
Cleaning up Erlang Code is a Dirty Job
but Somebody’s Gotta Do It

Thanassis Avgerinos
School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

ethan@softlab.ntua.gr

Konstantinos Sagonas
School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

kostis@cs.ntua.gr

Abstract
This paper describes opportunities for automatically moderniz-
ing Erlang applications, cleaning them up, eliminating certain bad
smells from their code and occasionally also improving their per-
formance. In addition, we present concrete examples of code im-
provements and our experiences from using a software tool with
these capabilities, tidier, on Erlang code bases of significant size.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

General Terms Design, Languages

Keywords program transformation, refactoring, code cleanup,
code simplification, Erlang

1. Introduction
Most programmers write code. Good programmers write code that
works. Very good programmers besides writing code that works
also rewrite their code in order to simplify it, clean it, and make
it more succinct, modern and elegant. While there will probably
never be any real substitute for very good programmers, one might
wonder whether there is some intrinsic reason why certain code
rewriting tasks cannot be automated and become part of the devel-
opment tool suite so that even good programmers can readily and
effortlessly employ them on their code.

This question has been bothering us for quite some time now, in
Erlang and elsewhere. Rather than just pondering it, we decided to
embark on a project aiming to automate the modernization, clean
up and simplification of Erlang programs. We started by standing
on the shoulders of erl tidy, a module of the syntax tools
application of Erlang/OTP written by Richard Carlsson, but as we
will soon see we have significantly extended it in functionality,
features and user-friendliness. The resulting tool is called tidier.

Tidier is a software tool that modernizes and cleans up Erlang
code, eliminates certain bad smells from it, simplifies it and im-
proves its performance. In contrast to other refactoring tools for
Erlang, such as RefactorErl [9] and Wrangler [7], tidier is com-
pletely automatic and not tied to any particular editor or IDE. In-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-507-9/09/09. . . $5.00

stead, tidier comes with a suite of code refactorings that can be
selected by its user via appropriate command-line options and ap-
plied in bulk on a set of modules or applications. This paper pro-
vides only a bird’s eye view of the transformations currently per-
formed by tidier; a complete description of tidier and its capabili-
ties is presented in a companion paper [11]. Instead, the main goal
of this paper is to report our experiences from using tidier, shed
light on some opportunities for code cleanups on existing Erlang
source code out there and raise the awareness of the Erlang com-
munity on these issues.

The next section contains a brief presentation of tidier. The
main section of this paper, Section 3, gives a captule review for
each refactoring currently performed by tidier and shows interest-
ing code fragments we have encountered while trying out tidier
on various open source Erlang applications. Section 4 presents ta-
bles showing the number of opportunities for tidier’s refactorings
on several code bases of significant size and discusses tidier’s ef-
fectiveness. Section 5 presents characteristics of Erlang code that
currently prevent tidier from performing more aggressive refactor-
ings, while at the same time preserving its main characteristics, and
discusses planned future improvements. The paper ends with some
concluding remarks.

2. Tidier: Characteristics and Overview
From the beginning we set a number of primary goals for tidier:

• Tidier should support a fully automatic mode, meaning that
all the refactorings should be such that they can applied on
programs without user confirmation.
• Tidier should be flexible. Users should be able to decide about

the set of refactorings that they want from tidier and, if they
choose so, supervise or even control the refactorings that are
performed.
• Tidier should never be wrong. Due to its fully automatic na-

ture, tidier should perform a refactoring only if it is abso-
lutely certain that the transformations performed are semantics-
preserving, even if this comes at the cost of missing some op-
portunity or performing some weaker but safer refactoring.
• Tidier’s refactorings should be natural and as good as they get.

The resulting code should, up to a certain extent, resemble the
code that experienced Erlang programmers would have written
if they performed these refactorings by hand.
• Tidier should be easy to use and not be bound to any particular

editor or IDE.
• Tidier should be fast. So fast that it can be included in the typi-

cal make cycle of applications without imposing any significant
overhead; ideally, an overhead that is hard to notice.

Figure 1. Tidier in action: simplifying the source code of a file from the inviso application of Erlang/OTP R13B.

Furthermore, we set a list of criteria that would serve as indica-
tors of whether a specific refactoring should be performed by tidier.
The transformations should result in code

modernizations: tidier should remove obsolete language constructs
and use the most modern construct for the job.

simplifications: The resulting code should be shorter, simpler and
therefore more elegant.

with fewer redundancies: The resulting code should contain fewer
redundancies than the original version.

with the same or better performance: The new code should not de-
teriorate in performance and if possible become even faster.

Modes of using tidier One of our goals has been that tidier should
be very easy to use. Indeed, the simplest way to use tidier on some
Erlang file is via the command:

> tidier myfile.erl

If all goes well, this command will automatically refactor the code
of myfile.erl and overwrite the contents of the file with the re-
sulting source code (also leaving a backup file in the same direc-
tory). Multiple source files can also be given. Alternatively, the user
can tidy a whole set of applications by a command of the form:

> tidier applic1/src ... applicN/src

which will tidy all *.erl files somewhere under these directories.
Both of these commands will apply the default set of transforma-
tions on all files. If only some of the transformations are desired,
the user can select them via appropriate command-line options. For
example, one can issue the command:

> tidier --guards --case-simplify myfile.erl

to only rewrite guards to their modern counterparts (Section 3.1)
and simplify all case expressions (Section 3.3) of myfile.erl.
We refer the reader to tidier’s manual for the complete and up-to-
date set of command-line options.

