anchor to the target name (“Bob" in this example).

15.3.1 Monopoly Model

nﬁmi.nﬂigoﬁg.géﬂgewﬁggnﬁgé
universities, and other organizations to be the single CA for the ia;a.aﬁnwnwanﬁ!o:nﬁd-.__.-
nnmoammo_ﬂao&oﬂ_Ez_%nuﬁngﬂﬁnwﬂ_gﬁé.mqasﬁgwﬁgﬁ.
cates from it. This is a wonderfully simple model, mathematically. This .5 n.n model favored by
organizations hoping to be the monopolist. However, there are problems with it:

e There is no one universally trusted organization.

15.3.2 PK1TRUST MODELS 373

B Qﬁaga_%ﬂuiwgsso&nnoangnﬁ& with the monopoly organi-
zation’s key, it would be infeasible to ever change that key in case it were compromised, since
Eéngﬁggggvﬂﬁnﬁoﬁmgigg.

. _ﬁgfgﬁimgﬁagﬁnaﬂﬁoggg@uoﬁs. How
would they know it was you? How EaEnmocvn-v—nSmgﬁn_wmﬂ&g%oﬁ public key?
Although gﬂ?ﬂ&ng_rsgigsﬁa@.:i:mﬁmg?g‘
%nﬁggﬁﬂnﬁﬁog&é??cﬁsﬂg

® Once enough software and hardware was deployed so that it would be difficult for the world
to switch organizations, the organization would have monopoly control, and could charge
whatever it wanted for granting certificates.

® The entire security of the world rests on that one organization never having an incompetent or
corrupt employee who might be bribed or tricked into issuing bogus certificates or divulging
the CA’s private key.

15.3.2 Monopoly plus Registration Authorities (RAs)

This model is just like §15.3.1 Eﬁiwt&n;aonﬁgnsn:mwgngoaﬁogmﬁ-
tions (known as RAs) to securely check identities and obtain and vouch for public keys. The RA
then securely communicates with the CA, perhaps by sending signed email with the information
__Eeo.__nnaE&?R:Eg.ﬁnsugggmaﬁmgnﬁsgﬂﬂm.g?g.

This model’s advantage over the §15.3.1 Monopoly Model is that it is more convenient and
won_..-n-oorﬁ.uoo:&nﬁnm.meﬁanﬁaﬁBonFnaSmQSmannﬂmnn.—mcemqﬂ.E_snog
disadvantages of the monopoly model apply.

RAs can be added to any of the models we'll talk about. Some people believe that it is better
for their organization to run an RA and leave the operation of the CA to an organization more
expert at what it takes to be a CA. However, in practice, the CA just rubber-stamps whalever infor-
mation is verified by the RAs, _.Wﬁneggsgﬁngqgggguﬂg‘
ing the proper mapping of name to key. The CA might be better able to provide a tamper-proof
audit trail of certificates it has signed.

15.3.3 Delegated CAs

In this model the trust anchor CA can issue certificates to other CAs, vouching for their keys and
gﬂnﬂgﬁnﬁﬁiﬁmﬁﬁ?.cﬁaggggggoﬁaﬁnﬁﬁ
gated CAs instead of having to go to the trust anchor CA.

374 PKI (PusLic KEY INFRASTRUCTURE) 15.3.4

The difference between a delegated CA and an RA is whether Alice sees a chain of certifi-
cates from a trust anchor to Bob’s name, or sees a single centificate. Assuming a monopoly trust
anchor, this model has security and operational properties similar to §15.3.2 Monopely plus Regis-
tration Authorities (RAs). Chains of certificates through delegated CAs can be incorporated into
any of the models we'll discuss.

15.3.4 Oligarchy

This is the model commonly used in browsers. In this model, instead of having products preconfig-
ured with a single key, the products come configured with many trust anchors, and a certificate
issued by any one of them is accepted. Usually in such a model it is possible for the user to examine
and edit the list of trust anchors, adding or deleting trust anchors. It has the advantage over the
monopoly models that the organizations chosen as trust anchors will be in competition with each
other, so the world might be spared monopoly pricing. However it is likely to be even less secure
than the monopoly model:

e In the monopoly model, if the single organization ever has a corrupt or incompetent
employee, the entire security of the world is at risk. In the oligarchy model, though, any of
the trust anchor organizations getting compromised will put the security of the world at risk.
It is of course far more likely that at least one of n organizations will wind up with a misused
key when n is bigger than 1.

* The trust anchor organizations are trusted by the product vendor, not by the user. Why should
the vendor decide whom the user should trust? Also, how does the vendor choose which orga-
nizations to trust? You'd like to assume that there is some elaborate procedure by which the
vendor evaluates the trustworthiness of the organization before adding its key to the trust
anchor set. The policy is at the discretion of the vendor, and some vendors have chosen o
include any organization willing to pay for the privilege of being included in the preconfig-
ured trust anchor set.

e It might be easy to trick a naive user into adding a bogus trust anchor into the set. This
depends on the implementation. One could imagine an implementation that, upon seeing a
certificate signed by an organization that wasn't in the set, would show the user a pop-up box
saying, Warning. This was signed by an unknown CA. Would you like to accept the certificate
anyway? (The user will almost cenainly say OK.) Would you like to always accept this certif-
icate without being asked in the future? (OK.) Would you like to always accept certificates
Sfrom the CA that issued that certificate? (OK.) Would you like to always accept certificates

" from any CA? (OK.) Since you're willing to trust anyone for anything, would you like me to
make random edits to the files on your hard drive without bothering you with a pop-up box?

nﬂ

B

15.3.5
PKI TRusT MODELS 375

HHU.QSE.ﬁEthSSnrotau&o».Egna:&ngmwoﬁcagﬂme and it would
® an interesting psychology exercise Sﬁgggg?gimusé

ga«?&@ﬂ.:eg#a@ﬁnﬁgﬁ imagi

; ; trustworthy imaginable si). But this
n&uﬁg:wngasﬂﬂ&_wngszgﬂﬂgrmﬁgﬁg
signed it (say Sleazelnc) put the string Mother Teresa into the ISSUER NAME field

. cwﬂ.as”:_uo_nﬂn;ga Ennoaoﬂiongngg‘_qgr-ﬁggénﬁcs

15.3.5 Anarchy Model

”_.__Ewu.n”ﬂbn_n_E&S.awmnﬁ.:ﬁammgﬁmv_nnﬁnonmmﬁmawsnﬁ.ggnoq
Eu.-...ﬂnm_.mc _ﬁwuomvc.ov_o-nEﬂnﬁegiéggngﬁmnﬁ_&snaw
Eﬁa._.. t (the message digest of the n:&:n key), and sent him email containing a public key with

Egsgmﬂcnii large if it were deployed on Internet scale. If every user
&Eﬁn.. .Rw.ggsngégn&gmgoq%ﬁ._.g&ni
gsggu.aﬁguaSnmﬁﬁg.

