Enhancing Symbolic Execution with Veritesting

Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley
Carnegie Mellon University
{thanassis, alexandre, sangkilc, dbrumley}@cmu.edu

ABSTRACT

We present MergePoint, a new binary-only symbolic execu-
tion system for large-scale testing of commodity off-the-shelf
(COTS) software. MergePoint introduces veritesting, a new
technique that employs static symbolic execution to amplify
the effect of dynamic symbolic execution. Veritesting allows
MergePoint to find twice as many bugs, explore orders of mag-
nitude more paths, and achieve higher code coverage than
previous dynamic symbolic execution systems. MergePoint
is currently running daily on a 100 node cluster analyzing
33,248 Linux binaries; has generated more than 15 billion
SMT queries, 200 million test cases, 2,347,420 crashes, and
found 11,687 bugs in 4,379 distinct applications.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution; F.3.2 [Logics and Meanings of Pro-
grams|: Semantics of Programming Languages— Program
analysis

General Terms
Algorithms, Security, Verification

Keywords

Veritesting, Symbolic Execution, Verification

1. INTRODUCTION

Symbolic execution is a popular automatic approach for
testing software and finding bugs. Over the past decade,
numerous symbolic execution tools have appeared—both
in academia and industry—demonstrating the effectiveness
of the technique in finding crashing inputs [15, 26], gener-
ating test cases with high coverage [16], exposing software
vulnerabilities [10], and generating exploits [18].

Symbolic execution is attractive because it systematically
explores the program and produces real inputs. Symbolic
execution works by automatically translating a program
fragment to a logical formula. The logical formula is satisfied

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’ 14, May 31 - June 7, 2014, Hyderabad, India

Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

by inputs that have a desired property, e.g., they execute a
specific path or violate safety.

At a high level, there are two main approaches for gener-
ating formulas. First, dynamic symbolic execution (DSE)
explores programs and generates formulas on a per-path
basis. Second, static symbolic execution (SSE) translates
program statements into formulas, where the formulas repre-
sent the desired property over any path within the selected
statements.

In this paper we describe MergePoint, a system for au-
tomatically checking all programs in a Linux distribution
using a new technique called veritesting. The path-based
nature of DSE introduces significant overhead when gen-
erating formulas, but the formulas themselves are easy to
solve. The statement-based nature of SSE has less overhead
and produces more succinct formulas that cover more paths,
but the formulas are harder to solve. Veritesting alternates
between SSE and DSE. The alternation mitigates the diffi-
culty of solving formulas, while alleviating the high overhead
associated with a path-based DSE approach. In addition,
DSE systems replicate the path-based nature of concrete
execution, allowing them to handle cases such as system calls
and indirect jumps where static approaches would need sum-
maries or additional analysis. Alternating allows MergePoint
with veritesting to switch to DSE-based methods when such
cases are encountered.

MergePoint operates on 32-bit Linux binaries and does
not require any source information (e.g., debugging sym-
bols). We have systematically used MergePoint to test and
evaluate veritesting on 33,248 binaries from Debian Linux.
The binaries were collected by downloading and mining for
executable programs all available packages from the Debian
main repository. We did not pick particular binaries or a
dataset that would highlight specific aspects of our system;
instead we focus on our system as experienced in the general
case. The large dataset allows us to explore questions with
high fidelity and with a smaller chance of per-program sam-
ple bias. The binaries are exactly what runs on millions of
systems throughout the world.

We demonstrate that MergePoint with veritesting beats
previous techniques in the three main metrics: bugs found,
node coverage, and path coverage. In particular, MergePoint
has found 11,687 distinct bugs (by stack hash) in 4,379
different programs. Overall, MergePoint has generated over
15 billion SMT queries and created over 200 million test
cases. Out of the 11,687 bugs, 224 result in user input
overwriting the instruction pointer, and we have confirmed
shell-spawning exploits for 152.



Our main contributions are as follows. First, we propose
a new technique for symbolic execution called veritesting.
Second, we provide and study in depth the first system for
testing every binary in an OS distribution using symbolic exe-
cution. Our experiments reduce the chance of per-program or
per-dataset bias. We evaluate MergePoint with and without
veritesting and show that veritesting outperforms previous
work on all three major metrics. Finally, we improve open
source software by finding over 10,000 bugs and generating
millions of test cases. Debian maintainers have already incor-
porated 162 patches due to our bug reports. We have made
our data available on our website [41].

2. OVERVIEW

At a high level, symbolic execution can be partitioned into
two main approaches: dynamic symbolic execution for test-
ing, and static symbolic execution for verification. Dynamic
approaches work by generating per-path formulas to test
specific paths, while static-based approaches generate formu-
las over entire programs with the goal of verifying overall
safety. Our main insight is to carefully alternate between the
two schemes to harness the benefits of both while mitigating
path explosion in dynamic approaches and solver blowup
in static approaches. In particular, we start with dynamic
symbolic execution, but switch to a static verification-based
approach opportunistically. When we switch to static mode,
we only check program fragments with the goal of testing,
not verification. While we are not the first to suggest using
static and dynamic techniques in combination, the careful
application of alternation as proposed in veritesting reduces
overall overhead, and results in improved performance along
key metrics. Previous approaches typically lost on at least
one metric, and sometimes several.

In this section we provide a high-level overview of standard
metrics, the key parts of dynamic and static algorithms, as
well as the tradeoffs between approaches.

2.1 Testing Metrics

Testing systems, including dynamic symbolic execution sys-
tems, are typically evaluated using three metrics: 1) number
of real bugs found, 2) node coverage, and 3) path coverage.

Node (or code or line or statement) coverage measures
the percentage of code covered by generated test cases with
respect to the entire application. Node coverage is an effective
way of measuring the performance of a test case generation
system [49] and has been used repeatedly to measure symbolic
execution systems’ performance [16, 35].

Path coverage measures the percentage of program paths
analyzed. Unlike node coverage, which has a finite domain
(the total number of program statements), many programs
have a potentially infinite number of paths (e.g., a server)
and measuring the path coverage is not possible. In our
evaluation, we use three distinct metrics for approximating
path coverage §6.3.

The number of unique bugs is measured by counting the
number of unique stack hashes [42] among crashes. We report
bugs only when a generated test case can produce a core file
during concrete execution.

All three metrics are important, and none dominates in
all scenarios. For example, node coverage is useful, but even
100% node coverage may fail to find real bugs. Also, it may
be possible to achieve 100% node coverage but never execute
a loop more than once. Bugs that require several iterations

Algorithm 1: Dynamic Symbolic Execution Algorithm
with and without Veritesting

Input: Initial location £y, instruction decoder instrAt
Data: Worklist W, path predicate II, symbolic store A

1 W  {(fo, true, @)} // initial worklist
2 while W # @ do

3 | ((4,1I,A), W) < pickNext(W)
// Symbolically execute the next instruction
4 | switch instrAt({) do
5 case v ‘= e // assignment
6 | S « {(succ(¥),II, Afv — eval(A,e)])}
7 case if (e) goto £’ // conditional jump
8 e + eval(A,e)
9 if (isSat(II Ae) A isSat(II A —e)) then
10 // DSE forks 2 states
11 S+ {(¢, T Ae,A), (succ(f),ITA —e, A)}
10 // Veritesting integration
11 S+
12 CFG@ < CFGRecovery(/,1I)
13 CFG., TransitionPoints <— CFGReduce(CF Q)
14 OUT <« StaticSymbolic(CFG.,II, A)
15 for Point € TransitionPoints do
16 if OUT/[Point] # 0 then
17 LLS < OUT[Point|US
18 S < Finalize(S)
19 else if isSat(II A e) then
20 | S« {(¢,IIne,A)}
21 | else S < {(succ(¥),IIA—e,A)}
22 case assert(e) // assertion
23 e+ eval(A,e)
24 if isSat(II A —e) then reportBug(Il A —e)
25 | S + {(succ(¥),IINe,A)}
26 | | case halt: continue ; // end of path
27 [ W<+ WUS

to trigger, e.g., buffer overflows, will be missed. Testing more
paths is better, but an analysis could game the metric by
simply iterating over fast-to-execute loops more times and
avoiding slow execution paths. Again, bugs may be missed
and nodes may not be covered. One could find all bugs, but
never know it because not all paths are exhausted.