A very handy option is the -n (or --no-transform) option
that will cause tidier to just print on the standard output the list

of transformations that would be performed on these files, together
with their lines, without performing them. Alternatively the user
can use the -g (or --gui) option to invoke tidier’s GUI and per-
form refactoring interactively. We expect that novice tidier users
will probably prefer this mode of using tidier, at least initially.

Let us examine tidier’s GUI. Figure 1 shows tidier in action. In
fact, the snapshot depicts tidier refactoring a file from the inviso
application of Erlang/OTP R13B. Tidier has identified some code
as a candidate for simplification and shows the final version of this
code to its user. What the snapshot does not show is that that the
simplification involves three different refactorings and that tidier
has previously shown all these refactorings, one after the other,
to its user. At the point when the snapshot is taken, Tidier’s GUI
shows the old code (on the left) and the new code (on the right);
the code parts that differ between the two versions are coloured
appropriately (with red color the old excerpt of the code and with
green the new). At this point, the user can either press the “Use
suggested version” button to accept tidier’s transformation or the
“Keep original version” button to bypass it. In either case, tidier
will continue with the next refactoring or exit if this is the last one.

As a side comment, at some point during tidier’s development
we were thinking of giving the user the possibility to edit the code
on the right (i.e., allowing the user to fine-tune tidier’s refactor-
ings), but we have given up on this idea as it requires dealing with
too many issues which are peripheral to the main goals of tidier
(e.g., how should tidier continue if the user inputs code which is
syntactically erroneous, should there be an “undo” option, etc.).
The user can and should better use an editor for such purposes.

3. Transformations Performed by Tidier
Let us now see the transformations that tidier performs.

3.1 Transformations inherited from erl tidy

Some of tidier’s transformations were inherited from the erl tidy
module of Erlang/OTP’s syntax tools application. They are all
quite simple but, since they are part of tidier and the basis for our
work, we briefly describe them here.

Modernizing guards
For many years now, the Erlang/OTP system has been supporting
two sets of type checking functions: old-style (atom/1, binary/1,
integer/1, . . .) and new-style ones (is atom/1, is binary/1,
is integer/1, . . .). All this time, the implicit recommendation
has been that applications should gradually convert to using new-
style guards, but not all applications have done so. Those that have
not recently got one more incentive to do so: the compiler of the
R13B release of Erlang/OTP stopped being silent about uses of old-
style guards and generates warnings by default.

Note that the modernization of guards is both a rather tedious
job for programmers and a task that cannot be automated easily.
For example, it cannot be performed by a global search and replace
without the programmer’s full attention or by a simple sed-like
script that does not understand what is a guard position in Erlang.
Consider the following Erlang code which, although artificial and
of really poor code quality, is syntactically valid. It is probably not
immediately obvious to the human eye where the guard is.

-module(where_is_the_integer_guard).
-export([obfuscated_integer_test/1]).

obfuscated_integer_test(X) ->
integer(X) =:= integer.

integer(X) when (X =:= infinity);
integer(X) -> integer;
integer(_) -> not_an_integer.

In contrast, for an automated refactoring tool like tidier, which
understands Erlang syntax, the modernization of guards is a simple
and straightforward task.

Eliminating explicit imports
This transformation eliminates all import statements and rewrites
all calls to explicitly imported functions as remote calls as shown:

-import(m1, [foo/1]).
-import(m2, [bar/2]).

t(X) ->
case foo(X) of
...

bar(A, B),
...

=⇒

t(X) ->
case m1:foo(X) of
...

m2:bar(A, B),
...

Admittedly, to a large extent the eliminating imports refactoring is
a matter of taste. Its primary goal is not to make the code shorter but
to improve its readability and understandability by making clear to
the eye which calls are calls to module-local functions and which
are remote calls. In addition, in large code bases, it makes easier to
find (e.g. using tools like Unix’s grep) all calls to a specific m:f
function of interest. Of course, it is possible to do the above even
in files with explicit imports, but it is often more difficult.

Eliminating appends and subtracts
This is a very simple refactoring that substitutes all occurrences
of calls to lists:append/2 and lists:subtract/2 functions
with the much shorter equivalent operators ++ and --. The main
purpose of this refactoring is to reduce the size of source code but
also improve readability.

Transforming maps and filters to list comprehensions
This is a modernization refactoring that involves the transforma-
tion of lists:map/2 and lists:filter/2 to an equivalent list
comprehension. The goals of this transformation are threefold: (a)
reduce the source code size; (b) express the mapping or filtering of

a list in a more elegant way and (c) increase the opportunities for
further refactorings that involve list comprehensions as we will see.

Transforming fun expressions to functions
This is the Erlang analogue of the extract method refactoring in
object oriented languages [5]. This particular refactoring removes
fun expressions from functions and transforms them into module
local functions. This transformation primarily aims at improving
code readability but can also be used for detecting opportunities
for clone removal as also noted by the developers of Wrangler [6].