376 PKI (PuBLIC KEY INFRASTRUCTURE)

* Assuming somehow Alice could piece together a chain from one of her trust anchors to the
name Bob, how would she know whether to trust the chain? So, Carol (her trust anchor)
vouches for Ted’s key. Ted vouches for Gail's key. Gail vouches for Ken's key. Ken vouches
for Bob's key. Are all these individuals trustworthy?

As long as this model is used within a small community where all the users are trustworthy, it
will work, but on the Intemet scale, when there are individuals who will purposely add bogus certif-
icates, it would be impossible to know whether to trust a path. Some people have suggested that if
you can build multiple chains to the name that you can be more assured of the trustworthiness. But
once someone decides to add bogus certificates, he can create arbitrary numbers of fictitious identi-
ties and arbitrary numbers of certificates signed by those entities. So sheer numbers will not be any
assurance of trustworthiness.

15.3.6 Name Constraints

The concept of name constraints is that the trustworthiness of a CA is not a binary value where a
CA would either be completely untrusted or trusted for everything. Instead, a CA should only be
trusted for certifying some subset of the users. For instance, MIT's CA, most likely managed by
playful undergraduates, should be trusted for certifying name/key binding of MIT students, but not
for centifying the key of, say, president @ whitehouse.gov.

Assuming users have hierarchical names, such as radia @ alum.mit.edu, it is easy to specify
a policy for trusting the MIT CA. The MIT CA should be trusted for certifying names in the
namespace under mit.edu, but not names of the form foo @ harvard.edu. Although I, might be a
Sun employee, you would not trust the Sun CA to certify the name radia @ alum.mit.edu. But you
would trust the Sun CA to certify the name radia.periman@ sun.com. The name by which you
know someone determines whom you trust to certify that name, Users might have multiple names.
The PKI doesn’t care. Each name is a separate PKI entity. They might use the same public key, in
which case someone might hippen to notice that radia@alum.mitedu and radia.per-
Iman @ sun.com are most likely the same individual because the two entities have the same public

key. Or I, might use different keys for my, different identities.

15.3.7 Top-Down with Name Constraints

This model is similar to the monopoly model in that everyone must be configured with a pre-
ordained, never changing root key, and that root CA delegates to other CAs. However, the delegated
CAs are only allowed to issue certificates for their portions of the namespace. In this model it is
easy to find the path to a name (just follow the namespace from the root down). But it has the other

15.3.6 A — 15.3.8

PKI TRusT MODELS 377

problems of the monopoly model, in that e
S " veryone has to agree upon a root organizati
organization and its key would be prohibitively expensive to ever replace. SO SN

15.3.8 Bottom-Up with Name Constraints

tify .edu. In addition to up-links (where the child certifies
I ; i the parent) and down-links (where
E%?nw__nu..g_sﬁ5-:@&&.5_.«3;3&:5:_&;53&8”“
Eagé_mggonnxcn.ﬂ..mﬂmmﬁa 15-1.) The certificate by which
Egngi_ogﬁrﬂg&wgg-g -
' Note __E. with links in both directions (from child to parent and from parent to child), it is
g.eﬁ?ﬂﬁ@ﬁ&néémmcagwgnﬂgonﬁﬁmnsgﬁwoﬁ.g

anchor’s public key.

g&miﬂggugsgﬁwnﬁ?agg?&ﬂaﬁg delimited
Na&%g!ﬂngan&: e n._o“naaa_nw.. hﬁ?&:&aﬁn&ii&. ._.amunnEESuBﬂarMﬁewcﬁ
o e e f e s e A0 2 ko
. a suitable cross-centificate, to
”Egﬁ%mﬁﬂsggaﬁgisnﬁﬁﬁiﬁnm%hﬂ-
<0 ; getto ._@B.Bﬂﬂggomuandﬂgqgnsogao
noanagnannﬂﬂaﬁnaonngn_ns_gw_ﬂ.giz&mmnﬁamaomgévoagu_

Eg&.ﬁgﬁhﬁ_?:gg?gs:ﬂgg ;
.:H:_.rm:a._w%ﬁ_ggnﬂﬁgaiusgngigsg
ginﬁfﬁﬂkﬂgg_ggaﬁaﬂ.ﬁﬁn_éaﬁs?ﬁﬁg
Sﬁaiv.munausao__gnaozcﬂng-_?rﬁzﬁa you follow down-links from there. With
S.Qa&g?ﬁ&n?qsﬂﬁgna»__ggiz_?Eno.a!an&a&. :
B?mﬁﬂééﬂﬁg-mi.?ﬁigaﬂigg.a-n&sﬂ&?ﬂw
Ebﬁ”ggﬂgémﬁ!ﬁﬂ_?_é to find the key of user A/C7Y, and
__Saro_.cﬂa—ﬁwu.arﬂ.gm::n:on.monrogmuﬁo&an_aqgaa:oqganoa
Assk:c..ﬂaam.onmmnanm.m?ﬂ&ﬂuRnaoi.ﬁﬂnoacv.a_.n._uednisvgn_aoruqﬂ

378 PKI(PuBLIC KEY INFRASTRUCTURE) 15.3.8

>a\>/tn\...lll|\|lllr\v\ /
£ IR e e

A/B/X AB/K B/Y/ZIAIC

Figure 15-1. Bottom-Up PKI Model

cross-certificates. Since there are none, she goes 1o its parent (A), and at that point she has reached
the least common ancestor, so she can go down to the target name.

Now suppose A/C/Y wants to find the key of B/Y/Z/C, She'd go up to her parent (A/C), and
then follow the cross link to B/Y/Z, and then go down to B/Y/Z/C.

But there is no path back from B/Y/Z/C to A/C/Y since the PKI does not go up to a common
ancestor of those two names, and there is no cross link from an ancestor of B/Y/Z/C to an ancestor
of A/C/Y. It might look as though B/Y/Z/C could go up one level to B/Y/Z, and then down to
B/Y/Z/A from which there is a cross link to A/C. In order to be able to find such a path, the search
rules would be very complex, since each link would have to be followed in case it led to a cross link
to the target name. But a thornier issue is whether (o trust any intermediary other than the CAs up to
a common ancestor. If the trust rules are clear, e.g., only CAs along the name path are trusted, then
it's easy to find and blame the compromised CA, and it’s also easy to know what damage can be
caused by a given CA's being compromised. If you trust any CA for anything it won’t be secure. If
you have any rule between those two extremes, the security becomes very complicated to config-
ure.
If it were important for there to be a path from B/Y/Z/C to A/C/Y, then B/Y/Z/C or one of its
parents would create a cross link to A, A/C, or A/C/Y. Eventually organizations would tire of main-
taining many cross-links. At that point there arises a business opportunity to provide inter-organiza-
tion connectivity (which we'll call root service), but in competition with other organizations
providing root service. An organization that offers root service would advertise its rates, how much
liability it is willing to assume, would explain its policies and procedures for how carefully it
checks information before issuing a certificate, and so forth.