2.2 Dynamic Symbolic Execution (DSE)

Algorithm 1 presents the core steps in dynamic symbolic
execution. The algorithm operates on a representative imper-
ative language with assignments, assertions and conditional
jumps (adapted from previous work [35]). A symbolic ex-
ecutor maintains a state (¢,II, A) where /¢ is the address of
the current instruction, II is the path predicate, and A is a
symbolic store that maps each variable to either a concrete
value or an expression over input variables. A satisfying
assignment, typically checked by a SAT or SMT solver, is
an assignment of values to symbolic input variables that
will execute the same execution path. An unsatisfiable path
predicate means the selected path is infeasible.

On line 1, the algorithm initializes the worklist with a
state pointing to the start of the program. The pickNext
function selects the next state to continue executing, and
removes it from the worklist S. There are a variety of
search heuristics for selecting the next instruction to execute,



including starting with a concrete trace [26, 46], generational
search [28], DFS, and BFS. Symbolic execution switches over
the instruction types in line 4. Safety checks are performed
with assertions. For example, every memory dereference is
preceded by an assertion that checks whether the pointer is
in bounds. The semantics of assignment, assert, and halt are
all straightforward. The central design point we focus on in
this paper is handling a branch instruction, shown in line 7.
The two instances of line 11 contrast our approach with
others’. In DSE, whenever both branches are feasible, two
new states are added to the worklist (one for the true branch
and one for the false), a process we refer to as “forking”. Each
one of the forked executors is later chosen from the worklist
and explored independently.
Advantages/Disadvantages. Forking executors and an-
alyzing a single path at a time has benefits: the analysis
code is simple, solving the generated path predicates is typ-
ically fast (e.g., in SAGE [10] 99% of all queries takes less
than 1 second) since we only reason about a single path,
and the concrete path-specific state resolves several practical
problems. For example, executors can execute hard-to-model
functionality concretely (e.g., system calls), side-effects such
as allocating memory in each DSE path are reasoned about
independently without extra work, and loops are unrolled as
the code executes. The disadvantage is the path (or state)
explosion® problem: the number of executors can grow ex-
ponentially in the number of branches. The path explosion
problem is the motivation for our veritesting algorithm §3.

2.3 Static Symbolic Execution (SSE)

Static Symbolic Execution (SSE) is a verification technique
for representing a program as a logical formula. Potential
vulnerabilities are encoded as logical assertions that will
falsify the formula if safety is violated. Calysto [6] and
Saturn [22, 48] are example SSE tools. Because SSE checks
programs, not paths, it is typically employed to verify the
absence of bugs. As we will see, veritesting repurposes SSE
techniques for testing program fragments instead of verifying
complete programs.

The main change is on line 11 of Algorithm 1. Modern
SSE algorithms can summarize the effects of both branches
at path confluence points. In contrast, DSE traditionally
forks off two executors at the same line, which remain sub-
sequently forever independent. Due to space, we do not
repeat complete SSE algorithms here, and refer the reader
to previous work [6, 34, 48]. (§3 shows our SSE algorithm
using a dataflow framework.)

Advantages/Disadvantages. Unlike DSE, SSE does
not suffer from path explosion. All paths are encoded in a
single formula that is then passed to the solver (note the
solver may still have to reason internally about an exponential
number of paths). For acyclic programs, existing techniques
allow generating compact formulas of size O (nQ) [24, 37],
where n is the number of program statements. Despite these
advantages over DSE, state-of-the-art tools still have trouble
scaling to very large programs [8, 30, 35]. Problems include
the presence of loops (how many times should they be un-
rolled?), formula complexity (are the formulas solvable if
we encode loops and recursion? [22]), the absence of con-
crete state (what is the concrete environment the program

!Depending on the context, the two terms may be used
interchangeably [14, 35]—an “execution state” corresponds
to a program path to be explored.

is running in?), as well as unmodeled behavior (a kernel
model is required to emulate system calls). Another hurdle
is completeness: for the verifier to prove absence of bugs, all
program paths must be checked.

3. VERITESTING

DSE has proven to be effective in analyzing real world pro-
grams [16, 27]. However, the path explosion problem can
severely reduce the effectiveness of the technique. For exam-
ple, consider the following 7-line program that counts the
occurrences of the character ‘B’ in an input string:

1 int counter = 0, values = 0;

2 for (i =0 ; i< 100 ; i ++ ) {
3 if (input[i] == 'B’) {

4 counter ++;

5 values 4+= 2;

6 P

7 if (counter == 75) bug ();

The program above has 2% possible execution paths.

FEach path must be analyzed separately by DSE, thus making
full path coverage unattainable for practical purposes. In
contrast, two testcases suffice for obtaining full code coverage:
a string of 75 ‘B’s and a string with no ‘B’s. However, finding
such test cases in the 219 state space is challenging®. We
ran the above program with several state-of-the-art symbolic
executors, including KLEE [16], S2E [19], Mayhem [18] and
Cloud9 with state merging [35]. None of the above systems
was able to find the bug within a 1-hour time limit (they ran
out of memory or kept running). Veritesting allows us to
find the bug and obtain full path coverage in 47 seconds on
the same hardware.

Veritesting starts with DSE, but switches to an SSE-style
approach when we encounter code that—similar to the ex-
ample above—does not contain system calls, indirect jumps,
or other statements that are difficult to precisely reason
about statically. Once in SSE mode, veritesting performs
analysis on a dynamically recovered CFG and identifies a
core of statements that are easy for SSE, and a frontier of
hard-to-analyze statements. The SSE algorithm summarizes
the effects of all paths through the easy nodes up to the hard
frontier. Veritesting then switches back to DSE to handle
the cases that are hard to treat statically.

Conceptually, the closest recent work to ours is dynamic
state merging (DSM) by Kuznetsov et al. [35]. DSM main-
tains a history queue of DSE executors. Two DSEs may
merge (depending on a separate and independent heuristic
for SMT query difficulty) if they coincide in the history queue.
Fundamentally, however, DSM still performs per-path execu-
tion, and only opportunistically merges. Veritesting always
merges, using SSE (not DSE) on all statements within a fixed
lookahead. The result is Veritesting formulas cover more
paths than DSE (at the expense of longer SMT queries),
but avoid the overhead of managing a queue and merging
path-based executors.

In the rest of this section, we present the main algorithm
and the details of the technique.

3.1 The Algorithm

In default mode, MergePoint behaves as a typical dynamic
concolic executor [46]. It starts exploration with a concrete

2For example, (17050) ~ 27 paths reach the buggy line of code.