3.2 Simple transformations
From this point on, all transformations we present are not per-
formed by erl tidy. We start with the simple ones.

Transforming coercing to exact equalities and inequations
In the beginning, the Erlang Creator was of the opinion that the only
reasonable numbers were arbitrary precision integers and conse-
quently one equality (==) and one inequation (/=) symbol were suf-
ficient for comparing between different numbers. At a later point, it
was realized that some programming tasks occasionally also need
to manipulate floating point numbers and consequently Erlang was
enriched by them. Most probably, because C programmers were
accustomed to == having coercing semantics for numbers, compar-
ison operators for exact equality (=:=) and inequation (=/=) were
added to the language. These operators perform matching between
numbers. Up to this point all is fine. The problem is that in 99%
of all numeric comparisons, Erlang programmers want matching
semantics but use the coercing equality and inequation operators
instead, probably unaware of the distinction between them or its
consequences for readability of their programs by others.

Tidier employs local type analysis to find opportunities for
transforming coercing equalities and inequation with an integer to
their matching counterparts. The analysis, although conservative, is
often quite effective. The transformation itself is trivial.

Modernizing functions
As the Erlang language and its implementation evolve, some library
functions become obsolete. These functions typically get replaced
by some other function with similar functionality. Occasionally a
new function which is cleaner and/or more efficient than the old
one is added in the library and recommended as their replacement.

As a rather recent such example, we discuss in detail the case
of the commonly used library function lists:keysearch/3. This
function returns either a pair of the form {value,Tuple} or the
atom false. Throughout the years, it was repeatedly noticed by
various Erlang programmers that Tuple is a tuple, a whole tuple
and nothing but a tuple, so wrapping it in another tuple in order
to distinguish it from the atom false is completely unnecessary.
As a result, R13 introduced the library function lists:keyfind/3
which has the functionality of lists:keysearch/3 but instead re-
turns either Tuple or false. Notice that a simple function renam-
ing refactoring and removing the value wrapper do not suffice in
this case. To see this, consider the following excerpt from the code
of Erlang/OTP R13B’s lib/stdlib/src/supervisor.erl:800:

case lists:keysearch(Child#child.name, Pos, Res) of
{value, _} -> {duplicate_child, Child#child.name};
_ -> check_startspec(T, [Child|Res])

end

To preserve the semantics, this code should be changed to:

case lists:keyfind(Child#child.name, Pos, Res) of
false -> check_startspec(T, [Child|Res]);
_ -> {duplicate_child, Child#child.name}

end

and indeed this is the transformation that tidier performs, based
on type information about the return values of the two functions.
Moreover, notice that there are calls to lists:keysearch/3 that
cannot be changed to lists:keyfind/3. One of them, where the
matching is used as an assertion, is shown below:

...
{value, _} = lists:keysearch(delete, 1, Query),
...

This particular transformation involving lists:keysearch/3 is
just one member of a wider set of similar function modernizations
that are currently performed by tidier. Their purpose is to assist pro-
grammers with software maintenance and upgrades. Judging from
the number of obsolete function warnings we have witnessed re-
maining unchanged across different releases, both in Erlang/OTP
and elsewhere, it seems that in practice updating deprecated func-
tions is a very tedious task for Erlang programmers to perform man-
ually.

Record transformations
The record transformations refactoring refers to a series of record-
related transformations that are performed by tidier. Detailed ex-
amples can be found in the companion paper [11] but briefly the
refactoring consists of three main transformation steps: (i) convert-
ing is record/[2,3] guards to clause matchings; (ii) generat-
ing fresh variables for the record fields that are used in the clause
and matching them with the corresponding fields in the clause pat-
tern; (iii) replacing record accesses in the clause body with the new
field variables. Record transformations lead to shorter and cleaner
code, improve code readability, may trigger further refactorings,
and when applied en masse they can even improve performance.

3.3 Transformations that eliminate redundancy
Various refactorings specialize the code and remove redundancies.

Specializing the size/1 function
Tidier employs this refactoring to find opportunities to special-
ize the size/1 function. Since Erlang/OTP R12 there exist two
new BIFs that return the size of tuples (tuple size/1) and bi-
naries (byte size/1). By performing a local type analysis, tidier
automatically performs this substitution whenever possible. Such
a refactoring has a lot of benefits: (i) modernizes the code; (ii)
makes the programmers’ intentions about types clear rather than
implicit; (iii) assists bug detection tools like Dialyzer [8] to detect
type clashes with less effort; (iv) slightly improves the performance
of programs; and (v) often triggers further simplifications.

Simplifying guard sequences
This refactoring removes redundant guards and simplifies guard se-
quences. Some examples are shown below (the when is not shown)
where we have taken the liberty to combine guard simplifications
with some other refactorings we have previously introduced.

is_list(L), length(L) > 42 =⇒ length(L) > 42

is_integer(N), N == 42 =⇒ N =:= 42

is_tuple(L), size(T) < 42 =⇒ tuple_size(T) < 42

Such refactorings reduce the code size (both source and object) and
also improve performance.