We like this model. It was originally proposed for Digital’s security architecture in the late
1980s. With the trust anchor being the uppermost key in one’s own organization, it is similar to the
PKI for Lotus Notes, and the bridge CA model used for the Federal PKI. The bridge CA is simply
a CA that certifies and is certified by the uppermost CA in each organization. The advantages of
this model are:

e [tis easy to find out if a path exists.

15.3.8
PKI TRUST MODELS 379

ESE?EEWSBRE people understand, i an_n_.. flexible

simple that it might actually work. g e g En
. 15&58%!&?553&3@3?3&3?&&95?3

reason ?wn§n>mcqﬂag§igg-cia_no_.ﬁngzﬁ

world-encompassing PKI to get put into befi i i
st o iy place ore you can use PKI in your own organiza-

Ol any G-P outside of your own Organization ﬁ__.—.— not allow E-!On.-ﬂ (5] -ﬂ.—.ﬂﬂhgﬂhﬂﬂ one of)
_ 1 of you

. gﬁéﬁmmmgwgﬁignﬁguﬁunainsugﬂom&:m
Sgﬁomgmmmh_wsgsganﬁngngg.—_.-_.oo;nqion.mgmns
gﬂﬂ»&.&ﬁ:ﬁ&?sﬁéﬂ>&£&.&na§w2§.g
%Mﬁjsﬂgnﬂu_ﬂwﬂnmﬂﬁwgsﬁnggﬁﬁﬁaﬂs8:5.

ning the new key, automatically all the users in the CA's subtree i
ot in the CA's su are using the

. Zoﬁwsaﬂ_manwo_maaﬂ_:ﬂ.n_ﬂnns:_ﬂa.ﬁh: i istic pri i
il ok charging monopolistic prices. Competi-

¢ Configuration is very easy. At the least you need i i
EQEQE that is all wgzsﬁaw”ﬂ.&ﬂnwéﬁnon”qﬂﬂﬂ%ﬂwnga“nﬁﬂn?ﬂﬁhm
.ﬁi@«?ﬂoﬂuxﬂ.%ﬂ:gggiﬁn?ggugglﬂﬂhﬁ%
Mn obtaining your private key, see §12.4 hgginﬂn.n:a&ag&waﬁﬂsﬁ
oﬁmu_swﬂaﬂﬁm:osgaﬁnagnﬁwﬂ.nﬁwsg?._vv..._.acawuiu our
oggwsi:_:ﬂnsmsgnﬁugﬁsgggg. ’

:oigcﬁgcag&qmgun izati
; . . organization, say finance.east, .com,
Aa_u_ow.u PKI-based security using this model. When someone, say Joe, is hired into .._”.QM_._M._Eun-

380 PKI(PusLic KEY INFRASTRUCTURE)

Joe may have a life other than as an employee. He might get another certificate (and name
and virtual identity) from his ISP for email and from his credit card company for securely ordering
things. He could decide which identity to use for any particular activity. These identities might or
might not use the same public key. There may be no way of knowing when two different entities in
the PKI namespace happen to map to the same carbon-based life form.

15.3.9 Relative Names

Relative names is another useful concept found in DASS/SPX, useful because if an entire subtree of
the namespace moves, most of the certificates do not need to be reissued. This is done by having
certificates carry relative names rather than absolute names. That means that instead of putting in
the entire name joe.finance.east.bigorg.com, the down-link certificate (the one from parent to
child) would carry the name joe. Now, in case the company reorganizes, so that finance is moved
up under bigorg.com (so it is now finance.bigorg.com), only the new certificates between big-
org.com and finance.bigorg.com need to be issued. All the certificates for the subtree under finance
would remain the same. .

With relative names, a child certificate would carry only the component which is the exten-
sion of the parent’s name. A parent certificate would not carry a name at all, but instead say this is
my parent. There is an interesting issue with what to put into a cross-certificate. There are two pos-
sibilities. One possibility is to put an absolute name into a cross-certificate. That way if the issuer’s
portion of the namespace gets moved, but the subject’s portion hasn't changed, then the certificate
will still be valid. The other possibility is to put in a relative name (like ../../B/C), in which case the
certificate would remain valid if a branch of the namespace containing both names were moved as a
whole (see Homework Problem 2).

Although relative names have some attractive properties, there are some very complex issues,
such as what name (o put into a cross-link and how an entity leams its own name. Since nothing
with relative names has been deployed. it would be an interesting area to study. SDSI and SPKI
(RFC 2693 SPKI Certificate Theory) present a design that uses a form of relative names.

15.3.10 Name Constraints in Certificates

The certificate format adopted by PKIX (see §15.6 PKIX and X.509) has a field called NAME CON-
STRAINTS, which allows the issuer to specify what names the subject is trusted to certify. The field
can contain allowed names and disallowed names. PKIX certificates can be used to build any of the
models we've mentioned. To build the bottom-up model, a child or cross-certificate would specify
that the subject was only allowed to certify names in the subtree below the subject’s name. A parent
certificate would contain the constraint any names except myself and below.

15.3.9 7 15.3.11

PKI TRusT MODELS 381

We'd still recommend i

et ; mostly building the bottom-up model, but -
flexibility that the strict up* - cross once — down* algorithm might not whﬂa R e
: - For instance, an orga-

T . . . -
a.:um_&o _.E.M_R om._%rnns things, it is m.o&..__u_n. assuming two organizations are using OIDs for
enough policies that they are willing to consider them equivalent, the cross-certificate from

382 PKI(PusLIC KEY INFRASTRUCTURE) 154

one organization to the other can contain mapping rules such as OIDI=0ID2. That means that if a
chain which must contain OID1 in the first organization crosses into the other organization’s PKI,
all subsequent certificates in the chain must contain OID2.

