15 Architectural Considerations for
Combinator Graph Reduction

Philip Koopman, Jr. and Peter Lee

15.1 Introduction

Lazy functional programming languages, such as SASL {33] and Haskell [15], possess a
number of theoretical properties that make them intriguing candidates for study. However,
relatively little is known about how (o implement these languages, despite the fact that
implementation techniques have long been the subject of research. In 1979 Turner [34]
described a technique for implementing lazy functional languages by a technique known
as SK-combinator reduction. This idea 1s based on the well-known observation from
combinatory logic that all of the variables in a functional program can be abstracted by
transforming 1t into an applicative expression involving only combinators. A combinator
1s simply a closed A-expression [5]. Three combinators of particular interest are called

S. K., and I;

S = AfAg Az (frXgx) (15.1)
K = JAr Ay (15.2)
I = Jaxur (15.3)

The crucial property is that any A-expression can be transformed into an expression
consisting solely of these combinators, by a so-called “bracket abstraction™ algorithm
[35]. (Actually, only § and K are necessary, as I = SKK. In practice, a handful of
other combinators, comprising what we shall refer to as the “Turner Set.” are also used
in order to reduce the size of the combinator expressions.) With all variables abstracted,
the resulting expression is easily represented as a binary tree with combinators appearing
at the leaves and the internal nodes representing application. As a further optimization,
the tree can be transformed into a graph in which the sharing of subgraphs denotes
the occurrence of common subexpressions in the combinator expression, cycles denote
recursion, and combinator definitions correspond to graph-rewriting rules. For example,
Figure 15.1 depicts the graph rewriting corresponding to the § combinator.

In this scheme, then, executing programs is a process of graph reduction. The left-most
“spine” of the graph is traversed until a combinator is encountered, at which point the
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Figure 15.1; Graph rewnte corresponding to the S combinator.

graph 1s rewrntten according to the corresponding rewrite rule. This process 1s consistently
repeated on the new graphs until finally an irreducible graph is produced, at which point
program execution 1s complete.

An advantage in efhciency is obtained from the sharing of subgraphs, so common
subexpressions need be reduced only once. Also, the language implementation over-
all becomes much simpler by virtue of the fact that variable substitution is, in effect,
encapsulated in a fixed set of simple rules for rewriting graphs. Indeed, a pure graph
reducer can be implemented quite easily and will often exhibit better performance than
implementations of lazy functional {anguages based on other approaches. Such simplic-
ity also lends itself to direct hardware implementation, as in SKIM [32] and NORMA
[28]. Sull, normal-order evaluation (or, more precisely, lazy evaluation) of functional
programs, even via combinator-graph reduction, is 1n practice much less efficient than
applicative-order (“eager”) evaluation. Lazy functional programming languages such as
Haskell require lazy evaluation, so a great deal of research has been directed towards
improving the efficiency of combinator-based techniques. One significant development
along these lines, first proposed by Hughes |16}, is the notion of supercombinators,
in which the observation 1s made that any function can be made into a combinator by
adding extra formal parameters corresponding to the free variables appearing in the func-
tion body. Supercombinator compilation produces a set of “tailor-made™ combinators for
each program, resulting in much larger-grain reduction steps and thus requiring fewer

reductions for evaluation.

15.2 A Study of Architectural Considerations

In this chapter, we explore the effects of computer architecture features on the effi-
ciency of graph reduction, and hence of lazy functional programming languages. In
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particular, we present the results of our expenments with an abstract machine for
reducing combinator graphs. The abstract machine. which we have called TIGRE
(the Threaded Interpretive Graph Reduction Engine), treats combinator graphs as seif-
modifying threaded programs, tn a manner similar to that described by Augusteijn and
van der Hocven [1]. We have found that this method seems to reduce combinator graphs
at a rate that compares quite favorably with previously reported techniques on similar
hardware. TIGRE maps remarkably easily and efficiently onto computer architectures
that allow a restricted form of self-modifying code [19,20]. This provides some indication
that the conventional “stored program™ orgamzation of computer systems (the so-called
“von Neumann” architecture') may be more appropriate for functional programming
language implementations than previously thought [3].

This 1s not to say, however, that present-day computer systems are well-equipped to
reduce combinator graphs. During our experimentation with TIGRE, the speed of graph
reduction on difterent hardware platforms repeatedly surprised us, in some cases failing
to meet expectations, and in other cases substanually exceeding predicted performance
levels. For example, a VAX &800 mainframe system [7] with a faster clock rate and
wider system bus than the DECstation 3100 [10] performed only 355,000 reduction
applications per second (RAPS). compared to the DECstation’s 470,000 RAPS. Further
expernimentation with the VAX implementation led to the discovery that its reduction rate
could be increased by 20% simply by making a small change to the code to partially
compensate for the write-no-allocate cache-management strategy used by that machine.

It was this unexpected behavior that prompted us to undertake a detatled study of the
architectural 1ssues affecting the efficiency of graph reduction, in particular the effect
of hardware-cache behavior. Our study begins with the simulation of a TIGRE graph
reducer running on a reduced-instruction-set computer with the following hardware-cache
parameters varied: cache size, cache organization. block size, associativity, memory
update policy, and write-allocation policy. The simulation proceeds in two stages, the
first stage being an exhaustive test of selected values for all combinations of parameters,
and shows that there are no local extrema in cache miss behavior as a function of cache
design choices. At this point we take the cache design of a real machine and simulate
the performance sensitivity with respect to variations of individual parameters for several
programs. As & check on the accuracy of our simulations, we compare the results with
measured performance on real hardware. From the results of this simulation study,
we can conclude that graph reduction in TIGRE depends on a write-allocate strategy
for good performance, and exhibits high spatial and temporai locality. Finally, on the
basis of our experiments, we examine possible architectural changes to the MIPS R2000

' Actually, credit for the notion of the stored program computer should be given to Eckert and Mauchly [12,
pg. 23]
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processor. The changes illustrate some of the differences between graph reduction and
more conventional methods for executing programs.

