
Fault Tolerance Tradeoffs in Moving from Decentralized to Centralized
Embedded Systems

Abstract

Some safety-critical distributed embedded systems may
need to use centralized components to achieve certain
dependability properties. The difficulty in combining
centralized and distributed architectures is achieving the
potential benefits of centralization without giving up
properties that motivated the use of a distributed approach
in the first place. This paper examines the impact on fault
tolerance of adding selected centralized components to
distributed embedded systems, and possible approaches to
choosing an appropriate configuration. We consider the
proposed use of a star topology with centralized bus
guardians in the Time-Triggered Architecture. We model
systems with different levels of centralized control in their
star couplers, and compare fault tolerance properties in
the presence of star-coupler faults. We demonstrate that
buffering entire frames in the star coupler could lead to
failures in startup and integration. We also show that
constraining buffer size imposes restrictions on frame size
and clock rates.

1. Introduction

Embedded systems designers consider many factors
when choosing between distributed and centralized archi-
tectures. In some designs, centralized systems may be pre-
ferred for their manageability and consistency, whereas in
others, distributed systems may be more advantageous for
scalability and modularity [1].

In the context of dependability, distributed and central-
ized systems each may be better suited to deliver certain
properties. A system with applications distributed across
nodes that are physically separated may provide geo-
graphic fault isolation; one with a centralized controller
may more easily maintain consistent timing and state infor-
mation across all applications. A system with applications
running on separate nodes must also ensure that those
nodes have a consistent view of system state. Centralized
controllers can become a single point of failure for all appli-
cations. The problem with choosing a design that is either
strictly distributed or strictly centralized is that one ap-
proach might experience problems in system dependability
that the other resolves, and vice versa.

In order to achieve the “best of all possible worlds,” sys-
tem architects may attempt to use a combination of central-
ized and decentralized components in one system. This
approach has recently been seen in some designs based on
the Time-Triggered Architecture (TTA). Researchers at
the Vienna University of Technology recently proposed

that the TTA with a star topology and central bus guardians,
rather than a bus topology with guardians at each node,
would eliminate the occurrence of some fault modes that
are not tolerated by the Time Triggered Protocol (TTP/C)
[2]. In their design, the central bus guardian could have the
authority to: a) stop all nodes from transmitting outside of
their assigned time slot to eliminate babbling idiot and mas-
querading faults, b) make adjustments to signal strength
and frame timing in order to eliminate slightly-
off-specification (SOS) faults [3], and c) perform semantic
analysis of all frames transmitted on the network to prevent
transmission of frames containing incorrect controller state
(C-State) information [2].

Augmenting the authority of some system components,
such as the bus guardians in this example, may help the sys-
tem achieve certain dependability properties; however,
faults in those more authoritative components may also
have a greater influence on system dependability. For ex-
ample, suppose a bus guardian suffers a fault that causes it
to block transmission of all frames. In systems with decen-
tralized bus guardians (e.g., each node has a separate bus
guardian), a fault of this nature in one bus guardian would
only block frames from one node. The same fault in a cen-
tral bus guardian would stop all nodes from sending frames
on the channel. This particular fault mode is addressed in
[2] by the use of redundant channels with separate central
bus guardians. However, this example illustrates that
changes in the behavior of one component may alter the
way faults in that component affect system dependability.

Adding centralized components to a decentralized sys-
tem may impact system properties beyond dependability as
well. For example, suppose a central bus guardian is re-
quired to buffer some minimum number of bits of each
frame in order to filter traffic on the network, and this num-
ber is proportional to the longest frame. If this central bus
guardian is also prohibited from buffering all of the bits in
the shortest possible frame, then the difference in length be-
tween the longest and shortest frames is limited. It might
not be possible to send extremely long frames on the same
network as extremely short frames.

Two questions that must be answered when centraliza-
tion is added to a decentralized system are: “How much au-
thority should the centralized components be given?” and,
“what is the impact of this added authority on other parame-
ters of the system?” To help analyze these questions we
created a model in SMV (Symbolic Model Verifier) [4] of
the TTA star topology with redundant star couplers. In the
star couplers we modeled feature sets with varying amounts
of centralized control. We also modeled the possible fault
modes those features may exhibit. Our objective was to an-
alyze the system-design tradeoffs associated with the cen-

1

Jennifer Morris
ECE Department

Carnegie Mellon University
jenmorris@cmu.edu

Daniel Kroening
CS Department

Carnegie Mellon University
kroening@cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University
koopman@cmu.edu

PREPRINT: Fault Tolerance Tradeoffs in Moving from Decentralized to Centralized Embedded Systems, DSN 2004

tralized authority by modeling the failure modes that can
arise when central guardians have the ability to buffer
frames, and by showing how limiting the buffer size of a
central guardian also limits the frame size and clock rates.
Finally, we propose that critical systems with an active cen-
tralized hub for communication, such as a TTP/C network
with a star topology, are constrained in clock speed by
frame size, and vice versa.

The remainder of this paper is organized as follows:
Section 2 presents background information and previous
work; Section 3 presents our objective and approach; Sec-
tion 4 presents detailed information about our system
model; Section 5 presents the results from modeling vari-
ous star-coupler faults; Section 6 presents an analysis of
those results; and Section 7 presents our conclusions.

2. Background and related work

The TTA is a distributed system architecture designed
for safety-critical embedded systems such as automobiles
and jet aircraft that consists of a cluster of nodes communi-
cating over a shared TTP/C network. This section provides
background information about TTP/C and the TTA, includ-
ing the motivation for using central bus guardians in the star
topology. We also describe our method for modeling these
systems in SMV.