The way policies are processed in a chain is that the application specifies what policy OIDs,
if any, it wants to see in centificates. For example, the application might specify OIDI or OID2 or
OID3. A chain must have the same OID in every link. So for instance, even if the application
doesn't care whether it's OID1 or 2 or 3, if the first certificate in the chain contains only OID2 and
the next certificate in the chain contains only OID3, then the chain is not valid. If the first certificate
contains OID] and OID2 and the next one contains OID2 and OID3, then the chain so far is valid,
but every subsequent certificate in the chain must now contain OID2, since that was the only
acceptable OID that was contained in both of the first two certificates.

If policy mapping happens in the middle of the chain, and OID2 is declared equivalent to
OIDS3, then (assuming OID2 needed to be in all the remaining certificates in the chain) OIDS must
appear in all the remaining certificates in the chain.

These rules are somewhat arbitrary, and whether people wind up using the PKIX policies in
any useful way remains to be seen.

15.4 REVOCATION

If someone realizes their key has been stolen, or if someone gets fired from an organization, it is
important to be able to revoke their certificate. Cerntificates typically have expiration dates in them,
but since it is a lot of trouble to issue a certificate (especially if the CA is off-line), the validity time
is typically months, too long to wait if it needs to be revoked.

This is similar to what happens with credit cards. They, too, have an expiration date. They are
usually issued to be good for a year or more. However, if one is stolen, it is important to be able to
revoke its validity quickly. Originally, the credit card companies published books of bad credit card
numbers, and distributed these books to all the merchants. Before accepting the card, the merchant
would check to make sure the credit card number wasn't in the book. This mechanism is similar to
a CRL (certificate revocation list) mechanism.

Today the usual mechanism for credit cards is that for each transaction the merchant calls
someplace that has access to a database of invalid credit card numbers (or valid credit card num-
bers), and the merchant is told whether the credit card is valid (and if there is sufficient credit limit

for the purchase). This is similar to an OLRS (on-line revocation service) mechanism. The PKIX
standard protocol for requesting revocation status of a certificate is called OCSP (on-line certificate
status protocol), and is documented in RFC 2560,

W I54.1
3 REvocarion 383

384 PKI (PuBLiC KEY INFRASTRUCTURE) 154.1.2

CRLs periodically obviates the need to issue full CRLs periodically. Instead one can issue a full
CRL in place of a delta CRL when the delta CRL gets sufficiently large.

15.4.1.2 First Valid Certificate

This is an idea we, , designed for making the CRL small again after it has become too large. This
scheme also allows certificates to not have a predetermined expiration time when issued. Instead,
they are only marked with a serial number, which increases every time a certificate is issued (or the
issue time could be used instead of a serial number). Our version of a CRL would have one addi-
tional field that is not included in X.509. The CRL would contain a FIRST VALID CERTIFICATE field.
Any certificates with lower serial numbers (or issue times) are invalid.

Certificates in our scheme would have no predetermined expiration time. As long as the CRL
.snnEnh_,u_nmmNnn—namm.!E.oihaﬂn!_wgg.:w_onﬁmmknnﬁawmn&uh
too large, the company issues a memo warning everyone with certificate serial numbers less than
some number n that they'll need new certificates by, say, a week from the date of the memo. The
number n might be the next-to-be-issued certificate serial number, or it could be some earlier one.
The number n is chosen so that few of the serial numbers in the current CRL are less than a.
Revoked certificates with serial numbers greater than n must continue to appear in the new CRL,
while valid certificates with numbers greater than n do not have to be reissued. Some time later, say
two weeks after the memo is sent, the CA issues a new CRL with n in the FIRST VALID CERTIFICATE
field. Affected users (those with serial numbers less than n) who ignored the memo will thenceforth
not be able to access the network until they get new certificates, since their centificates are now
There are cases when even with this scheme it might be reasonable to have expiration times in
certificates. For example, at a university, students might be given certificates for use of the system
on a per-semester basis, with a certificate that expires afier the semester. Upon paying tuition for
the next semester, the student is given a new certificate. But even in those cases, it may still be rea-
sonable to combine expiration times in some certificates with our scheme, since our scheme would
allow an emergency mass-revocation of certificates.

15.4.2 OLRS Schemes

An OLRS (on-line revocation server) is a system that can be queried over the net about the revoca-
tion status of individual certificates. If Alice is using service Bob, then Bob is the verifier (the one
making sure Alice's certificate is valid). The design most people envision is that the server Bob
queries the OLRS through some authenticated communication.

You might think that introducing an on-line server into a PKI eliminates an important security
advantage of public keys, because you now have an on-line trusted service. But the OLRS is not as

REvocation 385

AM on June 3 Alice’s certificate was not revoked. Assumi

OLRS. Alice would present two certificates to Bob: her
O?Eﬁnoﬂmmsﬁoqasgong&ugm

stamped within the last hour, If he complains it isn’t suffici

one.

Alice can proactively refresh her certifica i
. te, knowin
15, say, less than an hour old. Then the round-trip queryin,
the time of a transaction. i

O;maﬁnﬂgwonnﬁ:_ﬁﬁgacow&‘

15.4.3 Good-lists vs. Bad-lists

scheme, since it keeps track of the bad certificates,

There are two interesting issues with good-lists:

. d.nwoon.:u-:__._ﬁw.ownn_ﬁ_.._ﬁwﬂgsng,
s0 performance might be worse than with a bad-list.

An OLRS .E.WEWE..B&):S&E:uﬁaanusmgsaorxmgawnﬁﬂa\u

ng Alice will be visiting many resources,

this saves the OLRS the work of talkin i i
£ to multiple verifiers, saves the verifier the i
the OLRS, and saves the network from the bandwidth used by having multip il

. le verifiers query the
long-lived certificate obtained from the

Bob can decide how quick] i
. Y revocation should take effect. If i
place within, say, one hour, then he can insist that Alice’s ga-ﬁcﬁ“ﬂhﬂnﬂﬂhﬁ&n?ﬂ”n

g«ﬁﬂr&oﬂ&ﬁﬂu@uﬁuui

mgaggngﬁgﬁﬁu_
of the OLRS does not need 1o be done at

E : : . :
. wo“ﬂ.. n-“..—n. Bob (instead of Alice) querying the OLRS, it is possible to do caching and refresh-
’ gir&&nguﬁg_ocﬁauagagiwaﬁrﬂs:.n

ﬂs&m&pamw&:sngn.nn%rs:_oﬁ i i ficates
tain all the serial numbers of bad certi
OLRS would have n&gcmgr&naig This sort of scheme %ﬂ“.sﬂ 8.”...”“.._”

Suppose instead that the CRL contains a I
. st of all the valid certificates {and not j i
pgg.gnEangnﬁgggv.ggggmﬂﬁﬁﬁ
g.gzgaﬂg?uﬁ_ﬁnqwﬁgﬁa.

list, and might change more frequently,

386 PKI (PUBLIC KEY INFRASTRUCTURE) 15.5

* An organization might not want to make the list of its valid certificates public. This is easily
answered by having the published good-list contain only hashes of valid certificates, rather
than any other identifying information.