Before proceeding with the description of our experiments and analysis, we will first
briefly review the technique of combinator-graph reduction. This will then be followed
by a description of the TIGRE abstract machine and its implementation, as well as
a prehiminary report on its performance. Throughout this chapter we will concentrate
on SK-combinator reduction. The issues involved in SK-combinator reduction differ
somewhat from those for supercombinator reduction. Of particular importance in super-
combinator reduction 1s the interaction between compile-time analyses (such as strictness
analysis and sharing analysis) and the reducer. Promising approaches to supercombinator
reduction include TIM [11] and the “Spineless, Tagless, G-machine” {24]). The TIGRE
approach described 1n this paper extends naturally 1o supercombinator reduction. How-
ever, ke Norman [22]. we desire to study first the effects of architecture on pure graph
reduction, thereby isolating the effects of sophisticated compiler technology.

15.3 The TIGRE Abstract Machine

The major difficulties 1n performing graph reduction efficiently are in traversing the left
spine of the graph (referred to as “stack unwinding”) and in the analysis of graph-node
tags. Reduction or elimination of these costs can greatly improve performance. In this
section we shall begin by describing a straightforward mechanism for graph reduction
(based on the Chalmers G-Machine as described by Peyton Jones [25]). Then we shall
explain how self-modifying threaded code, as employed by TIGRE, is able to avoid
certain mnefficiencies present in the straightforward approach.

Figure 15.2 shows that graph nodes are typically represented by three one-word fields.
The first field 1s a tag for the values in the application node. This tag value is selected so as
to be an index value into an entry table containing addresses of action routines. Accessing
a node requires a double-indirection operation through the tag and entry tabie. On a
VAX architecture, unwinding a node while traversing the stack requires four instructions,

including a double-indirect jump through the entry table [25]:

movl Head(r0), r0
movl r0, -(%EP)
movl (r0), rl

Jmp *0 Unwind(rl)

One of the key points of TIGRE is the elimination of most of this overhead for
traversing tree nodes during the stack unwinding process. This can best be accomplished
simply by eliminating the need for tags, thereby eliminating the cost of tag interpretation.
In the following presentation, we will eliminate the tags in several stages.
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Figure 15.2: Simple scheme for graph-node tag analysis.
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Figurc 15.3: Basic structure of a graph node.

Figure 15.3 shows a generalized node representation which has tags associated with
both the left-hand and right-hand fields of the node. Figure 15.4 shows a tree for the
expression ((+ 11) 22), where + is the addition combinator, which we shall use as
a running example. The numbers next to the nodes serve as labels for our discussion.
Although only three tag types are shown in the example, typically more tag types are
used in actual implementations.

As a first step in eliminating tags, we shali replace the fields containing constant values
by pointers to indirection nodes (i.e., nodes involving the application of the I combinator).

pointer i COnst 22

comb + CONS! |1

Figure 15.4: Sample graph for the expression ( (+ 11) 22),
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Figure 15.5: Sample graph using indirection nodes.
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Figure 15.6: Sample graph using LIT nodes.

Figure 15.5 shows the result of this rewriting. Any graph can be rewritten so that constant
values are placed in ndirection nodes, and in fact this is a standard technique in graph
rewrniting [34]. For example, the + combinator, when executed, creates an indirection
node with the sum. This allows the fields of the root node of the original graph to be
overwritten by the result of the graph rewrite.

Now, constant values are only found as arguments to indirection combinators. If we
rename the I combinators in the left-hand sides of constant nodes as LIT combinators
(short for “literal value” combinators), as shown in Figure 15.6, the constant tag is no
longer needed, since the LIT combinator implicitly identifies the argument as a constant
value. All other special tags, including tags for other numeric types, can be eliminated by
defining new combinators (e.g., FLIT for floating point constants) in a similar manner.

The graph shown in Figure 15.6 now only has two tag types: combinator and pointer.
At this point, standard techniques can be used to reduce tag-checking costs. (See Chap-
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Figure 15.7: Sample graph with the spine stack.

ter 1 for a complete discussion of this point.) For instance, all nodes and therefore pointer
values can be aligned on 4-byte boundaries. The lowest bit of a cell’s contents can then be
used as a one-bit tag. In this case, the tag analysis for numeric constants has been replaced
by the need to reduce LIT combinators. However, the amount of tag checking on all other
cells has been reduced. This is the representation used for interpreted implementations of
TIGRE. For instance, in the C-based implementation, TIGRE loops while scanning the
lowest order bit of left-hand side cells to unwind the stack. When a non-pointer value
1s found, TIGRE then uses a case statement to jump to the correct action code.

154 Self-modifying Threaded Code

There is a key insight which provides approximately a twofold speedup 1n the execution
speed of TIGRE. This is gained by exploiting the hardware support for graph traversal
that already exists in most conventional processors.

The generic graph shown in Figure 15.7 is executed by traversing the leftmost spine,
placing pointers to ancestor -nodes onto a stack (the so-cailed “spine stack™). When
a combinator is encountered in the graph, some code to carry out the graph rewrite
1s executed. The data structure is controlling the execution of the program. Another,
more insightful, way to view this is that the data structure is itself a program with two
instruction types: pointer and combinator. Then graph reduction is essentially a process
of interpreting a self-modifying threaded program that happens to reside in the node
heap. In other words, the graph is a program that consists mainly of calls to subroutines.
These subroutines then contain calls to other subroutines, and so on until, finally, some
other executable code, which performs a graph rewrite, is found.
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The key idea is that the spine stack is actually a subroutine return stack for the threaded
program. As control flows from node O to node 1 to node 2 to node 3 in the graph of
Figure 15.7, these nodes are stored on the spine stack. Eventually, a rewriting of the
graph mvolving the right-hand side fields of these nodes will be performed. So, what
s actually needed on the stack are pointers to the right-hand side fields of each node.
If the left-hand sides of each node are viewed as subroutine call instructions, then the
return addresses which would be automatically saved on the return stack would be the
addresses of the right-hand fields of the spine of the graph, which is exactly the desired
behavior.