The probability of a random path selection strategy finding
one of those paths is approximately 278/2100 =272



l ureachable Node

9

System Call

Transition Popfs

(b)

Figure 1: Veritesting on a program fragment with
loops and system calls. (a) Recovered CFG. (b)
CFG after transition point identification & loop un-
rolling. Unreachable nodes are shaded.

seed and explores paths in the neighborhood of the original
seed following a generational search strategy [27]. MergePoint
does not always fork when it encounters a symbolic branch.
Instead, MergePoint intercepts the forking process—as shown
in line 11 of algorithm 1—of DSE and performs veritesting.
Algorithm 1 presents the high-level process of veritesting.
The algorithm augments DSE with 4 new steps:

1. CFGRecovery: recovers the CFG reachable from the
address of the symbolic branch (§3.2).

2. CFGReduce: takes in a CFG, and outputs candidate
transition points and a CFG,, an acyclic CFG with
edges annotated with the control flow conditions (§3.3).
Transition points indicate program locations where
DSE may continue.

3. StaticSymbolic: takes the acyclic CFG, and current
execution state, and uses SSE to build formulas that
encompass all feasible paths in the CFG.. The output
is a mapping from CFG. nodes to SSE states (§3.4).

4. Finalize: given a list of transition points and SSE
states, returns the DSE executors to be forked (§3.5).

3.2 CFG Recovery

The goal of the CFG recovery phase is to obtain a partial
control flow graph of the program, where the entry point is
the current symbolic branch. We now define the notion of
underapproximate and overapproximate CFG recovery.

A recovered CFG is an underapproximation if all edges
of the CFG represent feasible paths. A recovered CFG is
an overapproximation if all feasible paths in the program
are represented by edges in the CFG. Statically recovering a
perfect (non-approximate) CFG on binary code is known to
be a hard problem and the subject of active research (7, 32].
A recovered CFG might be an underapproximation or an
overapproximation, or even both in practice.

Veritesting was designed to handle both underapproxi-
mated and overapproximated CFGs without losing paths
or precision (see §3.4). MergePoint uses the CFG recovery
mechanism from our Binary Analysis Platform (BAP) [12].
The algorithm is customized to stop recovery at function
boundaries, system calls and unknown instructions.

The output of this step is a partial (possibly approximate)
intra-procedural control flow graph. Unresolved jump targets
(e.g., ret, call, etc.) are forwarded to a generic Exit node
in the CFG. Figure la shows the form of an example CFG
after the recovery phase.

3.3 Transition Point Identification & Unrolling

Once the CFG is obtained, MergePoint proceeds to identify-
ing transition points. Transition points define the boundary
of the SSE algorithm (where DSE will continue exploration).
To calculate transition points, we require the notion of post-
dominators and immediate postdominators:

DEFINITION 1 (POSTDOMINATOR). A node d postdomi-
nates a node n, denoted as pdom (d,n), iff every path from
n to the exit of the graph goes through d.

DEFINITION 2 (IMMEDIATE POSTDOMINATOR). A node
d immediately postdominates node n, denoted as ipdom (d,n),
iff: pdom(d,n) A =3z # d : pdom(d, z) A pdom(z,n).

Transition Points. For an entry node e ending in a
symbolic branch, a transition point is defined as a node n
such that ipdom(e,n). For a fully recovered CFG, a single
transition point may be sufficient, e.g., the bottom node
in Figure la. However, for CFGs with unresolved jumps
or system calls, any predecessor of the Exit node will be a
possible transition point (e.g., the ret node in Figure 1b).
Transition points represent the frontier of the visible CFG,
which stops at unresolved jumps, function boundaries and
system calls. The number of transition points gives an upper-
bound on the number of states that may be forked.

Unrolling Loops. Loop unrolling represents a challenge
for static verification tools. However, MergePoint is dynamic
and can concretely execute the CFG to identify how many
times each loop will execute. The number of concrete loop
iterations determines the number of loop unrolls. MergePoint
also allows the user to extend loops beyond the concrete
iteration limit, by providing a minimum number of unrolls.

To make the CFG acyclic, back edges are removed and
forwarded to a newly created node for each loop, e.g., the
“Incomplete Loop” node in Figure 1b, which is a new transi-
tion point that will be explored if executing the loop more
times is feasible. In a final pass, the edges of the CFG are
annotated with the conditions required to follow the edge.

The end result of this step is a CFG, and a set of transition
points. Figure 1b shows an example CFG— without edge
conditions—after transition point identification and loop
unrolling.

3.4 Static Symbolic Execution

Given the CFGe, MergePoint applies SSE to summarize the
execution of multiple paths. Previous work [5] first converted
the program to Gated Single Assignment (GSA) [47] and then
performed symbolic execution. In MergePoint, we encode
SSE as a single pass dataflow analysis where GSA is computed
on the fly. Table 1 presents the SSE algorithm, following
standard notation [2, Section 9].

To illustrate the algorithm, we run SSE on the following
program:

if (x> 1) y=1; else if (x < 42) y =

Figure 2 shows the progress of the symbolic store as SSE
iterates through the blocks. SSE starts from the entry of
the CFG. and executes basic blocks in topological order.
Basic blocks contain straightline code and execution follows
Algorithm 2, taking as input (from IN[B]) a path context I'
and a symbolic store A and outputting the updated versions
(for OUT[B]). T enables multi-path SSE by encoding the
conditionals required to follow an execution path using ite



BL: [A = {y — yo}]
it (2> 1)

false

true B2: if (z < 42)

B3: y =42
[A={y—42}]

B4y =17
A={y—17}

\

‘ B5: [A = {y — ite(x > 1, L,ite(x < 42,17,y9))}] ‘

[B6: [A = {y — ite(x > 1,42, ite(x < 42,17, 9))}]]

J

Symbolic store transformations during

Figure 2:
SSE.

Algorithm 2: Veritesting Transfer Function
Input: Basic block B, Path context I', Symbolic store A

1 foreach inst € B do

2 switch inst do

3 case v ;= e

4 | A+ Ao — eval(A,e)]

5 case assert(e)

6 | T« T[A = ite(eval(A,e), A, L)]

7 return I', A

(if-then-else) expressions. For example, following the true
branch after the condition (z > 1) in Figure 2 gives: ' =
ite(x > 1, A, L), where A denotes the taken path and L the
non-taken.

To compute the input set (I N[B]) for a basic block we apply
a meet operation across all incoming states from predecessor
blocks following Algorithm 3. The path context is obtained
for each incoming edge and then applied to the symbolic
store. For example, for the edge from B3 to B6 in Figure 2,
A is updated to {y — I's[A — Aly]] = ite(z > 1,42, 1)}.
To merge A’s (or I'’s) from paths that merge to the same
confluence point, we apply the following recursive merge
operation M to each symbolic value:

M(vi, L) =v1; M(L,v2) = vo;
M(ite(e, v, ve),ite(e, v1, vy)) = ite(e, M(v1,v}1), M(v2,v3))

This way, at the last node of Figure 2, the value of y will be
M(ite(x > 1,42, 1), ite(z > 1, L, ite(x < 42,17,y0))) which
is merged to ite(x > 1,42, ite(x < 42,17,y0)), capturing all
possible paths. During SSE, MergePoint keeps a mapping
from each traversed node to the corresponding state (OUT).
Note that values from unmerged paths (L values) can be
immediately simplified, e.g., ite(e,z, 1) = x.

Handling Overapproximated CFGs. At any point
during SSE, the path predicate is computed as the conjunc-
tion of the DSE predicate IIpse and the SSE predicate
computed by substitution: IIgsg = I'[A — true, L — false].
MergePoint uses the resulting predicate to perform path
pruning (lines 4 and 6 in Algorithm 3) offering two advan-
tages: any infeasible edges introduced by CFG recovery are
eliminated, and our formulas only consider feasible paths.