Structure reuse
The structure reuse refactoring is quite similar to (and inspired
from) transformations that optimizing compilers perform. Identi-
cal structures (tuples or lists) in the same clause containing fully

evaluated terms (i.e., not calls) as subterms are identified by tidier
and their first occurrences are assigned to fresh variables. When the
identification phase is over, tidier simply replaces all subsequent
occurrences of the identical structures with the new variables. This
refactoring reduces the code size and also improves performance.

Straightening case expressions
We use the term straightening to describe the refactoring of a case
expression to a matching statement. Such a refactoring can only be
applied when the case expression has only one alternative clause.
Tidier identifies those cases and performs this transformation pro-
vided that the body of the case does not contain any comments
(presumably commented-out alternative case clauses or some mes-
sage that the treatment in the case body is currently incomplete).

Temporary variable elimination
This is another refactoring inspired from compiler optimizations,
namely from copy propagation. Temporarily storing an interme-
diate result in a variable to be used in the immediately following
expression is actually commonplace in almost all programming
languages. Tidier, by performing this refactoring, eliminates the
temporary variable and replaces it with its value. This transfor-
mation, combined with the straightening refactoring of the previ-
ous paragraph can lead to significant simplifications. For example,
consider the following fragment from the development version of
Ejabberd’s source code (file src/ejabberd c2s.erl:1951, with
one variable renamed so that the code fits here):

get_statustag(P) ->
case xml:get_path_s(P, [{elem, "status"}, cdata]) of
ShowTag -> ShowTag

end.

by straightening the case expression and eliminating the temporary
variable the code will be transformed by tidier to:

get_statustag(P) ->
xml:get_path_s(P, [{elem, "status"}, cdata]).

However, if tidier applied this refactoring aggressively, we
would end up with code ’simplifications’ that would look com-
pletely unnatural and most probably would never be performed
by a programmer. An example of unwanted behaviour from this
refactoring is illustrated below:

get_results(BitStr) ->
Tokens = get_tokens(BitStr),
ServerInfo = get_server_info(Tokens),
process_data(ServerInfo).

6⇓
get_results(BitStr) ->

process_data(get_server_info(get_tokens(BitStr))).

Since only few Erlang programmers would consider the resulting
code an improvement over the original one as far as code readabil-
ity is concerned, tidier does not perform such refactorings.

Instead, tidier performs the temporary variable elimination
refactoring when:

• The variable that was used to store the temporary result is
eventually used to return the result of a clause (as in the first
example we saw).
• It is determined that such a refactoring can lead to further

and more radical refactorings later on (such as the ones we
will present in Section 3.4). In this case, to ensure that such
refactorings are possible after the transformation, tidier has
to perform a speculative analysis about the result of further
refactorings after this transformation.

Simplifying expressions
While reviewing Erlang code fragments, we have come across
a conglomeration of expression simplifications that could be
achieved just by applying some simple transformations. Specifi-
cally, a very frequent case involved the simplification of boolean
case and if expressions.

As an actual such example, the first transformation of Fig-
ure 2 shows the simplification of source code from Erlang Web
(file wparts-1.2.1/src/wtype time.erl:177). In this case the
code will be simplified further by tidier when the is between/3
guard Erlang Enhancement Proposal [10] is accepted and by un-
folding the lists:all/2 call as shown in the second transforma-
tion of the same figure. This last step is not done yet.

is_valid_time({H1, H2, H3}) ->
Hour = if (H1 >= 0) and (H1 < 24) -> true;

true -> false
end,

Minute = if (H2 >= 0) and (H2 < 60) -> true;
true -> false

end,
Sec = if (H3 >= 0) and (H3 < 60) -> true;

true -> false
end,

lists:all(fun(X) -> X == true end,
[Hour, Minute, Sec]).

⇓
is_valid_time({H1, H2, H3}) ->

Hour = (H1 >= 0) and (H1 < 24),
Minute = (H2 >= 0) and (H2 < 60),
Sec = (H3 >= 0) and (H3 < 60),
lists:all(fun (X) -> X == true end,

[Hour, Minute, Sec]).

...
⇓

is_valid_time({H1, H2, H3}) ->
Hour = is_between(H1, 0, 23),
Minute = is_between(H2, 0, 59),
Sec = is_between(H3, 0, 59),
Hour andalso Minute andalso Sec.

Figure 2. A case of multiple if simplifications.

3.4 Simplification of list comprehensions
Although the list comprehension transformations that were inher-
ited from erl tidy are semantically correct, at times, the resulting
code was not what an expert Erlang programmer would have writ-
ten if she were transforming the code by hand. The refactorings in
this section describe a series of transformations that are supported
by tidier in order to improve the quality of the list comprehensions
that are produced and at the same time simplify them even more by
using the refactorings that were presented in the previous sections.

Fun to direct call
This is a very simple transformation. It is typically performed in
conjunction with the refactoring that transforms a fun expression
to a local function (Section 3.1), and transforms the application of
a function variable to some arguments to a direct call to the local
function with the same argument.