Note that usually the good-list or bad-list, especially if publicly readable, will contain only
serial numbers and hashes of the certificates rather than any other identifiable information. Then the
only information divulged is the number of valid certificates (in the good-list case) or invalid certif-
icates (in the bad-list case). There is no reason to believe that the count of good certificates is more
security sensitive than the count of bad certificates.

The X.509 standard says it is not permitted to issue two certificates with the same serial num-
ber, and that all certificates issued must be logged. But we can’t assume that a bad guy would be
hindered from issuing bogus, unaudited certificates just because it would violate the specification!

15.5 DIRECTORIES AND PKI

A PKI can be facilitated by a distributed hierarchical database indexed by a hierarchical name,
where associated with each name is a repository of information for that name. We call this system a
directory. Each name (e.g., radia.east.sun.com) represents a node in the tree which is a record
that stores information about that name, such as its IP address, or the certificates it has signed, or
the certificates other principals have signed certifying its key. Each record could in theory be stored
on a different machine or set of machines. To go up or down (find the parent record or a child
record), the directory should keep the information necessary to find the location of the parent or
child record.

One widely deployed directory is DNS. It uses names such as radia.east.sun.com. The
Internet works because DNS is pretty much universally deployed.

Another directory standard is X.500, along with languages for querying it such as LDAP
(RFC 2251). The X.500 proponents tend to scoff at DNS as being merely a “lookup service” and
not a directory, since they envision the main purpose of a directory to be to answer complex queries,
such as find all things that have the attribute *hair=red’. With DNS, you start with a specific name
and look up stored attributes for that name. For many applications, especially automated ones, fast
lookup based on a name is the most important thing. The Internet had gotten along just fine without
an X.500-type directory, and it would not work at all today without DNS, because although there
are some X.500 directories deployed, there is not a globally connected X.500 directory that you can
navigate to look up information about all names, as there is with DNS.

DNS has captured the low end of functionality where efficiency is needed. It provides lookup
by name and nothing else. For further functionality, there are web search engines that are much

a g?u&t&uux.uoc!nnﬁn!n tensivel
a directory like X.500 has a viable niche. B
5

g wdi

DIRECTORIES AND PKT 387

“.< most deployed PKIs do not use directories, Here are some ways to build a PKI without

But it’s much more convenient and flexible
_g.mn.ﬂd: i . .
gugnﬁgig_ggaanﬁnu%m“w For instance, it allows Alice 1o

15.5.1 Store Certificates with Subject or Issuer?
Assuming there is a | i ieving if
. 2__“: -_. M””_.W :H.HHR a,x. retrieving information associated with each hierarchical
name, .__._aﬂ_._ﬁ - certificates be stored? If Carol signs a certificate for Aljce’
. the ce nuﬁnac_n_unmsaﬂ:nnﬁa_.maoﬂn.ngon.uga QFEFHMX o
name/key, i spec-

Eﬂ:ﬁwaﬁ_v:ﬁ&_auﬂ ject” iti :
i » Eﬁngg_ﬁ.agsﬁ&zgwgfnﬁ

388 PKI (PuBLiC KEY INFRASTRUCTURE) 15.5.2

If a principal knows its key has been compromised, it should notify everyone that has certi-
fied its key. If the certificates are stored in the subjects’ records, then the subject knows everyone

that has certified its key. It has to notify all the issuers of all the certificates stored in its record.

But if certificates are instead stored in the issuer’s record, then the subject does not necessar-
ily know who needs to be notified. Obviously its children and its parent would need to be notified.
But it does not necessarily know which principals have signed cross-certificates. There are various
solutions to this:

e Make it the responsibility of the issuer to check the validity of the key periodically. This
might be done by checking a URL at which the subject promises to advertise key changes, or
by finding in the PKI some other certificate chain to the subject, and checking with the sub-
ject if the key found is different from the one in the cross-certificate, or periodically querying
the subject about its key.

= Have the ability for the issuer to request that the subject notify the issuer in the case of a key
compromise. This would take less storage than having the issuer store the certificate in the
subject’s record. And there is no reason for this information to be stored in the subject’s
record; rather, it can just be kept in the subject’s private storage until needed.

There is one other important reason for storing the certificate in the issuer’s record rather than
the subject’s. Except for the top-down model, it makes more sense to create a path from a trust
anchor to the target name, and this is difficult to do if the certificate is stored in the subject’s record.

This is discussed in the next section.

15.5.2 Finding Certificate Chains

To securely know Alice's public key, Bob will need to find a path from one of Bob's trust anchors to
Alice. This can be done by starting with Alice and working towards the trust anchors, or vice versa.
PKIX shows its bias by referring to starting with Alice as building in the forward direction, while
building from a trust anchor is referred to as building in reverse.

Building “forward™ does not work as well if name constraints or policies are used. Suppose
there was a fairly rich mesh of cross-certificates, but with name constraints used as specified in
§15.3.10 Name Constraints in Certificates. If chains are built from the trust anchor, the name con-
straint in the certificate can tell you whether it is worth following that link in the chain. If you are
trying to build a chain to a/b/c/d, and the name constraint does not include that name, then there is
no need to see where that certificate might lead. If, however, you attempt to build the chain from the
target, the name constraint will not help you eliminate chains that don't originate with one of your

trust anchors.

15.6
PKIX AND X.509 389

ing PKIs will be based u Despite i A2k
2 pon. Despite its awkwardness, it is not totall

to implement products with i i i tally unusable. We, , both manage

tion below, . but we Bope you's forgive us poking a little fun at it in our descrip-

The i i

wmﬂ&w.cgn consists of OIDs (see section §15.6.2 OIDs) for each of the hame component
_.Qvnn. » YU, ete.). Compared to OIDs, the OU= syntax is human-friendly, There i dard
or display of X.500 names—different applications display them &n.ﬂ.n.&ww. kg

390 PKI (PuBLIC KEY INFRASTRUCTURE) 15.6.2

radia @ alum.mit.edu with an X.500 name? Older implementations mandated that the X.500 name
contain a newly invented component email=radia @ alum.mit.edu (displayed differently by differ-
ent applications). All the X.500 name components other than email would be ignored, though they
were available for the user to examine if she so chose. The standard later specified that you should
put the email name into the SUBIECTALTNAME field in the certificate.