Algorithm 3: Veritesting Meet Function
Input: Basic block B, Pred. blocks B1, B2, Store [Ipsk

1 function Context (B, Parent) begin

2 I', A + OUT(Parent); taken, e < edge(Parent, B);
3 e <+ eval(A,e); Il < IIpsg AT[A — true, L — false];
4 if taken A isSat(II A e) then

5 L return I'[A — ite(e, A, 1L)], A

6 else if —taken A isSat(II A —e) then
7 | return ['[A — ite(e, L, A)], A
8 else return L, (; // infeasible edge

I'1, Ay < Context(B, Bi1); I's, Ay < Context(B, Bs);
10 I' + M(F1,F2); A Al;
11 foreach v € As do

12 | Af] = M(T1[A = As[o]], T2[A — Az[v]])

13 return ', A

©

3.5 Transition Point Finalization

After the SSE pass is complete, we check which states need
to be forked. We first gather transition points and check
whether they were reached by SSE (line 16 in Algorithm 1).
For the set of distinct—based on their jump target address—
transition points, MergePoint will fork a new symbolic state
in a Finalize step, where a DSE executor is created (¢,11, A)
using the state (I'; A) of each transition point.

Generating Test Cases. Though MergePoint can gen-
erate an input for each covered path, that would result in an
exponential number of test cases in the size of the CFG.. By
default, we only output one test per CFG node explored by
static symbolic execution. (Note that for branch coverage the
algorithm can be modified to generate a test case for every
edge of the CFG.) The number of test cases can alternatively
be minimized by generating test cases only for nodes that
have not been covered by previous test cases.

Underapproximated CFGs. Last, before proceeding
with DSE, veritesting checks whether we missed any paths
due to the underapproximated CFG. To do so, veritesting
queries the negation of the path predicate at the Exit node
(the disjunction of the path predicates of forked states). If
the query is satisfiable, an extra state is forked to explore
missed paths.

Incremental Deployment. Veritesting is an online al-
gorithm, it runs as the program executes. If any step of the
veritesting algorithm fails, the system falls back to DSE until
the next symbolic branch. An advantage of this approach

Table 1: SSE as a dataflow algorithm. IN[B] and
OUTB] denote the input and output sets of basic
block B.

Domain Symbolic execution state (I, A)

Forwards
Algorithm 2

Direction

Transfer Function

Boundary Initial execution state (A, Ajnit)
Initialize OUT[B] = (L,0)

Dataflow IN[B] = Ap preacs) OUT[P]
Equations OUT[B] = fp (IN[B])

Meet Function

Algorithm 3




Instrumentor

Fixed
Symbolic Executor

Taint Engine

Symbolic Expression Builder

| |
| |
l JIT Translator ‘ \
| |
| |

Optimizers
Symbolic Symbolic Symbolic
Dynamic Static Executor Executor Executor
Symbolic Symbolic CFG
Execution | | Execution Resolver /,
Engine Engine /
’

i ;

’ l SMT Solver

Figure 3: MergePoint Architecture.

is that the implementation can be gradually deployed; sup-
porting all possible programming constructs is not necessary,
since veritesting runs on a best-effort basis.

4. MERGEPOINT ARCHITECTURE

The ultimate goal of MergePoint is to perform effective test-
ing on thousands of applications. In this section, we provide
a high-level description of the system and key design choices.

4.1 Overview

MergePoint follows the design of a concolic executor. The
symbolic execution engine runs on top of an instrumenta-
tion tool and x86 instructions are JITed to an intermediate
representation before being symbolically executed. A taint
analysis layer ensures that the symbolic executor is used
only when necessary, i.e., only for instructions operating on
input-derived data. The layers of the MergePoint executor
are shown on the left of Figure 3.

To enable veritesting, the MergePoint executor is enhanced
with two main modules (shaded): a static symbolic executor
and a CFG recovery module. In the rest of this section,
we discuss how the executor fits within the MergePoint dis-
tributed infrastructure (§4.2), and a key design decision in
the handling of symbolic expressions (§4.3).

4.2 Distributed Infrastructure

As a stand-alone tool, the MergePoint executor takes in a
program and a user configuration (including a time limit,
inputs, etc.) and outputs test cases, bugs, and statistics. One
goal of MergePoint is to test software en masse. However,
a single 30-minute experiment on 1,000 programs requires
almost 3 weeks of CPU time. To test our techniques, we
developed a distributed infrastructure that utilizes multiple
nodes to run programs in parallel. Figure 3 presents the
end-to-end architecture of MergePoint.

MergePoint employs a first-come, first-served central queu-
ing policy. The policy is simple, yet yields high-utilization:
a program waiting at the top of the dispatcher queue is sent
to the next available symbolic executor instance.

Data generated at every node are aggregated and stored
in centralized storage. We use stored data as an immediate
feedback mechanism about the performance behavior of the
symbolic executor on a large number of programs. The
feedback mechanism served as a guide on several design
choices, e.g., using a hash-consed language (§4.3).

(@
CO RN CD.
OOOOOOO®
(a)

(

is symbolic)

el I ]
[l
KRR ow

+++

S
X
X
X

U W N =

assert (x == 42)

Figure 4: Hash consing example. Top-left: naively
generated formula. Top-right: hash-consed formula.

4.3 A Hash-Consed Expression Language

Whenever a program variable is used in an expression, eval
in Algorithm 1 replaces it with its value in the symbolic store.
A naive substitution algorithm may introduce an exponential
blowup, even for a straightline program. For example, the
path predicate for Figure 4 is s+ s+s+s+s+s+s+s =42
(where there are 2° = 8 uses of the s variable).

Hash consing [29] is a technique for avoiding duplication
during substitution and reusing previously constructed ex-
pressions. Previous work in symbolic execution has made
extensive use of hash-consing variants to avoid duplicate
expressions. Examples include creating maximally-shared
graphs [5], using expression caching [10], or ensuring that
structurally equivalent expressions that are passed to the
SMT solver are reused [16].

MergePoint goes one step further and builds hash-consing
into the language. The constructor for every expression type
is hash-consed by default, meaning that the implementor
of the symbolic executor is incapable of creating duplicate
expressions. Every previously computed expression is stored
and will be reused. MergePoint also provides iterators over
hash-consed expressions for standard operations (fold, map,
map-reduce, etc.), to ensure all traversals are linear in the
size of the expression.

Following the approach of [23], MergePoint stores hash-
consed expressions in an array of weak references that can
be efficiently garbage collected.

5. IMPLEMENTATION

MergePoint runs in a virtual machine cloud. Our architec-
ture uses a central dispatcher to send individual programs
to analysis nodes. The main MergePoint Veritesting im-
plementation is built on top of MAYHEM [18], and consists
of an additional 17,000 lines of OCaml and 9,000 lines of
C/C++. The communication between multiple nodes and
the dispatcher is implemented in 3,500 lines of Erlang. Merge-
Point uses the BAP [12] platform for translating x86 code
to an intermediate representation, CFG recovery and loop
unrolling. We use PIN [38] for instrumentation and Z3 [21]
for solving SMT queries.

6. EVALUATION

In this section we evaluate our techniques using multiple
benchmarks with respect to three main questions:



1. Does Veritesting find more bugs than previous ap-
proaches? We show that MergePoint with veritesting
finds twice as many bugs than without.