Combinator nodes, such as node 3 in Figure 15.7, contain some sort of token value
that invokes a combinator. At some point during program execution, this value will
have to be resolved to an address for a piece of graph-rewriting code to be executed,
so the actual code addresses of the combinator action routines can be stored instead of
token values. In fact, a subroutine call to the combinator code can be stored. so that the
address of the right-hand stde of node 3 will be pushed onto the spine stack, and the
combinator will have all its arguments pointed to by the spine stack (i.e.. the subroutine
return stack). A pleasant side effect of this scheme is that there is now only one type of
data 1n the graph: the pointer. Hence there is only one type of node, and therefore no
conditional branching or case analysis is required ar runtime. All nodes contain either
pointers to other nodes or pointers to combinator code. Figure 15.8 shows our running
example of ((+ 11) 22) compiled using this scheme. Since all node values (except the
right-hand sides of LIT nodes) are subroutine call instructions. we can simplify matters
by saying that each field contains a pointer that is interpreted as a subroutine call by the
TIGRE execution engine.

In the typical TIGRE tmplementation, graph nodes are represented by triples of 32-
bit cells. The first cell of each triple contains a subroutine call instruction while the
second and third cells of the triple contain the left-hand and right-hand sides of the node.,
respectively. The hardware’s native subroutine calling mechanism is used to traverse the
spine, using the subroutine return stack as the spine stack. Figure 15.9 shows the example
graph as it appears in the VAX assembly-language implementation of TIGRE. (Note that
the jsb is the fast VAX subroutine call instruction which only pushes the program
counter onto the return address stack, as opposed to the slower function call instructions
which automaticaliy allocate stack frames.) Thus, threaded code interpretation [6] is
performed by the C version of TIGRE.

Evaluation of a program graph is initiated by doing a subroutine call to the jsb node
of the root of a graph. The machine’s program counter then traverses the left spine
of the graph structure by executing the jsb instructions of the nodes following the
leftmost spine. When a node points to a combinator, the VAX simply begins executing
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Figure 15.8: A TIGRE graph with only subroutine call nodes.
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Figure 15.9: The VAX representation of a TIGRE graph.

the combinator code, with the return address stack providing addresses of the right-
hand sides of parent nodes for the combinator argument values. When graph nodes
are rewritten, only the pointer values {which are 32 bits in size on a VAX) need be
rewritten. The jsb opcode is initialized upon acquisition of heap space and thereafter

never modified.
TIGRE performs subroutine call operations down the left spine of the graph. When

combinators are reached, they pop their arguments from the return stack, perform graph
rewrites, and then jump to the new subgraph to continue traversing the new left spine.
The use of the return stack for graph reduction is different than for “normal” subroutines
in that subroutine returns are never performed on the pointers to the combinator arguments
but rather, the addresses are consumed from the return stack by the combinators. (This
seems to be a characteristic of other combinator reducers as well.)
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DO_S: DOI: DO_LIT:
need2{(r8,r7) movl *{sp),rb movl *{(sp)+,rll
movl *(sp)+,r6 movab 4(sp),sp rsb
movl ré6, (r8) Jmp (ré)
movl *{sp)., (xr7)}
movl 4(sp),rid DO_PLUS:
movl (r10),4(r7) DO IF: movl *(sp)+,r6
movl (rl0).4(r8) mov]l *(sp)+,I6 jsb (ré)
movab -2(r8),-4{(r10) jsb (xré6) movl *(s8p),ré
movab -2(r7), (xrl0) movl 4{(sp),rl0 pushl ril
movab 4(r8), (sp) tstl ril jsb (ré)
jmp (x6) jegl L39 addl2 (sp)+,rll

movl *(sp), (rl0) movl (s8p)+,xr9
L39: $DO_I,-4(rl10) movl $DO_LIT,-4(r9)
DO K: movl {(rl10)},ré6 movl rii, (r9)
movl *(8p),ré6 addl2 <8, s8p rsb
movab 8(sp), s8p Jmp (ré6)
jmp (r6)

Figure 15.10: VAX code listings for some TIGRE combinators.

The processor 1s in no sense interpreting the graph. It is directly execuiing the data
structure, using the hardware-provided subroutine call instructions to do the stack un-
winding. In our experiments, we have found that this technique exhibits performance
that compares favorably with other approaches described 1n the literature.

15.5 Implementing TIGRE

The availability of a fast subroutine-call instruction on most modern architectures makes
the TIGRE technique applicable, in theory, to most computers. In practice, however, there
are issues having to do with modifying the nstruction stream that make the approach
difficult to implement on many machines. These problems can be viewed as the result of
inappropriate tradeoffs (for the application of graph reduction) in system design, and not
the result of any inherent limitation of truly general-purpose CPUs. Inasmuch as graph
reduction is a self-modifying process, it is not surprising that a highly efficient graph
reduction implementation makes use of self-modifying techniques.

Figure 15.10 gives a sketch of the VAX-assembler implementation of the combinators
for the SKI combinator set. This code is a simple version written for clanty. The VAX
implementation actually in use has various small optimizations to eliminate redundant
memory reads and better exploit the pipeline of high-end VAX mainframe systems.
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In TIGRE, traversing the left spine is typically less expensive than rewriting the graph.
This leads to some novel design decisions, one of which affects the implementation ot
“projection” combinators such as I and K. The implementations of these combinators
as shown in Figure 15.10 do not modify the graph at all, but rather redirect the flow of
control of the graph evaluation, popping elements from the return stack as they execute.
K and I are two instances of the set of projection combinators which simply drop a
number of parent nodes while performing an indirection operation on the topmost node
on the spine stack. This optimization may degrade memory usage by, for example,
leaving subtrees attached to a K node when they would have otherwise been abandoned,
but our experience thus far has been that the speedup realized by avoiding graph rewrites
more than makes up for this inefficiency.