SSL had the same problem since it uses X.509 certificates. URLs contain DNS names, not
X.500 names. When someone visits the site www.sun.com, and the server presents a certificate
that contains an X.500 name, how can this be at all useful to reassure the user Alice that the site she
is talking to is really what she expects it to be? Some browser implementations ignored the name
entirely, but still made sure the certificate was properly signed. So if Alice mistakenly contacted
snakeoil.com instead of her broker, the site would present a certificate with an X.500 name,
Alice’s browser would happily do the math and decide it was properly signed, and reassure Alice
that everything was secure! It certainly isn't difficult to get a certificate.

A more common (and secure) work-around is to demand that the CN portion of the X.500
name be the DNS name.

Eventually X.509 added the ability to have altemate names. PKIX allows end entities (non-
CAs) not to have X.500 names, but CAs still must have X.500 names even if they also have a DNS
name in the SUBJECTALTNAME field in the certificate.

There is no widely deployed X.500 directory. There is a widely deployed directory for Inter-
net names—DNS. DNS may be just a “lookup service™ and not a “true directory™ according to the
X.500 proponents” definition. But frankly, when we want to be able to look up attributes of a name,
such as its IP address, its certificate, cross-certificates it has signed, etc., the fancy X.500 system
doesn’t let us do that because there isn't a widely deployed set of X.500 directory servers with
referrals for name resolution. To be fair, certificates are not posted in DNS today, either. Given that
there is no way to look up certificates in directories today, strategies in deployed systems today
include emailing certificates (as in S/MIME) or sending them as part of the exchange (as in
SSL/TLS, and IPsec). One place where certificates are posted today is in LDAP directories serving
closed user communities (e.g., within a company).

15.6.2 OIDs

An OID (object identifier) is a hierarchically assigned value consisting of a sequence of numbers
separated by periods, used in ASN.1. It is a way of obtaining unique numbers for things without
having any central administration hand out values. In IETF, the IANA (Internet Assigned Numbers
Authority) assigns numbers, and they used to periodically publish an RFC titled Assigned Numbers
which listed all the numbers that were assigned for parameter values in various protocols. For
instance, in the PROTOCOL field in [P, the value 6 means TCP, 50 means ESP, and 51 means AH.

X.509 anp PKIX CERTIFICATES ~ 39]

?dmk_u_b.go.:wgm;.._h.qm. As you see, OIDs can get quite large
gnﬂguﬁg oﬁnmgguﬁgﬂg_csasigg.gnﬂrﬂ
ggg@ﬁenngosassngg.mﬁg in the PEM az._a»“._

15.7 X.509 anNDp PKIX CERTIFICATES

An X.509 centificate contains the following information:

. g_g.gﬁggwgggﬂm i i
sion 2 for which the code is 1, and version 3 for H”-n.—.nac“”.“n“”.”nmi#.o__ 2t

.. -
MMMMMHM?EQ. >= integer that, zwmnnaq with the issuing CA’s name, uniquely identifies this
S Eﬁzn._“n 1t's illegal according to the SPec to issue two certificates with the same R_..u._

. but g..ggﬁu._amﬁﬁnﬁ 4
: CA j i i
case it would not, of course, uniquely identify the certificate -m P ARGl

392 PKI (PuBLiC KEY INFRASTRUCTURE)

15.7

® SIGNATURE. Deceptively named, this specifies the algorithm used to compute the signature on

this centificate. It consists of a subfield identifying the algorithm followed by optional param-

eters for the algorithm.

* [SSUER. The X.500 name of the issuing CA.

« vALIDITY. This contains two subfields, the time the certificate becomes valid, and the last

time for which it is valid.

e SUBJECT. The X.500 name of the entity whose key is being certified. This field is mandatory

in X.509 but PKIX manages to make it optional, while still being conformant with X.509, by

saying that it is allowed to be an empty sequence, which is kind of like a null string but in

ASN.1 it takes two octets to specify. In PKIX it is permitted to utilize the optional

SUBJECTALTNAME extension to name things according to the way that Internet applications

would want to name things (such as using a DNS name).

» suBIECTPUBLICKEYINFO. This contains two subfields, an algorithm identifer (itself contain-

ing two subfields, one identifying the algorithm and the other providing optional parameters

for it), and the subject’s public key.

* 1SSUERUNIQUEIDENTIFIER. Optional (permitted only in version 2 and version 3, but depre-

cated (i.e., recommended against being used) in PKIX). Uniquely identifies the issuer of this

certificate.

e SUBJECTUNIQUEIDENTIFIER. Optional (permitted only in version 2 and version 3, but depre-
cated (i.e., recommended against being used) in PKIX). Uniquely identifies the subject of this
certificate.

The purpose of the optional UNIQUEIDENTIFIER fields is to eliminate the possibility of confusion

when a name is reused. For example, John Smith might leave an organization and then the orga-

nization might hire another John Smith, assigning the new John Smith the same X500 name.

The author of that poem is either Homer or, if not Homer, somebody else of
the same name. —Aldous Huxley

® ALGORITHMIDENTIFIER. This repeats the SIGNATURE field. This ficld is completely and utterly
redundant and didn’t need to be there. PKIX renamed this field SIGNATUREALGORITHM rather
than removing it.

® ENCRYPTED. Perhaps it would have been better to call this field signature. But that name was
already taken. Anyway, this field contains the signature on all but the last of the above fields.
PKIX boldly renamed it to SIGNATUREVALUE.

X.509 AND PKIX CERTIFICATES 393

4+ AUTHORITY IDENTIFIER. This id tifs
cate. _uuun_“”“.nmma that it mau__u Id be 5«5&2 of the CA that signed this centifi-

. an 3 §
uniquely identifies the key. umber that, together with the CA's name,

" e
ﬁgg{g .d..m. i5 a sequence .am OIDs, and, optionally, qualifier fields.
g«:ﬁnﬁﬂuﬂ&ﬂ@.ﬁ?ﬁ?ﬁi qualifier for a policy OID might be
Egugmﬁanhﬂgoﬂmﬁa u”.n_&nn.n <

. ang an entity is something oth
CA) would be something like how carefully ident iy
. hing Iy identity was checked bef: the certi
M”EE..EH«E.Q:E.O)E? would be which vonﬁﬁan_chang
trusts the subject CA to assert. e

394 PKI (PuBLiC KEY INFRASTRUCTURE) IS

+ POLICYMAPPINGS. This is a sequence of pairs of OIDs, mapping from a policy in the
issuer’s domain to a policy in the subject’s domain, assuming that the policies are simi-
lar but just defined by different OIDs.

+ SUBIECTALTNAME. This is a sequence of names. This is the way to actually use the
names that Internet applications might use, such as DNS names.

+ ISSUERALTNAME. This is encoded like SUBJECTALTNAME.