2. Does Veritesting improve node coverage? We show
MergePoint with veritesting improves node coverage
over DSE.

3. Does Veritesting improve path coverage? Previous
work showed dynamic state merging outperforms vanilla
DSE [35]. We show MergePoint with veritesting im-
proves path coverage and outperforms both approaches.

We detail our large-scale experiment on 33,248 programs
from Debian Linux. MergePoint generated billions of SMT
queries, hundreds of millions of test cases, millions of crashes,
and found 11,687 distinct bugs.

Overall, our results show MergePoint with veritesting im-

proves performance on all three metrics. We also show that
MergePoint is effective at checking a large number of pro-
grams. Before proceeding to the evaluation, we present our
setup and benchmarks sets. All experimental data from
MergePoint are publicly available online [41].
Experiment Setup. We ran all distributed MergePoint
experiments on a private cluster consisting of 100 virtual
nodes running Debian Squeeze on a single Intel 2.68 GHz
Xeon core with 1GB of RAM. All comparison tests against
previous systems were run on a single node Intel Core i7
CPU and 16 GB of RAM since these systems could not run
on our distributed infrastructure.

We created three benchmarks: coreutils, BIN, and Debian.
Coreutils and BIN were compiled so that coverage informa-
tion could be collected via gcov. The Debian benchmark
consists of binaries used by millions of users worldwide.
Benchmark 1: GNU coreutils (86 programs)®. We
use the coreutils benchmark to compare to previous work
since: 1) the coreutils suite was originally used by KLEE [16]
and other researchers [13, 16, 18, 35, 39] to evaluate their
systems, and 2) configuration parameters for these programs
used by other tools are publicly available [17]. Numbers
reported with respect to coreutils do not include library code
to remain consistent with compared work. Unless otherwise
specified, we ran each program in this suite for 1 hour.
Benchmark 2: The BIN suite (1,023 programs). We
obtained all the binaries located under the /bin, /usr/bin,
and /sbin directories from a default Debian Squeeze installa-
tion?. We kept binaries reading from /dev/stdin, or from a
file specified on the command line. In a final processing step,
we filtered out programs that require user interaction (e.g.,
GUIs). BIN consists of 1,023 binary programs, and com-
prises 2,181,735 executable lines of source code (as reported
by gecov). The BIN benchmark includes library code pack-
aged with the application in the dataset, making coverage
measurements more conservative than coreutils. For example,
an application may include an entire library, but only one
function is reachable from the application. We nonetheless
include all uncovered lines from the library source file in our
coverage computation. Unless otherwise specified, we ran
each program in this suite for 30 minutes.

3 All generated test cases were executed natively to compute
code coverage results. To avoid destructive side-effects we
removed 3 coreutils (rm, rmdir and kill) from the original
KLEE suite.

4What better source of benchmark programs than the ones
you use everyday?

Table 2: Veritesting finds 2x more bugs.

| Veritesting | DSE
coreutils | 2 bugs/2 progs 0/0
BIN 148 bugs/69 progs | 76 bugs/49 progs

Table 3: Veritesting improves node coverage.

| Veritesting | DSE | Difference
coreutils | 75.27% 63.62% | +11.65%
BIN 40.02% 34.711% +5.31%

Benchmark 3: Debian (33,248 programs). This bench-
mark consists of all binaries from Debian Wheezy and Sid.
We extracted binaries and shared libraries from every package
available from the main Debian repository. We downloaded
23,944 binaries from Debian Wheezy, and 27,564 binaries
from Debian Sid. After discarding duplicate binaries in the
two distributions, we are left with a benchmark comprising
33,248 binaries. This represents an order of magnitude more
applications than have been tested by prior symbolic execu-
tion research. We analyzed each application for less than 15
minutes per experiment.

6.1 Bug Finding

Table 2 shows the number of bugs found by MergePoint with
and without veritesting. Overall, veritesting finds 2x more
bugs than without for BIN. Veritesting finds 63 (83%) of
the bugs found without veritesting, as well as 85 additional
distinct bugs that traditional DSE could not detect.

Veritesting also found two previously unknown crashes
in coreutils, even though these applications have been thor-
oughly tested with symbolic execution [13, 16, 18, 35, 39].
Further investigation showed that the coreutils crashes origi-
nate from a library bug that had been undetected for 9 years.
The bug is in the time zone parser of the GNU portability
library Gnulib, which dynamically deallocates a statically al-
located memory buffer. It can be triggered by running touch
-d ’TZ="""’ or date -d ’TZ="""’. Furthermore, Gnulib is
used by several popular projects, and we have confirmed that
the bug affects other programs, e.g. £ind, patch, tar.

As a point of comparison, we ran Kuznetsov’'s DSM imple-
mentation [35], which missed the bugs. We also compared
MergePoint with veritesting to S2E [19], a state-of-the-art
binary-only symbolic execution system. S2E also missed the
bugs. KLEE [16] argued that coreutils is one of the most
well-tested suite of open-source applications. Since then,
coreutils has become the de facto standard for evaluating
bug-finding systems based on symbolic execution. Given
the extensive subsequent testing of coreutils, finding two
new crashes is evidence that veritesting extends the reach of
symbolic execution.

6.2 Node Coverage

We evaluated MergePoint both with and without Veritest-
ing on node coverage. Table 3 shows our overall results.
Veritesting improves node coverage on average in all cases.
MergePoint also achieved 27% more code coverage on aver-
age than S2E. Note that any positive increase in coverage
is important. In particular, Kuznetsov et al. showed both
dynamic state merging and static symbolic execution reduced
node coverage when compared to vanilla DSE [35, Figure 8§].



ference
(2]
o

N
o

[\S]
o

Programs

Coverage Dif

0 ||l

Figure 5: Code coverage difference on coreutils be-
fore and after veritesting.

8 100

g

j_, 50-

[a) 0 . el
(0]

&

5 —90

3

O-100

Programs

Figure 6: Code coverage difference on BIN before
and after veritesting, where it made a difference.

Figures 5 and Figure 6 break down the improvement per
program. For coreutils, enabling veritesting decreased cover-
age in only 3 programs (md5sum, printf, and pr). Manual
investigation of these programs showed that veritesting gen-
erated much harder formulas, and spent more than 90% of
its time in the SMT solver, resulting in timeouts. In Figure 6
for BIN, we omit programs where node coverage was the
same for readability. Overall, the BIN performance improved
for 446 programs and decreased for 206.

Figure 7 shows the average coverage over time achieved
by MergePoint with and without veritesting for the BIN
suite. After 30 minutes, MergePoint without veritesting
reached 34.45% code coverage. Veritesting achieved the
same coverage in less than half the original time (12min
48s). Veritesting’s coverage improvement becomes more
substantial as analysis time goes on. Veritesting achieved
higher coverage velocity, i.e., the rate at which new coverage
is obtained, than standard symbolic execution. Over a longer
period of time, the difference in velocity means that the
coverage difference between the two techniques is likely to
increase further, showing that the longer MergePoint runs,
the more essential veritesting becomes for high code coverage.

The above tests demonstrates the improvements of veritest-
ing for MergePoint. We also ran both S2E and MergePoint
(with veritesting) on coreutils using the same configuration
for one hour on each utility in coreutils, excluding 11 pro-

R40
S
g 30
2
8 2 Veritesting
@ — With
=10 -- Without
(&]

0 '

0 500 1000 1500
Time (s)

Figure 7: Coverage over time (BIN suite).