Another aspect of the TIGRE implementation is that it uses the same primitive op-
erations over and over again to implement combinators. Only a few primitives such as
“fetch the right-hand value of the parent node™ are needed to implement the standard
Turner Set of combinators. An assembly language of similar primitives can be used to
defined supercombinators for TIGRE, even on a special purpose hardware version, with

only a minimal set of machine operations.

15.6 TIGRE performance

TIGRE has been implemented in C, VAX assembler, and MIPS R2000 assembler. (An
initial exploration was carried out in Forth, a language noted for its support of threaded
code.) The C version uses a threaded interpretation as previously discussed. The VAX
assembler version uses the jsb instruction to perform subroutine-threaded execution of
the graph. The MIPS R2000 version uses a carefully written threaded interpretive loop,
because the architecture does not have a subroutine call instruction.

Figure 15.11 gives some performance figures for TIGRE. Simple stop-and-copy
garbage collection is used. The allocated heap space is small enough to force several
dozen garbage collection cycles in each benchmark. No sharing analysis or other opti-
mizations are used. The assembler versions show significant improvements over versions
compiled with an optimizing C compiler. The Fib benchmark program is the standard re-
cursive Fibonacci function. The Nfib program is the commonly reported benchmark that
tallies the number of recursions used in computing a Fibonacci function. Tak, NthPrime,
and 8Queens are lazy functional versions of other well-known benchmarks.

The DECstation 3100 is a 16.7 MHz MIPS R2000-based workstation. The VAX 8300
is a 22 MHz mainframe. The Cray Y-MP {26] is a vectorized supercomputer that has
a fast scalar processing unit. The Sun 3/75 system is a 16 MHz 68020 workstation
with no cache memory. For the C implementation on the Sun 3/75 workstation, the
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Plattorm Language | Combinators Benchmark Time Speed
{sec) | (NRAPS)
DECstation 3100 | assembler | SKI Fib(23) 2.20 495000
(16.7 MHz) Tumer Fib(23) 1.58 470000
NFib(23) 2.68 484000
Tak 12.58 420000
NthPrime(300) 2.60 364000
8Queens(20) 5.63 433000
supercombinators | Fib(23) (.36 2046000
NFib(23) 0.80 1626000
VAX 8800 assembler | SKI Fib(23) 2.82 387000
(22 MHz) Turner Fib(23) 2.10 355000
NFib(23) 3.55 366000
Tak 16.07 329000
NthPrime(300) 391 242000
8Queens(20) 8.33 293000
supercombinators | Fib(23) 1.22 611000
NFib(23) 0.97 1339000
Cray Y-MP C SKI Fib(23) 3.09 352000
(167 MHz) Turner Fib(23) 2.40 310000
NFib(23) 4.25 305000
Tak 14.69 360000
NthPrime(300) 3.40 2770(X)
Sun 3/75 C SKI Fib(23) 14.62 75000
(16 MHz) Tumer Fib(23) 12.75 58000
] NFib(23) 22.02 59000

Figure 15.11: Some TIGRE performance results.

GNU C compiler [31] was used with the optimization switch turned on. Reduction-rate
figures for supercombinator implementations were normalized to approximate Turner Set
measurements as iollows. First, we measured the speedup of the supercombinator version
over a Turner Set version on the same platform. Next, this speedup was used to scale
the Turner Set reduction rate to arrive at the normalized supercombinator reduction rate
(NRAPS).

The reduction rates measured for TIGRE compare quite favorably with those reported
for other approaches to graph reduction, including Hyperlazy evaluation [22], the G-
Machine (2,17,25], the Spineless, Tagless G-machine {24], TIM [11,36], and NORMA
[28]. Due to differences in hardware platforms and compiling technology, direct com-
parisons are difficult to make. The most direct comparison can be made with NORMA,
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which is a special-purpose computer dedicated to Turner-set combinator reduction. The
reported reduction rate for NORMA 1s 250,000 RAPS.

15.7 The basis for the architectural study

During the implementation and performance measurements of TIGRE, we noted unex-
pected results on different platforms. We conjectured that the unexpected performance
variations observed among TIGRE implementations were caused by hardware differences
among platforms, especially with regard to cache organization and management. In or-
der to better understand the operation of TIGRE, a set of cache simulations was run to
measure TIGRE’s use of cache memory.

Since our measurements on several hardware platforms have shown the DECstation
3100 to be the fastest available TIGRE implementation (despite the need for an inter-
pretive threading loop). we used this machine’s cache configuration as our starting point.
This approach gives a starting point based on a real system. From this starting point, we
examined how variations in cache organization affect program performance. (A study
of cache behavior based on exhaustive scarch simulation techniques is described by
Koopman et al. [21]).

The DECstation 3100 has a spht instruction and data cache. During combinator-
graph reduction execution, the instruction cache holds code to execute primitives of an
abstract machine. The data cache contains the actual combinator graph, which is the
abstract machine program being executed. Since the kernel of code required for graph
reduction is small, previous simulations showed that the instruction cache on this machine
experiences essentially a 100% hit ratio after the cache becomes filled with combinator
code. Therefore, we concentrated our simulation efforts on the data cache performance.