¢ SUBJECTDIRECTORYATTRIBUTES. This allows specifying attributes, such as date of
birth or security clearance, of the subject.

¢ BASICCONSTRAINTS. This gives permission to the subject to issue more cenificates.
There are two constraints listed. One is a flag indicating whether the subject is allowed
to be a CA (duplicating the KEYUSAGE flag that indicates the same thing), and the other
indicates the length of chain allowed following the subject (where 0 means one more
certificate is allowed in the chain).

¢ NAMECONSTRAINTS, This indicates the names for which the subject is trusted to issue
certificates. Permitted as well as excluded subtrees can be specified.

¢ POLICYCONSTRAINTS. This extension allows the issuer 1o specify that, after n more cer-
tificates in the chain, policy mapping is no longer permitted. It also allows the issuer to
specify that policy OIDs must appear in subsequent certificates, even if the application
verifying the chain doesn’t care. One defined policy is any policy, which means the CA
doesn’t care about policies. But if a previous CA wants all subsequent CAs to not only
put in policies, but to not weasel out of it by using the special any policy, then it can use
the INHIBITANYPOLICY extension (see below).

+ EXTENDEDKEYUSAGE. These are additional key usages, defined by an OID, to make it
easy to define new key usages. A few are defined in PKIX, with usages that are consis-
tent with some of the usages in the regular KEYUSAGE field. For instance, one of the
defined extended key usages is for imestamping, which PKIX says is consistent with
KEYUSAGE of digital signature and/or nonrepudiation.

¢ CRLDISTRIBUTIONPOINTS. This describes how to find the CRL, and if the CRL issuer
is not the CA, who the CRL issuer is.

¢ INHIBITANYPOLICY. This specifies that the subject (or a CA at a specified distance
down the chain) is not allowed to use any pelicy in its POLICYCONSTRAINT field.

¢ FRESHESTCRL. Describes how to obtain delta CRLs.

¢ AUTHORITYINFOACCESS. Describes how to find information about the issuer of this
certificate.

™

15.7.1
AUTHORIZATION Futures 395

. m:w_mnizﬂu)ndmuaﬂﬂn.&ﬂvat
.:mnan. For instance, if the subject is
issued by that CA.

Snammaﬁgnggsngba.oﬂgonr
a CA, it might specify how to find the certificates

15.7.1 X.509 and PKIX CRLs
An X.509/PKIX CRL contains the following information:

.a : g]
EgSa.oﬁmcﬂﬂmn_nsoﬂﬂgEEW__.nx.mS_Sannqﬂ.nmEEamﬁ..»
* THISUPDATE. This nSEﬂ:.oanzﬁnE.sﬁmE .

. ., n.EBonEauﬁanx_.nw—Luax issued
. pected to be
“Eﬂkuaﬁw.s_wgggﬂwﬁimgs-gsan>ig EQPS-B.
EXTUPDATE time in the past. ’ -
qugﬂnﬁg&gam&ﬁ.gﬂ?nggoggmﬂﬁ
. cmﬁnﬁgggggﬁggﬁgggnﬁﬁ
* REVOCATIONDATE. This Sassmsnmg:xnﬂnmﬁaéag

® CRLENTRYEXTENSIONS, This con

tains variou i i i
S S oy s optional information such as a reason code for

® ALGO i '
RITHMIDENTIFIER, As for certificates, this repeats the SIGNATURE field.
2 ; . :
ENCRYPTED. This field contains the Signature on all but the last of the above fields.

158 AUTHORIZATION FUTURES

-.—n wo most Eu? tant mung_ﬂ-ﬂ.m n network Secur —n% are Who you i

396 PKI (PuBLiC KEY INFRASTRUCTURE) 15.8.1

this chapter we discuss how authorization could be done using PKI, although no deployed PKls
today do authorization as described here.

15.8.1 ACL (Access Control List)

Typically the way a server decides whether a user should have access to a resource is by first
authenticating the user, and then consulting a database associated with the resource that indicates
who is allowed to do what with that resource. For instance, the database associated with a file might
say that Alice can read it and Bob and Carol can both read and write it. This database is often

referred to as an ACL (access control list).

15.8.2 Central Administration/Capabilities

Another model of authorization is that instead of listing, with each resource, the set of authorized
users and their rights (e.g., read, write, execute), you would have a database that listed, for each
user, everything she was allowed to do. If everything were a single application, then the ACL model
and the central administration model would be basically the same, since in both cases there would
be a database that listed all the authorized users and what rights each had. But in a world in which
there are many resources, not all under control of the same organization, it would be difficult to
have a central database listing what each user was allowed to do, and it would have scaling prob-
lems if there were many resources each user was allowed to access, especially if resources were
created and deleted at a high rate.

There might be a suite of applications all accessed through a single portal. For instance, you
might log into the “human resources” suite of applications that would allow you to select whether
you wanted to submit an expense report, record vacation time, or choose health care options. In this
case you could consider the entire suite of applications as a single application with a common ACL,
and even if rights for the suite are centrally administered, as long as the suite is considered as one
application, it would be equivalent to the ACL model. However, it might become burdensome 1o
have all the application-specific rights centrally administered. When the maintainer of the expense
reporting application decided to add a new frill, say something that allows the user to preauthorize
business class airfare, it might be easier to have an application-specific ACL that listed preauthorize
business class airfare as one of the rights rather than adding it into the suite’s ACL.

Some people worry that ACLs don't scale well if there are many users allowed access to each

resource. But the concept of groups answers that concern.

15.8.3
AUTHORIZATION FUTURES 397

15.8.3 Groups

”.H_“Mn n“.“n m“”nﬁcaé_zn 1o, say, any Sun employee, it would be tedious to type in
syl s wha:&.ﬁn..n_u.n%anm.p:u if there were more than one resource with the
En.omann.o:goﬂ_:nns : g%niiggsgbngggﬂ_:ag‘

Eaﬁﬁggbpgﬁrgmaﬁgwgnqonaﬁgﬂségﬁ

15.8.3.1 Cross-Organizational and Nested Groups
An ACL should be able 1o contain any boolean combination of groups and individuals. Likewise

member of ane of the groups on the ACL. But the server does not necessarily know all the members

of the group. Let's assume that the
; > group name can be looked up in a di $
csggﬁgn&ﬁmnﬂmﬁg_ﬁw&. . E_dnEQSm:acE_.:,o::?

2

398 PKI(PuBLIC KEY INFRASTRUCTURE) 15.84

often would this be done? Once a day is a lot of traffic, but also a lot of time to elapse for
Alice’s group membership to take effect, and for revocations to take effect.

o The server could ask the on-line group server whether Alice is a member of the group at the
time Alice requests access to a resource on which a group appears. This could also be a per-
formance nightmare with many queries, especially in the case of unauthorized users. At the
least, once Alice is discovered to either belong or not belong, the server should cache this
information. But again, if the cache is held for a long time it means that membership can take
a long time to take effect, and revocation can also takes a long time to take effect.