50
o

ge Difference (%

|
a
o

Programs

Covera

Figure 8: Code coverage difference on coreutils ob-
tained by MergePoint vs. S2E

28 212 220 232 264 2128 2256 2512 21024

Multiplicity (in log scale)

Figure 9: Multiplicity distribution (BIN suite).

grams where S2E emits assertion errors. Figure 8 compares
the increase in coverage obtained by MergePoint with veritest-
ing over S2E. MergePoint achieved 27% more code coverage
on average than S2E. We investigated programs where S2E
outperforms MergePoint. For instance, on pinky—the main
outlier in the distribution—S2E achieves 50% more cover-
age. The main reason for this difference is that pinky uses
a system call not handled by the current MergePoint imple-
mentation (netlink socket).

6.3 Path Coverage

We evaluated the path coverage of MergePoint both with
and without veritesting using three different metrics: time
to complete exploration, multiplicity, and fork rate.

Time to complete exploration. The metric reports the
amount of time required to completely explore a program,
in those cases where exploration finished.

The number of paths checked by an exhaustive DSE run
is also the total number of paths possible. In such cases we
can measure a) whether veritesting also completed, and b)
if so, how long it took relative to DSE. MergePoint without
veritesting was able to exhaust all paths for 46 programs.
MergePoint with veritesting completes all paths 73% faster
than without veritesting. This result shows that veritesting
is faster when reaching the same end goal.

Veritesting

Yy

1

1.5 1 DSE
1
1

Densit
o

0.0 —

01 10.0 100.0
Fork Rate (in log scale)

Figure 10: Fork rate distribution before and after
veritesting with their respective medians (the verti-
cal lines) for BIN.



Multiplicity. Multiplicity was proposed by Kuznetsov
et al. [35] as a metric correlated with path coverage. The
initial multiplicity of a state is 1. When a state forks, both
children inherit the state multiplicity. When combining two
states, the multiplicity of the resulting state is the sum of
their multiplicities. A higher multiplicity indicates higher
path coverage.

We also evaluated the multiplicity for veritesting. Figure 9
shows the state multiplicity probability distribution function
for BIN. The average multiplicity over all programs was
1.4 x 10%°° and the median was 1.8 x 102 (recall, higher
is better). The distribution resembles a lognormal with an
abnormal spike for programs with multiplicity of 4,096 (2'2).
Further investigation showed that 72% of those programs
came from the netpbm family of programs. Veritesting was
unable to achieve very high multiplicity, due to the presence
of unresolved calls in the recovered CFG. Improving the
CFG recovery phase should further improve performance.
Note that even with a multiplicity of 4,096, veritesting still
improves coverage by 13.46% on the netpbm utilities. The
multiplicity average and median for coreutils were 1.4 x 101%°
and 4.4 x 10'*, respectively. Multiplicity had high variance;
thus the median is likely a better performance estimator.

Fork rate. Another metric is the fork rate of an executor,
which gives an indication of the size of the outstanding state
space. If we represent the state space as a tree, where each
node is a path, and its children are the paths that it forks,
then the fork rate is the fanout factor of each node. Lower fork
rate is better because it indicates a potentially exponentially-
smaller state space. For instance, a tree of height n with a
fanout factor of 5 has approximately 5 nodes, while a tree
with a fanout factor of 10 will have roughly 10™ nodes. Thus,
a tree with a fanout factor of 5 is 2" times smaller than a
tree with a fanout factor of 10.

Figure 10 shows the fork rate distribution with and without
veritesting of BIN. The graph shows that veritesting decreases
the average fork rate by 65% (the median by 44%) from 13
to 4.6 (lower is better). In other words, without veritesting
we used to have 13 new paths (forks) to explore for every
analyzed path; with veritesting we have only 4.6. Thus,
for the BIN programs, veritesting reduces the state space
by a factor of (%)n ~ 3", where n is the depth of the
state space. This is an exponential reduction of the space,
allowing symbolic execution to consider exponentially more
paths during each analysis.

6.4 Checking Debian

In this section, we evaluate veritesting’s bug finding ability
on every program available in Debian Wheezy and Sid. We
show that veritesting enables large-scale bug finding.

Since we test 33,248 binaries, any type of per-program
manual labor is impractical. We used a single input speci-
fication for our experiments: -sym-arg 1 10 -sym-arg 2 2
-sym-arg 3 2 -sym-anon-file 24 -sym-stdin 24 (3 sym-
bolic arguments up to 10, 2, and 2 bytes respectively, and
symbolic files/stdin up to 24 bytes). MergePoint encoun-
tered at least one symbolic branch in 23,731 binaries. We
analyzed Wheezy binaries once, and Sid binaries twice (one
experiment with a 24-byte symbolic file, the other with 2100
bytes to find buffer overflows). Including data processing,
the experiments took 18 CPU-months.

Our overall results are shown in Table 4. Veritesting found
11,687 distinct bugs (by stack hash) that crash programs.

Table 4: Overall numbers for checking Debian.

33,248
15,914,407,892
12,307,311,404
71,025,540,812

Total programs
Total SMT queries
Queries hitting cache
Symbolic instrs

Run time 235,623,757s
Symb exec time 125,412,247s
SAT time 40,411,781s

Model gen time 30,665,881s

# test cases 199,685,594

# crashes 2,365,154

# unique bugs 11,687

# fixed bugs 162

Confirmed control flow hijack 152

Component DSE Veritesting
Instrumentation 40.01% 16.95%
SMT Solver 19.23% 63.16%
Symbolic Execution | 39.76% 19.89%
(2)
2 Without Veritesting [ With Veritesting
_(g‘
[
K40
ksl
[0}
- I III
=
g 0 .-—_ --—A-
a é 16 32 50T|meou1 1 é 18 32 50T|meout
Time (s)
(b)

Figure 11: MergePoint performance before and after
veritesting for BIN. The above figures show: (a) Per-
formance breakdown for each component; (b) Anal-
ysis time distribution.

The bugs appear in 4,379 of the 33,248 programs. Veritesting
also finds bugs that are potential security threats. 224 crashes
have a corrupt stack, i.e. a saved instruction pointer has
been overwritten by user input. Those crashes are most likely
exploitable, and we have already confirmed exploitability of
152 programs. As an interesting data point, it would have
cost $0.28 per unique crash had we run our experiments
on the Amazon Elastic Compute Cloud, assuming that our
cluster nodes are equivalent to large instances.

The volume of bugs makes it difficult to report all bugs
in a usable manner. Note that each bug report includes a
crashing test case, thus reproducing the bug is easy. Instead,
practical problems such as identifying the correct developer
and ensuring responsible disclosure of potential vulnerabili-
ties dominate our time. As of this writing, we have reported
1,043 crashes in total [40]. Not a single report was marked as
unreproducible on the Debian bug tracking system. 162 bugs
have already been fixed in the Debian repositories, demon-
strating the real-world impact of our work. Additionally, the
patches gave an opportunity to the package maintainers to
harden at least 29 programs, enabling modern defenses like
stack canaries and DEP.

6.5 Discussion

Our experiments so far show that veritesting can effectively
reduce the fork rate, achieve higher code coverage, and find



more bugs. In this section, we discuss why it works well
according to our collected data.

Each run takes longer with veritesting because multi-path
SMT formulas tend to be harder. The coverage improvement
demonstrates that additional SMT cost is amortized over the
increased number of paths represented in each run. At its
core, veritesting is pushing the SMT engine harder instead
of brute-forcing paths by forking new DSE executors. This
result confirms that the benefits of veritesting outweigh its
cost. The distribution of path times (Figure 11b) shows that
the vast majority (56%) of paths explored take less than 1
second for standard symbolic execution. With veritesting,
the fast paths are fewer (21%), and we get more timeouts
(6.4% vs. 1.2%). The same differences are also reflected in
the component breakdown. With veritesting, most of the
time (63%) is spent in the solver, while with standard DSE
most of the time (60%) is spent re-executing similar paths
that could be merged and explored in a single execution.