Inlining simple and boolean filtering funs
A simple fun within a lists:map/2 or lists:filter/2 which
is defined by a match all clause without guards can be inlined when

the map or filter call is transformed to a list comprehension.
This simplifies the resulting code and simultaneously makes it more
appealing and natural to the programmer’s eye. We illustrate it:

lists:filter(fun (X) -> is_gazonk(X) end, L)

⇓
[X || X <- L, is_gazonk(X)]

One more case where it is possible to do a transformation similar
to the above is when the fun is used in lists:filter/2 and
defines a total boolean function (i.e., a function that does not
impose any constraints on its argument) as the code below (from
Erlang/OTP R13B’s lib/kernel/src/pg2.erl:278):

del_node_members([[Name, Pids] | T], Node) ->
NewMembers =
lists:filter(fun(Pid) when node(Pid) =:= Node -> false;

(_) -> true
end, Pids),

...

which tidier automatically transforms to:

del_node_members([[Name, Pids] | T], Node) ->
NewMembers = [Pid || Pid <- Pids, node(Pid) =/= Node],
...

Deforestation in map+filter combinations
Some nested calls to lists:map/2 and lists:filter/2 are
transformed to a single list comprehension by tidier, thus elimi-
nating the intermediate list and effectively performing deforesta-
tion [13] at the source code level. (The companion paper [11]
contains an interesting such example.) Whenever the calls to map
and filter are not nested, tidier performs a speculative analy-
sis employing the temporary result elimination refactoring from
Section 3.3 to see if this can create further opportunities for defor-
estation. In either case, tidier will perform the deforestation only
in cases it is certain that doing so will not alter the exception be-
haviour of the code (e.g., miss some exception that the original
code generates). We will come back to this point in Section 5.

Zipping and unzipping
In general, type information (hard-coded or automatically inferred
through analysis) can radically improve the resulting refactorings.
For example, tidier has hard-coded information that the result of
lists:zip/2 is a list of pairs. This allows tidier to perform func-
tion inlining in cases that it would not have been possible without
such information. It also prepares tidier for the possibility that com-
prehension multigenerators become part of the language.

Since tidier is treating calls to lists:zip/2 specially, it felt
natural that calls to lists:unzip/1 would also receive special
treatment. One very interesting case appears in the source code
of disco-0.2/master/src/event server.erl:123. We show
tidier performing a non-trivial code transformation including this
refactoring in Figure 3.

3.5 Transformations that reduce the complexity of programs
One of the blessings of high-level languages such as Erlang is that
they allow programmers to write code for certain programming
tasks with extreme ease. Unfortunately, this blessing occasionally
turns into a curse: programmers with similar ease can also write
code using a language construct that has the wrong complexity for
the task.

Perhaps the most common demonstration of this phenomenon is
unnecessarily using the length/1 built-in function as a test. While

Figure 3. Tidier simplifying the code of disco-0.2/master/src/event server.erl.

this is something we have witnessed functional programming
novices do also in other functional languages (e.g., in ML), the
situation is more acute in Erlang because Erlang allows length/1
to also be used as a guard. While most other guards in Erlang have a
constant cost and are relatively cheap to use, the cost of length/1
is proportional to the size of its argument. Erlang programmers
sometimes write code which gives the impression that they are
totally ignorant of this fact.

Consider the following code excerpt from Erlang/OTP R13B’s
lib/xmerl/src/xmerl validate.erl:542:

star(_Rule,XML,_,_WSa,Tree,_S) when length(XML) =:= 0 ->
{[Tree],[]};

star(Rule,XMLs,Rules,WSaction,Tree,S) ->
... % recursive case of star function here ...
star(Rule,XMLs2,Rules,WSaction,Tree++WS++[Tree1],S)

end.

The use of length/1 to check whether a list is empty is totally
unnecessary; tidier will detect this and transform this code to:

star(_Rule,[],_,_WSa,Tree,_S) ->
{[Tree],[]};

star(Rule,XMLs,Rules,WSaction,Tree,S) ->
... % recursive case of star function here ...
star(Rule,XMLs2,Rules,WSaction,Tree++WS++[Tree1],S)

end.

thereby changing the complexity of this function from quadratic to
linear.

The above is not a singularity. Tidier has discovered plenty
of Erlang programs which use length to check whether a list is
empty. Occasionally some programs are not satisfied with travers-
ing just one list to check if it is empty but traverse even more, as
in the code excerpt in Figure 4. Tidier will automatically trans-
form the two length/1 guards to exact equalities with the empty
list (e.g., AllowedNodes =:= []). Note that this transformation is
safe to do because the two lists:filter/2 calls which produce
these lists supply tidier with enough information that the two lists
will be proper and therefore the guards will not fail due to throwing
some exception.

Tidier has also located a clause with three unnecessary calls to
length/1 next to each other. The code is from the latest released
version of RefactorErl. Its refactoring is shown in Figure 5. Neither
we nor tidier understand the comment in Hungarian, but we are
pretty sure that the whole case statement can be written more
simply as:

SideEffs =/= [] orelse UnKnown =/= []
orelse DirtyFunc =/= []

choose_node({PrefNode, TaskBlackNodes}) ->
...
% ..and choose the ones that are not 100% busy.
AvailableNodes = lists:filter(fun({Node, _Load}) ->

...
end, AllNodes),

AllowedNodes = lists:filter(fun({Node, _Load}) ->
...

end, AvailableNodes),
if length(AvailableNodes) == 0 -> busy;

length(AllowedNodes) == 0 ->
{all_bad, length(TaskNodes), length(AllNodes)};

true ->
% Pick the node with the lowest load.
[{Node, _}|_] = lists:keysort(2, AllowedNodes),
Node

end;
...