Since graph reduction may be thought of as an interpretive process of executing a
program expressed as a data structure, the data cache 1s actually the cache of prime im-
portance. In this situation, the instruction cache is acting as a kind of microcode memory
for storing code to execute primitive operations, and the data cache actually contains both
the interpreted code (the program graph) and the program data. The approach of study-
ing only the data cache has the added advantage of largely decoupling the particulars
of the abstract-machine implementation (which aftect instruction cache access) from the
mechanics of graph reduction (which appears as accesses to the data cache).

In order to carry out the stmulations, memory-access traces from TIGRE were used as
input to the Dinerolll trace-driven cache-simulator program [13]. In the first phase of the
experimentation, an exhaustive exploration of a number of cache design parameters were
tried 1n order to find the best combinations. An exhaustive search was performed 1n order
to avoid the pitfalls of hill-climbing strategies that may become trapped at local extrema.
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Fib | NthPrime 8Queens | Real Tak
cache miss ratio || 0.1434 | 0.1768 0.1554 0.1595 | 0.1912
bus traffic ratio || 0.5854 | 0.6262 0.5942 0.5971 | 0.6478

Figure 15.12: Cache performance for the baseline organization: 64K data cache, 4-byte
block size, direct-mapping, write-through, and write-allocate.

On the basis of this exploration, and on the basis of DECstation 3100 characteristics,
we arrived at the following “optimum” cache design parameter values: split I- and D-
cache organization (with only the D-cache simulated), 64K byte data cache size, 4-byte
biock size, direct-mapped organization, write-through memory updates, and allocation
on cache write miss. Kabakibo et al. [18] and Smith [30] provide more information on
cache management strategies and terminology.

15.8 Parametric analysis

For the second phase of the experimentation, individual parameters were altered, one at
a time across a wide range to observe performance trends. The benchmark programs
run were: Fib (recursive Fibonacc caiculation), NthPrime (a prime number generator),
8Queens (the 8-queens problem), Real (infinite precision real arithmetic), and Tak (a
program that tests recursive function calls). In all cases, between one and two million
data memory accesses were simulated, with accesses to a heap space at least 320K bytes
In size.

Figure 15.12 summarnizes the results of stmulating the baseline cache configuration.
Two important charactenistics emerge from the simulation. The cache miss ratio (per-
centage of cache accesses experiencing a cache miss) is a relatively high 14% to 19%
for all the programs. Furthermore, the bus traffic ratio (the average number of 4-byte
words transferred on the memory bus per cache access) 1s between 0.58 and 0.65. As
a result, graph-reduction programs generate memory references in excess of DECstation
3100 available bus bandwidth (this 1s discussed in detail in a later section). We shall
show that varying the cache parameters can decrease both the cache miss ratio and the
bus traffic ratio dramatically.

15.8.1 Write allocation: The importance of a write-allocate strategy

A cache 1s said to perform write allocation when a memory write that generates a cache
miss copies the data being written into a newly allocated cache block (allowing subse-
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Allocation strategy {| Fib NthPrime | 8Queens | Real Tak |
write-allocate 0.1434 | 0.1768 | 01554 | 0.1595 | 0.1912 |
write-no-allocate || 0.2405 | 0.3099 | 0.2669 | 0.2848 | 0.3271 |

Figure 15.13: Cache miss ratios with varying write-allocation strategy.

quent reads and writes to that address to achieve cache hits). A wrnite-no-allocate policy
does not write the data to cache, but instead transfers the data directly to memory.

Figure 15.13 shows the results of varying the write allocation policy. We have found
that this design parameter 1s more important by far than any of the other parameters.
with cache miss ratios almost doubling when a write-no-allocate policy is used.

The reason for the extreme sensitivity to write-allocation policy lies with the use of
heap nodes. Graph reduction allocates nodes from a garbage-collected heap frequently
during program execution. As heap nodes ure allocated, the addresses of the new cells are
generated without accessing heap memory (when using a many current garbage collection
algorithms). After heap nodes are allocated, graph data is first written to the heap, then
read back from it for further reduction operations. The first time the node is written,
a cache miss is generated. A write-allocate strategy will load the node into the cache,
while a write-no-allocate strategy will simply write the node value 1nto main memory.
The problem comes on the subsequent read of this node. A write-no-allocate policy
will experience a second cache mitss, while a write-allocate policy will often get a cache
hit on the previously written element (as long as no intervening memory reference has
bumped the node out of cache). This second cache miss with a wrnite-no-atiocate policy
significantly degrades performance. The effect becomes even more pronounced when a
long sequence of writes (each generating a cache miss) is performed in succession before
the first read, as can happen when performing a sequence of graph rewrites on a small
portion of the program graph.

As an example of the mmportance of this range of cache performances, the VAX
8800 mainframe uses a write-no-allocate strategy in managing its cache. This strategy
is commonly used to simplify the cache control logic on machines with large cache
block sizes. This strategy, combined with the longer latency for a cache miss than that
found on the DECstation 3100, accounts for most of the performance difference between
the two machines. In order to increase the VAX 8800’s speed, our graph reduction
code performs a dummy memory read (i.e. a memory read, the results of which are
discarded) each time a group of heap cells is allocated. This forces allocation of
cache line before the initial write to the heap cell, and can increases overall performance



- 384 P. KOOPMAN AND P. LEE

by 20% despite the overhead of executing extra instructions to perform the memory
reads.

Graph reduction makes extremely heavy use of a garbage-collected heap, so the ef-
fectiveness of write-allocation on cache miss ratios is quite pronounced. However, the
need for a wnte-allocate cache policy when using garbage-collected heaps probably ex-
tends beyond the graph reduction domain. Since a heap, by its very nature, is used in a
write-followed-by-read manner, a write-allocate cache policy is likely to be important o0

support any system that uses a heap.

15.8.2 Block size: Strong spatial locality means larger block size

Figure 15 14 shows the results of varying block size (the number of bytes in the smallest
allocated unit of memory in the cache) over a range of 4 bytes to 2K bytes. The cache
miss ratto for all programs decreases up to a cache size of 256 bytes. This suggests very
strong spatial locality. This spatial locality 1s probably due to the fact that heap nodes
are allocated from the heap space in sequential memory locations.