Of course there is no free lunch, and some programs do
perform worse. We emphasize that on average over a fairly
large dataset our results indicate the tradeoff is beneficial.
In order to better understand cases where merging is worse
than per-path DSE, we performed a targeted experiment to
identify the characteristics that make a program amenable
to veritesting. To do so, we gathered the programs where
veritesting impacts the coverage by more than 5%, positively
or negatively, and generated a performance breakdown similar
to Figure 11a:

Improvement | SMT | Timeout | Coverage
Largest 30% 1% 82.14%
Smallest 73% 6% 34.31%

We observe again that veritesting performs best when the
solver is not dominating the cost of symbolic execution or
causing timeouts (recall from §6.2). One possible future
direction is to employ a heuristic to decide transition points,
e.g., combining veritesting with QCE [35].

We also measured the effect of our hash-consed based
language on veritesting. We performed 4 experiments on our
BIN suite (5 min/prog) and measured performance across
two axes: veritesting vs. DSE and hash-consing vs. no hash-
consing. The table below summarizes our results in terms of
average coverage and generated test cases:

Technique | No hash-consing | Hash-consing | Difference
Veritesting | 24.24% 29.64% +5.40%
DSE 26.82% 28.98% +2.16%

We see that hash-consing affects performance dramati-
cally: disabling it would make veritesting worse than DSE
(within the 5 minute interval). In fact, our initial veritesting
implementation did not include hash-consing, and did not im-
prove coverage. The cost of duplicating or naively recursing
over expressions is prohibitive for expressions encompassing
multiple paths (note that DSE is not as strongly affected).

7. RELATED WORK

Symbolic execution was discovered in 1975 [11, 31, 33], with
the volume of academic research and commercial systems
exploding in the last decade. An online bibliography [1]
currently lists over 150 papers on symbolic execution tech-
niques and applications. Notable symbolic executors include
SAGE and KLEE. SAGE [10] is responsible for finding one
third of all bugs discovered by file fuzzing during the devel-
opment of Windows 7 [10]. KLEE [16] was the first tool to

10

show that symbolic execution can generate test cases that
achieve high coverage on real programs by demonstrating
it on the UNIX utilities. There is a multitude of symbolic
execution systems—for more details, we refer the reader to
recent surveys [14, 43, 45].

Merging execution paths is not new. Koelbl et al. [34]
pioneered path merging in SSE. Concurrently and indepen-
dently, Xie et al. [48] developed Saturn, a verification tool
capable of encoding of multiple paths before converting the
problem to SAT. Hansen et al. [30] follow an approach simi-
lar to Koelbl et al. at the binary level. Babic [5] improved
their static algorithm to produce smaller and faster to solve
formulas by leveraging Gated Single Assignment (GSA) [47]
and maximally-shared graphs (similar to hash-consing [29]).
The static portion of our veritesting algorithm is built on
top of their ideas. In our approach, we alternate between
SSE and DSE. Our approach amplifies the effect of DSE and
takes advantage of the strengths of both techniques.

The efficiency of the static algorithms mentioned above
typically stems from various types of if-conversion [3], a
technique for converting code with branches into predicated
straightline statements. The technique is also known as
¢-folding [36], a compiler optimization technique that col-
lapses simple diamond-shaped structures in the CFG. Colling-
bourne et al. [20] used ¢-folding to verify semantic equiva-
lence of SIMD instructions.

Boonstoppel et al. proposed RWSet [9], a state pruning
technique identifying redundant states based on similarity of
their live variables. If live variables of a state are equivalent
to a previously explored path, RWSet will stop exploring the
states, as it will not offer additional coverage.

Godefroid et al. [25] introduced function summaries to
test code compositionally. The main idea is to record the
output of an analyzed function, and to reuse it if it is called
again with similar arguments. The work was later expended
to generate such summaries on demand [4]. Compositional
analysis and generalizations over loops are orthogonal and
complementary to veritesting.

Shortly after releasing our bug reports, Romano [44] re-
ported bugs on at least 30,000 distinct binaries. He reports
5 minutes of symbolic execution per binary. Romano’s result
is impressive. Unfortunately, Romano has not provided a re-
port detailing his methods, benchmarks, or methods, leaving
comparison to his work impossible.

8. CONCLUSION

In this paper we proposed MergePoint and veritesting, a new
technique to enhance symbolic execution with verification-
based algorithms. We evaluated MergePoint on 1,023 pro-
grams and showed that veritesting increases the number of
bugs found, node coverage, and path coverage. We showed
that veritesting enables large-scale bug finding by testing
33,248 Debian binaries, and finding 11,687 bugs. Our results
have had real world impact with 162 bug fixes already present
in the latest version of Debian.

Acknowledgments

We would like to thank Samantha Gottlieb, Tiffany Bao, and
our anonymous reviewers for their comments and suggestions.
We also thank Mitch Franzos and PDL for the support they
provided during our experiments. This research is supported
in part by grants from DARPA and the NSF, as well as the
Prabhu and Poonam Goel Fellowship.



9.
1]

2]

[11]

[12]

REFERENCES

Online Bibliography for Symbolic Execution. http://
sites.google.com/site/symexbib.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of Control Dependence to Data Dependence.
In Proceedings of the 10th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages,
pages 177-189, New York, NY, USA, 1983. ACM Press.

S. Anand, P. Godefroid, and N. Tillmann. Demand-
Driven Compositional Symbolic Execution. In Proceed-
ings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 367-381,
Berlin, Heidelberg, 2008. Springer-Verlag.

D. Babic. FEaxploiting structure for scalable software
verification. PhD thesis, University of British Columbia,
Vancouver, Canada, 2008.

D. Babic and A. J. Hu. Calysto: Scalable and Precise
Extended Static Checking. In Proceedings of the 30th In-
ternational Conference on Software Engineering, pages
211-220, New York, NY, USA, 2008. ACM.

S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary,
and A. Vincent. The BINCOA Framework for Binary
Code Analysis. In Proceedings of the 23rd International
Conference on Computer Aided Verification, pages 165—
170, Berlin, Heidelberg, 2011. Springer-Verlag.

D. Beyer, T. A. Henzinger, and G. Theoduloz. Con-
figurable Software Verification: Concretizing the Con-
vergence of Model Checking and Program Analysis. In
Proceedings of the 19th International Conference on
Computer Aided Verification, pages 504-518, Berlin,
Heidelberg, 2007. Springer-Verlag.

P. Boonstoppel, C. Cadar, and D. Engler. RWset: At-
tacking Path Explosion in Constraint-Based Test Gen-
eration. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Sys-
tems, pages 351-366, Berlin, Heidelberg, 2008. Springer-
Verlag.

E. Bounimova, P. Godefroid, and D. Molnar. Billions
and Billions of Constraints: Whitebox Fuzz Testing
in Production. In Proceedings of the 35th IEEE In-
ternational Conference on Software Engineering, pages
122-131, Piscataway, NJ, USA, 2013. IEEE Press.

R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT—a
formal system for testing and debugging programs by
symbolic execution. ACM SIGPLAN Notices, 10(6):
234-245, 1975.

D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz.
BAP: A Binary Analysis Platform. In Proceedings of
the 23rd International Conference on Computer Aided
Verification, pages 463—-469. Springer-Verlag, 2011.