* All groups to which Alice belongs could be added into her Kerberos ticket. This implies that
the KDC or some central authorization service knows all the groups she is in. This makes it
difficult to support cross-organizational groups, where no one entity knows all the groups a
user is in, and it can have scaling problems as well if a user is in many groups.

e Groups to which Alice belongs could be listed in Alice’s certificate. This also has scaling
problems if she is in many groups. It also implies that the CA knows all the groups Alice
belongs to, and requires reissuance of the certificate any time Alice joins or leaves a group.

+ Alice might be given a set of group membership certificates for each group to which she
belongs. She could present them all whenever attempting to access a resource, or the server
could request certificates for relevant groups.

* The server could tell Alice in which groups she should prove membership to gain access to
the resource. Then Alice, if she has membership certificates for those groups, could send the
certificates to the server, or obtain group membership certificates as needed. This is an attrac-
tive solution for many reasons. In many situations it is better to have the clients do the work
than the servers, because of denial-of-service attacks on the servers. Also, a single interaction
with the group membership server would allow Alice to use that certificate on many servers.
Further, Alice's workstation can keep track of which group memberships she has recently
needed, and proactively refresh credentials. This frees servers from checking revocation sta-
tus on certificates. Instead of checking for revocation, they can insist that the group member-
ship certificate Alice presents is reasonably fresh (say less than three hours old). Each server
can have its own policy for how fresh group membership certificates must be, and refuse
group membership certificates staler than that.

15.8.4 Roles

The term role is used in many different ways. The most common concept is that Alice can be
logged in as role Alice—ordinary user or Alice—system administrator, and she gets different privi-

|

15.84 AUTHORIZATION FUTURES 399

leges depending on which role she’s in. Authorization based on roles is referred to as RBAC (role
based access control), and as with the term role, the term RBAC means different things to different
_Bou.-n..maﬂnEccnabmomﬁa_ﬂgngﬁhﬁaﬁvgana_gwaégﬂug
Enﬁmg of rights, instead of having an ACL for each resource. They claim such a system
(which lists all the privileges that go along with a role) will scale better than an ACL model, but if
centralized administration really were easier, then wouldn't the same argument apply to E&LE_.Ew
and groups?

Usually people think of a role as something that needs to be consciously invoked by a user
often requiring additional authentication such as typing a different password. In contrast, s_mnh
groups it is assumed that all members are automatically given all rights of the group as long as they
are members. Users may or may not be allowed to simultancously act in multiple roles, and perhaps
multiple users may or may not be allowed to simultaneously act in a particular role (like President
of the United States).

Some things people would like to see roles solve:

. aSF.__ a user is acting in a particular role, the application presents a different user interface.
For instance, when a user is acting as manager, the expense reporting utility might present
commands for approving expense reports, whereas when the user is acting as employee, the
application might present commands for reporting expenses.

* Having roles enables a user to be granted a subset of all the permissions they might have. This
Em_nnm. it less likely that a typo will cause a user to inadvertently do an undesirable privileged
operation, because they’d only invoke the privileged role briefly, and only when necessary to
do a specific action.

* Allowing a user to be able to run with a subset of her rights (not invoking her most privileged
role except when necessary) gives some protection from malicious code. While running
untrusted code, the user would be careful to run in an unprivileged role,

* Sometimes there are complex policies, such as that you are allowed to read either file A or
file B but not both. Somehow, proponents of roles claim roles will solve this problem. This
sort of policy is called a Chinese wall,

On a single machine, some of these concepts of roles can be implemented straightforwardly.
But what about in a distributed environment?

Most of the functionality that people envision for roles can be done with groups. But there are
three concepts: individuals, groups, and roles. What might be the difference _%“:zunz arole and a
group? A role has to be explicitly invoked, and perhaps with additional authentication. So in that
case, what is the difference between a role and an individual? Why not just consider administrator
and user as different entities? The reason is that for auditing purposes it is useful to know which
user was acting in the administrator role when a particular action was taken.

400 PKI (PusLic KEY INFRASTRUCTURE) 1585

Making fancy policies work in a distributed fashion is at best a subject of research today. If
you want to ensure that only one user is acting in a particular role at any time, or that a user must
not be allowed to see both files A and B, a conceivable method for implementing this is to have a
central service (which might for robustness or performance be implemented on multiple machines,
coordinating amongst themselves) which keeps track of who has done what and grants permissions
for actions. This wouldn’t be a central service for the entire inter-organizational internet, but rather
a service for a suite of applications. The user logs into the central server, 5o it can keep track of
what role(s) the user has at the moment and what actions the user has taken.

15.8.5 Anonymous Groups

If a user can prove she is a member of a group which is authorized access to the resource, it is not
necessarily the case that she needs to divulge and prove her identity. In many cases it will be neces-
sary, for auditing purposes. But in some cases, it might be desirable to anonymously prove group
membership.

This can be accomplished by having Alice authenticate herself to the group membership
server, provide it with a public key P (different from Alice’s long-term key), and have the group
membership server issue a centificate stating that the holder of the private key associated with Pisa
member of the group. In order to not allow someone o correlate uses of the public key to know that
the same user did both actions, a user might want to have a lot of group membership certificates for
the anonymous group, each with a different key.

If it is desired that even the group membership server should not know which key is associ-
ated with which member, then the group membership server could do a blind signature, a concept
invented by David Chaum in which Bob signs something without knowing what he’s signing!

It is rather surprising that such a protocol exists, that it would be useful for anything, and that
anyone would have thought of it! But assuming you'd want to be able to use your privileges as a
member of the group without anyone being able to know which individual you were, this feature
would be useful. With blind signatures, Bob does not know which keys belong to which members,
and so cannot divulge this information.

A blind signature is easy to understand. Assume the signature algorithm is RSA, and that
Bob's public key is (e,n). If Alice wants a particular certificaie ¢ signed by Bob, then she picks a
random number R, and raises R to e mod n, and multiplies ¢ by the result. So she gets ¢(R® mod n).
Bob can't distinguish this from a random number. He signs the result, meaning that he raises it to
his private exponent d. So he computes c*(R*%) mod n. R*is just R. So Alice divides what she gets
from Bob by R and her certificate is now validly signed by Bob. Note that this only obscures what
Bob has signed if Bob signs lots of things with that key. And note that this is only secure if Bob has
a different key for each kind of assertion he signs.