One could, at first glance, decide to build a machine with a 256 byte cache block
size based on the miss ratios alone. For conventional programs, this decision could be
unwise. because the bus traffic ratio (the number of words of data moved by the system
bus) often increases dramatically with an increased block size. This heavy traffic can
slow a system down by greatly increasing the time required to refill a cache block after a
miss. With combinator-graph reduction, this effect is much less pronounced. The traffic
ratio does not increase appreciably until the block size 1s between 128 and 256 bytes in
size. So, a machine with a 128 byte cache block size appears to be entirely reasonable
for this application.

Large block sizes are seldom seen in practice, because most conventional programs
do not have enough spatial locality to justify very large block sizes. But. the significant
performance increases possible with this application give strong incentive to consider
large block size. Even a block size of 16 elements brings dramatic reductions in the miss

ratio.

15.8.3 Write through policy

A write-through cache transmits modified data to system memory every time the processor
performs a store operation. A copy-back cache buffers the data in cache until it must
be flushed to make the cache block available for another address. If multiple writes
are performed to a single address, a copy-back cache eliminates the requirement to use
memory bus bandwidth for all but the ultimate write.

Figure 15.15 shows the traffic ratio for a write-through versus copy-back management
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Memory updalé_ Fib NthPrime | 8Queens | Real Tak
write-through 0.5854 | 0.6262 0.5942 0.5971 | 0.6478
copy-back 0.2863 | 0.3507 0.3063 0.3123 | 0.3769

Figure 15.15: Cache traffic ratios with varying wnte-through strategy.
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Figure 15.16: Cache performance with varying cache size

policy. The cache miss ratios are the same since this policy does not affect whether misses
occur. However, the bus traffic generated for the write-through method is significantly
higher than for copy-back. This 1s caused by the fact that a very high percentage of
memory accesses are memory writes (between 44% and 46% of memory references
were writes on the programs simulated). This can cause severe problems with system
performance by causing memory bus saturation.

Since one of the promises of combinator-graph reduction is simple paralle]l program
execution, and since many multiprocessors are built with a common memory bus, bus
traffic 1s a prime consideration in predicting the limits to parallel processing performance.
Since graph reduction causes a high number of memory writes, use of copy-back cache is
highly desirable to avoid bus saturation for a multiprocessor system. However, even with
copy-back cache the bus traffic is reduced by less than a factor of two, indicating that a
multiprocessor using a common data bus could have a severe bus bandwidth bottleneck.

15.8.4 Cache size

Figure 15.16 shows the results of varying cache size over a range of 128 bytes to 64K
bytes. While different programs show different degrees of temporal locality, the curves
suggest that increases in cache size beyond 64K will not significantly change the miss
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Associativity [l Fib | NthPrime | 8Queens | Real | Tak
direct-mapped || 0.1434 | 0.1768 | 0.1544 | 0.1595 | 0.1912 |
2-way set 0.1425 | 0.1724 0.1515 0.1530 | 0.1858
4-way set 0.1425 | 0.1724 0.1514 0.1530 | 0.1857
8-way set 0.1425 | 0.1724 0.1513 0.1530 | 0.1857

Figure 15.17: Cache miss ratios with varying associativity.

ratio. So, conventional hardware platforms which typically have more than 16K bytes
of cache seem to be adequate with respect to cache size.

15.8.5 Associariviry

Figure 15.17 shows the results of varying the associativity of the cache from direct
mapped (1-way associative) to 8-way associative. 2-way set associative seems to bring a
slight performance improvement, but beyond that there is littie or no advantage to adding
cache sets.

Many systems use direct mapped caches because they are simpler to build and can
be more easily made to run at high speeds [27]. The miss ratio penalty of using such
a direct mapped cache over a set associative cache is quite small, so the performance
tradeoff of using direct mapped caches seems desirable.

15.8.6 Comparison with actual measurements

Cache simulation results are an important architectural design tool. However, there is
always the question of whether the results of such simulations correspond to the “real
world.” In order to establish some confidence in the simulation results, a comparison
was made between the results of a simulation of the DECstation 3100 and the results of
actual program execution.

Simulation indicates that for Fib, the R2000 processor executes 27.82 instructions per
combinator reduction application {on average). The R2000 also performs 33.95 memory
reads (including both instruction reads and data reads) per combinator reduction appli-
cation, which when multiplied by a combined instruction and data cache simulated miss
ratio of 0.0097, gives (.33 cache read misses per combinator reduction. The DECstation
3100 has a cache read miss latency of 5 clock cycles, resulting in a cost of 1.65 clock
cycles per combinator because of cache misses. This, when added to the 27.82 cycle
instruction execution cost (27.82 instructions at one instruction per clock cycle), yields
an execution time of 29.47 clock cycies per combinator.



388 P. KOOPMAN AND P. LEE

The DECstation 3100 has a cost of zero clock cycles for a cache write miss, so long as
the write buffer does not overflow. With an average of 4.74 writes (at 6 clock cycles per
write using the write-through memory updating policy) plus (.33 cache miss reads (at
5 clock cycles per read) per combinator, a total of at least 30.09 clock cycles is needed
per combinator to provide adequate memory bandwidth for the write-through strategy.
This 1s somewhat longer than the 29.47 clock cycle instruction execution speed, leading
to the conclusion that the DECstation 3100 implementation of TIGRE is constrained by
memory bandwidth.

As a result of this analysis, we calculate the simulated execution speed of the DEC-
station 3100 to be 30.09 clock cycles per combinator. At 16.67 MHz, this translates into
a speed of 554000 RAPS between garbage collections.