11

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

(24]

S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel
symbolic execution for automated real-world software
testing. In Proceedings of the 6th ACM SIGOPS Euro-
pean Conference on Computer Systems, pages 183—198.
ACM Press, 2011.

C. Cadar and K. Sen. Symbolic execution for software
testing: three decades later. Communications of the
ACM, 56(2):82-90, 2013.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE : Automatically Generating Inputs
of Death. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, New York,

NY, USA, 2006. ACM.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and Automatic Generation of High-coverage Tests for
Complex Systems Programs. In Proceedings of the 8th
USENIX Symposium on Operating System Design and
Implementation, pages 209-224, Berkeley, CA, USA,
2008. USENIX Association.

C. Cadar, D. Dunbar, and D. R. Engler. KLEE
Coreutils Experiment. http://klee.github.io/klee/
CoreutilsExperiments.html, 2008.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Un-
leashing Mayhem on Binary Code. In Proceedings of the
83rd IEEE Symposium on Security and Privacy, pages
380-394, Washington, DC, USA, 2012. IEEE Computer
Society.

V. Chipounov, V. Kuznetsov, and G. Candea. S2E:
A platform for in-vivo multi-path analysis of software
systems. In Proceedings of the 16th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 265—278, New
York, NY, USA, 2011. ACM.

P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic
crosschecking of floating-point and SIMD code. Proceed-
ings of the 6th ACM SIGOPS European conference on
Computer Systems, pages 315-328, 2011.

L. De Moura and N. Bjgrner. Z3: An Efficient SMT
Solver. In Proceedings of 14th International Conference
on Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 337-340, Berlin, Heidelberg, 2008.
Springer-Verlag.

I. Dillig, T. Dillig, and A. Aiken. Sound, Complete
and Scalable Path-Sensitive Analysis. In Proceedings of
the 29th ACM Conference on Programming Language
Design and Implementation, pages 270-280, New York,
NY, USA, 2008. ACM.

J. Filliatre and S. Conchon. Type-safe modular hash-
consing. In Proceedings of the Workshop on ML, pages
12-19, New York, NY, USA, 2006. ACM.

C. Flanagan and J. Saxe. Avoiding exponential explo-
sion: Generating compact verification conditions. In
Proceedings of the 28th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages
193-205, New York, NY, USA, 2001. ACM.


http://sites.google.com/site/symexbib
http://sites.google.com/site/symexbib
http://klee.github.io/klee/CoreutilsExperiments.html
http://klee.github.io/klee/CoreutilsExperiments.html

[25]

[27]

[29]

[30]

[31]

[33]

[34]

[35]

P. Godefroid. Compositional Dynamic Test Generation.
In Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 47-54, New York, NY, USA, 2007. ACM.

P. Godefroid, N. Klarlund, and K. Sen. DART : Directed
Automated Random Testing. In Proceedings of the 26th
ACM Conference on Programming Language Design and
Implementation, New York, NY, USA, 2005. ACM.

P. Godefroid, M. Y. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. In Proceedings of the 15th
Network and Distributed System Security Symposium.
The Internet Society, 2008.

P. Godefroid, M. Y. Levin, and D. Molnar. SAGE:
Whitebox Fuzzing for Security Testing. Communications
of the ACM, 55(3):40-44, 2012.

E. Goto. Monocopy and Associative Algorithms in
Extended Lisp. Technical Report TR-74-03, University
of Tokyo, 1974.

T. Hansen, P. Schachte, and H. Sgndergaard. State
Joining and Splitting for the Symbolic Execution of
Binaries. Runtime Verification, pages 76-92, 2009.

W. Howden. Methodology for the Generation of Pro-
gram Test Data. IEEFE Transactions on Computers,
C-24(5):554-560, 1975.

J. Kinder and H. Veith. Jakstab: A Static Analysis Plat-
form for Binaries. In Proceedings of the 20th Interna-
tional Conference on Computer Aided Verification, pages
423-427, Berlin, Heidelberg, 2008. Springer-Verlag.

J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385-394, 1976.

A. Koelbl and C. Pixley. Constructing Efficient Formal
Models from High-Level Descriptions Using Symbolic
Simulation. International Journal of Parallel Program-
ming, 33(6):645-666, Dec. 2005.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Effi-
cient state merging in symbolic execution. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 193—204,
New York, NY, USA, 2012. ACM.

C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and
Runtime Optimization, pages 75—-86, Washington, DC,
USA, 2004. IEEE Computer Society.

K. R. M. Leino. Efficient weakest preconditions. Infor-
mation Processing Letters, 93(6):281-288, 2005.

12

(38]

(39]

(40]

(41]

(42]

(43]

[44]

(45]

(46]

(47]

(48]

(49]

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tols with
Dynamic Instrumentation. In Proceedings of the 26th
ACM Conference on Programming Language Design and
Implementation, pages 190—200, New York, NY, USA,
2005. ACM.

P. D. Marinescu and C. Cadar. Make test-zesti: A sym-
bolic execution solution for improving regression testing.
In Proceedings of the 34th International Conference on
Software Engineering, pages 716—726, Piscataway, NJ,
USA, 2012. IEEE Press.

Mayhem. 1.2K Crashes in Debian, 2013. URL
http://lists.debian.org/debian-devel/2013/06/
msg00720.html.

Mayhem. Open Source Statistics & Analysis, 2013. URL
http://www.forallsecure.com/summaries.

D. Molnar, X. Li, and D. Wagner. Dynamic test genera-
tion to find integer bugs in x86 binary linux programs. In
Proceedings of the USENIX Security Symposium, pages
67-82, 2009.

C. S. Pasareanu and W. Visser. A survey of new trends
in symbolic execution for software testing and analysis.
International Journal on Software Tools for Technology
Transfer, 11(4):339-353, Aug. 2009.

A. J. Romano. Linux Bug Release, July 2013. URL
http://www.bugsdujour.com/release/.

E. J. Schwartz, T. Avgerinos, and D. Brumley. All You
Ever Wanted to Know about Dynamic Taint Analy-
sis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). In Proceedings of the 81st IEEE
Symposium on Security and Privacy, pages 317-331,
Washington, DC, USA, 2010. IEEE Computer Society.

K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of the 13th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pages 263-272, New York,
NY, USA, 2005. ACM.

P. Tu and D. Padua. Efficient building and placing
of gating functions. In Proceedings of the 16th ACM
Conference on Programming Language Design and Im-
plementation, pages 47-55, New York, NY, USA, 1995.
ACM.

Y. Xje and A. Ajken. Scalable error detection using
boolean satisfiability. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 351-363, New York, NY,
USA, 2005. ACM.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Computing Surveys,
29(4):366—427, 1997.


http://lists.debian.org/debian-devel/2013/06/msg00720.html
http://lists.debian.org/debian-devel/2013/06/msg00720.html
http://www.forallsecure.com/summaries
http://www.bugsdujour.com/release/

	INTRODUCTION
	OVERVIEW
	Testing Metrics
	Dynamic Symbolic Execution (DSE)
	Static Symbolic Execution (SSE)

	VERITESTING
	The Algorithm
	CFG Recovery
	Transition Point Identification & Unrolling
	Static Symbolic Execution
	Transition Point Finalization

	MERGEPOINT ARCHITECTURE
	Overview
	Distributed Infrastructure
	A Hash-Consed Expression Language

	IMPLEMENTATION
	EVALUATION
	Bug Finding
	Node Coverage
	Path Coverage
	Checking Debian
	Discussion

	RELATED WORK
	CONCLUSION
	REFERENCES