Figure 4. Code with two unnecessary calls to length/1 (from the
code of disco-0.2/master/src/disco server.erl:280).

thereby saving five lines of code (eight if one also includes the
comments) and also avoiding the unnecessary tuple construction
and deconstruction.

Similar cases also exist which check whether a list contains just
one or more that one elements (e.g., length(L) > 1). Whenever
relatively easy to do, tidier transforms them as in the case shown
below (from the code of lib/ssl/src/ssl server.erl:1139)
where tidier has also eliminated the call to hd/1 as part of the
transformation.

decode_msg(<<_, Bin/binary>>, Format) ->
Dec = ssl_server:dec(Format, Bin),
if length(Dec) == 1 -> hd(Dec);

true -> list_to_tuple(Dec)
end.

⇓
decode_msg(<<_, Bin/binary>>, Format) ->

Dec = ssl_server:dec(Format, Bin),
case Dec of

[Dec1] -> Dec1;
_ -> list_to_tuple(Dec)

end.

In some other cases though, the code also contains other guard
checks which complicate the transformation. For example, consider
function splice/1 from the source code of ErlIDE (located in file
org.erlide.core/erl/pprint/erlide pperl.erl:171):

Figure 5. Tidier simplifying the code of refactorerl-0.6/lib/refactorerl/src/referl expression.erl.

splice(L) ->
Res = splice(L, [], []),
case (length(Res) == 1) and is_list(hd(Res)) of
true -> no;
_ -> {yes, Res}

end.

Automatically transforming such code to something like the fol-
lowing is future work:

splice(L) ->
Res = splice(L, [], []),
case Res of
[Res1] when is_list(Res1) -> no;
_ -> {yes, Res}

end.

We intend to enhance tidier with more refactorings that detect
programming idioms with wrong complexity for the task and im-
prove programs in similar ways.

4. Effectiveness Across Applications
We have applied tidier to a considerable corpus of Erlang programs
both in order to ensure that our tool can gracefully handle most
Erlang code out there and in order to test its effectiveness. In this
section we report our experiences and the number of opportunities
for code cleanups detected by tidier on the code of the following
open source projects:1

Erlang/OTP This system needs no introduction. We just mention
that we report results on the source code of R13B totalling
about 1,240,000 lines of Erlang code. Many of its applications
under lib (e.g., hipe, dialyzer, typer, stdlib, kernel,
compiler, edoc, and syntax tools) had already been fully
or partially cleaned up by tidier. Consequently, the number of
opportunities for cleanups would have been even higher if such
cleanups had not already taken place.

Apache CouchDB is a distributed, fault-tolerant and schema-free
document-oriented database accessible via a RESTful HTTP/J-

1 Throughout its development, we have also applied tidier to its own source
code but, since we have been performing the cleanups which tidier were
suggesting eagerly, we cannot include tidier in the measurements.

SON API [1]. The CouchDB distribution contains ibrowse and
mochiweb as components. We used release 0.9.0 which con-
tains about 20,500 lines of Erlang code.

Disco is an implementation of the Map/Reduce framework for
distributed computing [2]. We used version 0.2 of Disco. Its
core is written in Erlang and consists of about 2,500 lines of
code.

Ejabberd is a Jabber/XMPP instant messaging server that allows
two or more people to communicate and collaborate in real-
time based on typed text [3]. We used the development version
of ejabberd from the public SVN repository of the project
(revision 2074) consisting of about 55,000 lines of Erlang code.

Erlang Web is an open source framework for applications based
on HTTP protocols [4]. Erlang Web supports both inets and
yaws webservers. The source of Erlang Web (version 1.3) is
about 10,000 lines of code.

RefactorErl is an refactoring tool that supports the semi-automatic
refactoring of Erlang programs [9]. We used the latest release
of RefactorErl (version 0.6). Its code base consists of about
24,000 lines of code.

Scalaris is a scalable, transactional, distributed key-value store
which can be used for building scalable Web 2.0 services [12].
We used the development version of scalaris from the public
SVN repository of the project (revision 278) consisting of about
35,000 lines of Erlang code. This includes the contrib direc-
tory of scalaris where the source code of Yaws [15] is also in-
cluded as a component.

Wings 3D is a subdivision modeler for three-dimensional ob-
jects [14]. We used the development version of wings from
the public SVN repository of the project (revision 608) con-
sisting of about 112,000 lines of Erlang code. This includes its
contrib directory.