When actually executing the Skifib benchmark, the DECstation 3100 performed ap-
proximatety 475000 reduction applications per second (RAPS) including garbage collec-
tion time. Garbage collection overhead was measured at approximately 1%. This rather
low cost is attributed to the fact that a small number of nodes are actually in use at
any given lime, s0 a copying garbage collector must typically copy just a few hundred
nodes for each collection cycle on the benchmark used. Virtual memory overhead can
be computed based on a 0.0091 miss ratio for a block size of 4K bytes, with 6.67 data
access per combinator, giving a computed virtual memory miss ratio of 0.00136 per
combmator. Assuming 13 clock cycles overhead per TLB miss (based on an 800 ns
TLB miss overhead for a MIPS R2000 with a 16 MHz clock as reported by Siewiorek
and Koopman {29]), and noting that an average combinator takes 30.09 clocks, this gives

a penalty of:
0.00136 * 13/30.09 (clocks per combinator)

= 0.06%

Together with the 19 garbage collection overhead, this 1.06% overhead predicts a raw

reduction rate of:
475000 = 1.0106 = 480000 RAPS

This rate i1s 15% slower than the 554000 RAPS predicted raw reduction rate. Some of
this 15% discrepancy is due to the overhead of cache cold starts on a multiprogrammed
operating system. The rest of the discrepancy is probably caused by bursts of traffic to
the write buffer, which stalls the processor when full. The simulators available to us
did not permit exploring the behavior of a write buffer, but an examination of the code
shows that write buffer stalls are likely.
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15.9 The potential of special-purpose hardware
159.f DECstation 3100 as a baseline

We have described various implementation methods and performance data for TIGRE.
This section uses those data points to propose architecture and implementation features
which could be used to speed up the execution of TIGRE. The reason for examining
such features is to determine the feasibility of constructing special-purpose hardware, or.
if construction of special-purpose hardware is not attractive, the features that should be
selected when choosing standard hardware (o execute TIGRE.

Since the best measured performance for TIGRE was for the MIPS R2000 assembly
language implementation, the approach used for examining processor features to support
TIGRE will be made in terms of incremental modifications to the MIPS R2000 processor.
This approach will give a rough estimate for the potenual performance improvement.
while maintaining some basis in reality. While it 1s understood that adding complexity to a
RISC architecture may be undesirable (because, for example, 1t may reduce the maximum
clock frequency for existing nstructions), this 1s a way to obtain an approximation of
potential benefits.

Since TIGRE has been shown to have some unusual cache access behavior, the
first arca for improvement that will be considered 1s changing the arrangement of
cache memory, Then, improvements 1n the architecture of the R2000 will be consid-
ered. For the purposes of the following performance analysis, the characteristics of the
SKI implementation of the Fib benchmark executing on the DECstation 3100 shall be

used.

15.10 Improvements in cache management

15.10.1 Copy-back cache

The most obvious limitation of the DECstation 3100 cache 1s that it uses a write-through
cache. This caused the miting performance factor to be bus bandwidth for memory write
accesses, instead of instruction read or data read muss ratios. A simple improvement.
then, 1s to employ a copy-back cache. A cache simulation of Fib for the DECstation 310
shows that this reduces the data cache traffic ratio from 0.5461 to 0.2078, removing the
bus bandwidth as the limiting factor to performance. This reduces the execution time of
an average combinator from 30.09 clock cycles (the bus bandwidth-limited performance;
to 29.47 clock cycles (the cache hit ratio-limited performance).
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15.10.2 Increased block size

A second parameter of the cache that could be improved is the block size. TIGRE
executes well with a large block size, so increasing the cache-block size from 4 bytes
to, say 128 bytes, should dramatically decrease the cache miss ratio, but would suffer
from the limited width of the memory bus. Using a wide bus-write buffer with a 4 byte
cache-block size can capture many of the benefits of a large block size, and reduce bus
traffic. A write buffer width of 8 bytes (one full graph node) could probably be utilized
efficiently by a supercombinator compiler to get a high percentage of paired 4-byte writes
to the left-and right-hand sides of cells when updating the graph.

However, even if a very sophisticated cache mechanism were used to reduce cache
misses to the theoretical minimum (ideally, 0.0000 miss ratio), the speedup possibilities
are somewhat small. This is because only 1.65 clock cycles of the 29.47 clock cycles
per combinator are spent on cache misses to begin with.

15.11 Improvements in CPU architecture

The opportunities for improvement by changing the architecture of the R2000 are some-
what more promising than those possible by modifying the cache management strategy.
In particular, it is possible to significantly increase the speed of stack unwinding and
pertforming indirections through the stack elements.

15.11.1  Stack unwinding support

The one serious drawback of the R2000 architecture for executing TIGRE is the lack of a
subroutine call instruction. The current TIGRE implementation on the R2000 uses a five-
instruction interpretive loop for performing threading (i.e. stack unwinding). Since 1.37
stack unwind operations are performed per combinator, this represents 6.85 instructions
which, assuming no cache misses, execute in 6.85 clock cycles.

But, there is a further penalty for performing the threading operation through graphs
with the R2000. A seven-instruction overhead is used for each combinator to perform a
preliminary test for threading, and to access a jump table to jump to the combinator code
when threading is completed. (One of these instructions increments a counter used for
performance measurement. It can be removed for production code, as long as measuring
the number of combinators executed is not important.) This imposes an additional 7.00
clock cycle penalty on each combinator.

S0, the total time spent on threading is 13.85 clock cycles per combinator. It takes
three clock cycles to simulate a subroutine call on the R2000:
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# store current return address

8w 531, 0($sp)
# subroutine call
jal subr address

# branch delay slot instruction follows
# decrement stack pointer
addu $sp, $sp, -4

S0, 1t 1s reasonable to assume that a hardware-implemented subroutine call instruction
could be made to operate in three clock cycles. Thus, if the instruction cache were made
to track writes to memory (permitting the use of self-modifying code), a savings of 10.85
clock cycles is possible. One important change to the instruction set would be necessary
to allow the use of subroutine call instructions.”

An alternate way to implement a subroutine call with a modifiable address field is
to define an indirect suoroutine call that reads its target address through the data cache,
eliminating the need 'o keep the instruction cache in synch with bus writes. This imple-
mentation 1s likely to be more desirable for split-cache systems.

15.11.2  Stack access support

An important aspect of TIGRE's operation is that it makes frequent reference to the top
elements on the spine stack. In fact, 4.61 accesses to the spine stack are performed per
average combinator. Most of the load and store instructions that perform these stack
accesses can be eliminated by the use of on-CPU stack buffers that are pushed and
popped as a side effect of other instructions.

For spine-stack unwinding, two of the three instructions used to perform a subroutine
call could be eliminated with the use of hardware stack support, leaving just a single
jal instruction to perform the threading operation at each node. Of course, the R2000
requires the use of delayed branches, so it probably not the case that the actual time for
the threading operation could be reduced to less than two clock cycles. But, the second
clock cycle could be used to allow writing a potential stack buffer overflow element to
memaory.

Of the 4.61 instructions that access the spine stack, the threading technique just de-
scribed may be used to eliminate the effect of 1.37 of the instructions per combinator. The
remaining 3.24 instructions can also be eliminated by introducing an indirect-through-
spine-stack addressing mode to the R2000. All that would be required is to access the
top, second, and third element of a spine-stack buffer as the source of an address instead

The subroutine call instruction would have to be defined to have all zero bits in the opcode ficld so that
the instruction could be used as a pointer 1o memory as well.
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cumulative optimizations clock cycles per combinator |
current implementation 30.09
copy-back cache 29.47
100% cache hit ratio 27.82
subroutine call + self-modifying code 16.97
hardware stack indirect addressing 12.36
8-byte store instructions 11.47

Figure 15.18: Possible performance improvements to the MIPS R2000 for TIGRE.

of a register. A simple implementation method could map the top of stack buffer regis-
ters mto the 32 registers already available on the R2000. This gives a rotential savings
of 3.24 clock cycles, since explicit load instructions from the spine stack need not be
executed when performing indirection operations.

15.11.3 Double-word stores

TIGRE 1s often able to write cells in pairs, with both the left-and right-hand cells of a
single node written at approximately the same point in the code for a particular combi-
nator. Thus, it becomes attractive to define a “double store™ instruction format. Such an
instructton would take two source register operands (for example, an even/odd register
pair), and store them into a 64-bit memory double-word. If the processor were designed
with a 64-bit memory bus, such a “double store™ could take place in a singie clock cycle
instead of as a two-clock sequence. The savings of using 64-bit stores is 0.895 clock
cycles per combinator for the SKI implementations of Fib, and 1.192 clock cycles per
combinator for the Turner set implementation of Fib (measured by instrumenting TIGRE
code to count the opportunities for these stores as the benchmark program is executed).
Support of 64-bit memory stores would speed up supercombinator definitions even more,
since the body of supercombinators often contains long sequences of node creations. For
example, the supercombinator implementation of Fib can make use of 1.33 64-bit stores
per combinator.

Figure 15.18 summarizes the efficiency improvements that may be gained through
the cache and processor architecture changes just discussed. Nearly a three-fold speed
improvement is possible over the R2000 processor with just a few architectural changes.
This is a significant speedup, but probably does not justify the production of a special
CPU for uniprocessor implementations. Rather, the results should indicate desirable
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architectural features that should be sought when selecting a standard RISC platform for
combinator-graph reduction.

15.12 Results

We have described an abstract machine for combinator-graph reduction, and shown that
it has good performance compared to other graph reducers and closure reducers. Using
TIGRE, we have performed architectural simulations that show it has unusual execution
characteristics, including: a very strong dependence on a write-allocate strategy for
efficient execution, a high degree of spatial locality, and a high proportion of memory
wriles to total memory accesses. Thus, a system which will execute these programs
efficiently should ideally have a write-allocate cache with copy-back memory updating.
and a relatively large block size of at least 16 or 32 bytes. Since the combination of
copy-back updating with write-allocation requires additional complexity in control logic.
this combination 1s not likely to appear without evidence to suggest that it is useful for
some applications. This study i1s a piece of evidence in that vein.

The results of this research should help users of combinator-graph reduction select
commercial machines which will perform efticiently. They may also influence the course
of design of special-purpose graph reduction hardware in the future.

15.13 Further work

Our simulated programs are restricted 10 smatl benchmarks. The measurements of TI-
GRE behavier are limited by a lack of extensive software support. Additionally, large
lazy functional programs are difficult to find and we have been hampered by a lack of
extensive compiler support. Therefore, we plan to repeat the experiments on TIGRE
when a larger software basc 1s available. Also, it would be revealing to compare TIGRE
against other abstract machines using a comprehensive benchmark suite with compara-
ble implementations and compilers. This would not only improve understanding of the
strengths and weaknesses of TIGRE, but also of common architectural requirements for
combinator reduction techniques in general.

A problem with parallel graph reduction in the past has been one of practicality.
It individual graph reduction processors do not execute within a factor of 100 times
the speed of a uniprocessor running an imperative language, there seems little point
in building a 100-processor system. TIGRE and other fast combinator reducers (such
as TIM) make 1t feasible to consider the design of a parallel graph reduction engine
that can potentially run programs more quickly than a uniprocessor using imperative
languages. While TIM makes parallel closure reduction machines such as the Grip project
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[23] practical, TIGRE may make parailel pure graph reduction viable. Graph reduction
appears 10 be a more obvious program manipulation technique than other methods, and
therefore may allow better insight into parallel execution issues.
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