Wrangler is a refactoring tool that supports the semi-automatic
interactive refactoring of Erlang programs [7] within emacs or
erlIDE, the Erlang plugin for Eclipse. We used the development
version of Wrangler from the public SVN repository of the
project (revision 678) consisting of about 42,000 lines of Erlang
code.

lines of code ne
w

gu
ard

s

ex
ac

t n
um

eri
c eq

ua
lity

li
st
s:
ke
ys
ea
rc
h/
3

rec
ord

matc
he

s

rec
ord

ac
ce

sse
s

si
ze

sim
pli

fyi
ng

gu
ard

s

str
uc

tur
e reu

se

str
aig

hte
n + c

as
e

sim
pli

fy

ma
p

to
co

mpre
he

ns
ion

fi
lt
er

to
co

mpre
he

ns
ion

de
for

est
ati

on
s

zi
p

+ u
nz
ip

le
ng
th

Erlang/OTP 1,240,000 2911 68 751 1805 2168 487 36 1467 77 564 115 4 12
CouchDB 20,500 22 9 8 6 27 31 2 88 3 38 1
Disco 2,500 11 2 12 2 9 14 11 5 1 2
Ejabberd 55,000 2 78 18 26 6 70 11 134 40 2
Erlang Web 10,000 7 11 37 1 12 1 1 15 6 35 7 1 2
RefactorErl 24,000 11 3 8 54 1 39 7 3 7
Scalaris 35,000 2 6 6 22 39 22 3
Wings 3D 112,000 10 13 45 1 24 26 166 11 25 10
Wrangler 42,000 6 28 141 1 1 110 7 236 47 5 14 2

Table 1. Number of tidier’s transformations on various Erlang source code bases.

For all projects with SVN repositories the revisions we mention
correspond to the most recent revision on the 12th of May 2009.

The number of opportunities for tidier’s transformations on
these code bases is shown on Table 1. From these numbers alone, it
should be obvious that detecting, let alone actually performing, all
these refactorings manually is an extremely strenuous and possibly
also error-prone activity. Tidier, even if employed only as a detector
of bad code smells, is worth the effort of typing its name on the
command line.

Naturally, the number of opportunities for refactorings that
tidier recognizes depends on two parameters: size and program-
ming style of a project’s code. As expected, the number of refac-
toring opportunities on the Erlang/OTP system is much bigger in
absolute terms than on all the other code bases combined. This is
probably due to the size of the code base and probably also due
to the fact that some applications of Erlang/OTP were developed
by many different programmers, often Erlang old-timers, over a
period of years. But we can also notice that it’s not only code size
that matters. The table also shows smaller code bases offering more
opportunities for refactoring than code bases of bigger size.

What Table 1 does not show is tidier’s effectiveness. For some
columns of the table (e.g., new guards, record matches) tidier’s
effectiveness is 100% by construction, meaning that tidier will
detect all opportunities for these refactorings and perform them
if requested to do so. For some other columns of the table (e.g.,
lists:keysearch/3, map and filter to list comprehension,
structure reuse, case simplify) tidier can detect all opportuni-
ties for these refactorings but might not perform them based on
heuristics which try to guess the intentions of programmers or
take aesthetic aspects of code into account. For some refactorings,
especially those for which type information is required, tidier’s ef-
fectiveness is currently not as good as we would want it to be. (We
will come back to this point in the next section.)

Table 2 contains numbers and percentages of numeric compar-
isons with == and /= that are transformed to their exact counter-
parts and numbers and percentages of calls to size/1 that get
transformed to byte size/1 or tuple size/1. As can be seen,
tidier’s current analysis is pretty effective in detecting opportuni-
ties of transforming calls to size/1 but quite ineffective when it
comes to detecting opportunities for transforming coercing equal-
ities and inequations. A global type analysis would definitely im-
prove the situation in this case. (However, bear in mind that achiev-
ing 100% on all programs is impossible since there are uses of ==/2

exact num. eq. size

Erlang/OTP 68 / 577 = 12% 487 / 645 = 75%
CouchDB 9 / 15 = 60% 31 / 64 = 48%
Disco 2 / 11 = 18% 9 / 9 = 100%
Ejabberd 6 / 11 = 55%
Erlang Web 11 / 15 = 73% 1 / 1 = 100%
RefactorErl 11 / 35 = 31%
Scalaris 5 / 6 = 83%
Wings 3D 13 / 46 = 28%
Wrangler 28 / 54 = 52% 1 / 1 = 100%

Table 2. Effectiveness of tidier’ refactorings requiring type info.

or size/1 that cannot be transformed to something else, even if
tidier were guided by an oracle.)

5. Conservatism of Refactorings
Despite the significant number of refactorings that tidier performs
on existing code bases, we stress again that tidier is currently
ultra conservative and careful to respect the operational semantics
of Erlang. In particular, tidier will never miss an exception that
programs may generate, whether deliberately or not.

To understand the exact consequences of this, we show a case
from the code of lib/edoc/src/otpsgml layout.erl:148
from Erlang/OTP R13B. The code on that line reads:

Functions = [E || E <- get_content(functions, Es)],

Although to a human reader it is pretty clear that this code is totally
redundant and the result of sloppy code evolution from similar code
(actually from the code of lib/edoc/src/edoc layout.erl),
tidier cannot simplify this code to:

Functions = get_content(functions, Es),

because this transformation will shut off an exception in case func-
tion get content/2 returns something other than a proper list.
To do this transformation, type information about the result of
get content/2 is required. Currently, tidier is guided only by a
function-local type analysis. Extending this analysis to the module
level is future work.

Type information can also come in very handy in rewriting
calls to lists:map/2 and lists:filter/2 to more succinct
list comprehensions. Without type information, tidier performs the
following transformation:

foo(Ps) -> lists:map(fun ({X,Y}) -> X + Y end, Ps).

⇓
foo(Ps) -> [foo_1(P) || P <- Ps].

foo_1({X,Y}) -> X + Y.

and cannot inline the body of the auxiliary function and generate
the following code:

foo(Ps) -> [X + Y || {X,Y} <- Ps].

because this better refactoring requires definite knowledge that Ps
is a list of pairs. Similar issues exist for refactorings involving
lists:filter/2. Despite being conservative, tidier is pretty ef-
fective. In the code of Erlang/OTP R13B, out of the 679 refactor-
ings of lists:map/2 and lists:filter/2 to list comprehen-
sions a bit more than half of them (347) actually use the inlined
translation.

We mentioned that tidier currently performs deforestation for
combinations of map and filter. A similar deforestation of
map+map combinations, namely the transformation:

L1 = lists:map(fun (X) -> m1:foo(X) end, L0),
L2 = lists:map(fun (X) -> m2:bar(X) end, L1)

6⇓
L2 = [m2:bar(m1:foo(X)) || X <- L0]

as also shown in the arrow is not performed by tidier because this
requires an analysis which determines that functions m1:foo/1 and
m2:bar/1 are side-effect free. Again, hooking tidier to such an
analysis is future work.

6. Concluding Remarks
This paper described opportunities for automatically moderniz-
ing Erlang applications, cleaning them up, eliminating certain bad
smells from their code, and occasionally also improving their per-
formance. In addition, we presented concrete examples of code im-
provements and our experiences from using tidier on code bases of
significant size.

As mentioned, tidier is completely automatic as a refactorer but
with equal ease can be used as a detector of opportunities for code
cleanups and simplifications. Tools that aid software development,
such as code refactorers, have their place in all languages, but it
appears that higher-level languages such as Erlang are particularly
suited for making the cleanup process fully or mostly automatic.
We intend to explore this issue more.

Acknowledgements
We thank Richard Carlsson, Björn Gustavsson, and Kenneth
Lundin for supportive comments and suggestions for refactorings.
We also thank Dan Gudmundsson: without the use of his wx appli-
cation, the user interface of tidier would have taken longer to write
and would probably look less aesthetically pleasing.

Finally, we thank all developers of projects mentioned in this
paper for publicly releasing their code as open source and giving us
plenty of opportunities to find nice examples for our paper.

References
[1] The CouchDB project, 2009. http://couchdb.apache.org/.

[2] Disco: Massive data, minimal code (version 0.2), Apr. 2009.
http://discoproject.org/.

[3] Ejabberd community site: The Erlang Jabber/XMPP daemon, 2009.
http://www.ejabberd.im/.

[4] Erlang Web, May 2009. http://www.erlang-web.org/.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
Reading, Massachusetts, 2001.

[6] H. Li and S. Thompson. Clone detection and removal for Erlang/OTP
within a refactoring environment. In Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 169–177, New York, NY, USA, Jan.
2009. ACM.

[7] H. Li, S. Thompson, G. Orösz, and M. Tóth. Refactoring with
Wrangler, updated: Data and process refactorings, and integration
with Eclipse. In Proceedings of the 7th ACM SIGPLAN Workshop on
Erlang, pages 61–72, New York, NY, USA, Sept. 2008. ACM.

[8] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story.
In C. Wei-Ngan, editor, Programming Languages and Systems:
Proceedings of the Second Asian Symposium (APLAS’04), volume
3302 of LNCS, pages 91–106. Springer, Nov. 2004.

[9] L. Lövei, Cs. Hoch, H. Köllő, T. Nagy, A. Nagyné-Vı́g, D. Horpácsi,
R. Kitlei, and R. Király. Refactoring module structure. In Proceedings
of the 7th ACM SIGPLAN Workshop on Erlang, pages 83–89, New
York, NY, USA, Sept. 2008. ACM.

[10] R. A. O’Keefe. Erlang Enhancement Proposal: is between/3, July
2008. http://www.erlang.org/eeps/eep-0016.html.

[11] K. Sagonas and T. Avgerinos. Automatic refactoring of Erlang
programs. In Proceedings of the Eleventh International ACM
SIGPLAN Symposium on Principles and Practice of Declarative
Programming, New York, NY, USA, Sept. 2009. ACM.

[12] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: Reliable
transactional P2P key/value store. In Proceedings of the 7th ACM
SIGPLAN Workshop on Erlang, pages 41–48, New York, NY, USA,
Sept. 2008. ACM.

[13] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Comput. Sci., 73(2):231–248, 1990.

[14] Wings 3D, 2009. http://www.wings3d.com/.

[15] Yaws: Yet another web server, 2009. http://yaws.hyber.org/.

http://couchdb.apache.org/
http://discoproject.org/
http://www.ejabberd.im/
http://www.erlang-web.org/
http://www.erlang.org/eeps/eep-0016.html
http://www.wings3d.com/
http://yaws.hyber.org/

	Introduction
	Tidier: Characteristics and Overview
	Transformations Performed by Tidier
	Transformations inherited from erl_tidy
	Simple transformations
	Transformations that eliminate redundancy
	Simplification of list comprehensions
	Transformations that reduce the complexity of programs

	Effectiveness Across Applications
	Conservatism of Refactorings
	Concluding Remarks