2.1. Overview of TTP/C and the TTA

The Time-Triggered Protocol (TTP/C) and the Time
Triggered Architecture (TTA) were developed by research-
ers at the Technical University of Vienna and TTTech
Computertechnik AG for use in safety-critical distributed
embedded systems that require dependable frame transmis-
sion for hard real-time guarantees. To meet these require-
ments, TTP/C uses Time Division Multiple Access
(TDMA), in which nodes send frames in specific time
slots. These slots are statically assigned prior to system
start-up in the Message Description List (MEDL) [5].

TTP/C provides a number of services, including distrib-
uted clock synchronization, group membership, and clique
detection [5]. Clock synchronization is used by the proto-
col to enforce TDMA scheduling. Each node decides when
to transmit on the network based on its view of the time; if
different nodes have different views of the global time then
the TDMA approach will fail. Group membership is pro-
vided as a safety service to allow host applications to moni-
tor the operational states of other nodes on the network.
The intention is that nodes that are not operating correctly
can be removed from membership in the protocol until they
exhibit correct behavior. Clique detection prevents multi-
ple membership groups from forming.

These services are created by nodes generating and/or
observing traffic on the network. Clock synchronization,
for example, requires each node to observe frames sent by
other nodes and calculate the difference between each
frame’s actual arrival time and the expected arrival time.
This allows the observing node to adjust its own internal
clock to bring it closer to the clocks of other nodes [5].
Group membership requires each node to verify that frames
sent by other nodes are both valid and correct. A valid
frame starts and ends during the time slot, exhibits no

encoding rule violations, and is not interfered with by an-
other transmission during the time slot [5]. Correct frames
are valid frames that also have a controller state (C-state)
and cyclic redundancy check (CRC) that match those of the
receiving node [5]. The C-state information may be in-
cluded in the frame explicitly or implicitly through its in-
clusion in the CRC calculation. If no activity is observed
on the channel during the time slot, the frame is considered
to be null (neither invalid nor incorrect).

The algorithms for deterministic message timing, group
membership, and clique avoidance are claimed to be cor-
rect, given a set of particular constraints [5]. The fault hy-
pothesis of TTP/C allows for an arbitrary failure in a single
component of the system. The faulty component may be a
single node, bus guardian, or channel. TTP/C assumes
fail-silence in the time domain, meaning that a faulty con-
troller will not be allowed to send frames outside of its time
slot. TTP/C does not guarantee correctness of the applica-
tion data contained in the frame.

Ensuring that these requirements are met is handled at
the architectural level, as specified by the Time-Triggered
Architecture (TTA). The TTA requires at least two inde-
pendent buses (channels), between nodes. It is assumed
that these channels themselves do not generate frames on
the network; however, the channels may corrupt or drop
frames. Bus guardians are also required in order to prevent
faulty nodes from transmitting during the wrong time slot.
These bus guardians must be completely independent of the
nodes (separate internal clocking device, physical isolation,
etc.) and may be allocated to nodes individually or central-
ized in a star topology. Fault tolerance for Byzantine faults
[6] requires at least four real member nodes with fully inde-
pendent bus guardians.

2.2. Central bus guardians

The Time-Triggered Architecture (TTA) may be imple-
mented using either a bus (Figure 1) or a star (Figure 2) to-
pology. In order to compare the fault-handling ability of
the two topologies, Ademaj et al. [7] performed software
implemented fault injection (SWIFI) and heavy-ion fault
injection experiments on TTA systems with both bus and
star topologies.

The experiments in the system with the bus architecture
revealed several ways that faults in a single node could
propagate to other, non-faulty nodes. First, slightly-off-
specification (SOS) faults in the signal strength or timing of
a frame can cause nodes on the network to have differing
views of the validity and/or correctness of some frames [3].
A frame that is slightly outside of its time window or has a
signal that is slightly below the acceptable range may be
judged valid and correct by some nodes and invalid or in-
correct by others. This is the result of slight differences in
hardware tolerances between nodes. This disagreement be-
tween nodes on a frame’s validity and/or correctness is an
SOS fault.

Group membership is determined by checking the valid-
ity of sent frames; therefore a disagreement between nodes
on the correctness of a frame could cause some nodes to ex-
pel that frame’s sender from the group and others to keep
the sender in the membership. If this occurs, the TTP/C
clique detection algorithm detects the disagreement in
group membership and causes the nodes in the minority

2

clique to enter a freeze state. Nodes that have been frozen
cannot regain membership and transmit on the network un-
til they have been awakened by their hosts. This is the cor-
rect behavior of the protocol; however, frequent SOS
failures could lead to frequent shutdowns of non-faulty
nodes in the TTP/C cluster, which is unacceptable in most
critical systems. Many of these critical systems, such as au-
tomobiles and jet aircraft, are fail-operational, and there-
fore require a high level of system availability.

Another fault mode in the bus architecture system is
masquerading during cluster startup [7]. Prior to startup,
nodes in the cluster have not yet established the global time,
and cold-start frames that signal the start of a TDMA round
do not arrive in a particular time slot; therefore, the sender
of a cold-start frame cannot be verified by the arrival time
of the frame [2]. If a faulty node sends a cold-start frame
with an incorrect sender round slot, other nodes will at-
tempt to integrate into the cluster at the incorrect time. If
different cold-start frames arrive at different times on the
two channels, nodes may try to integrate on either channel,
the cliques will be discovered by the clique-detection algo-
rithm, and nodes in the minority clique will go into the
freeze state [2].

The fault injection experiments on the bus topology also
revealed that frames with invalid C-states could cause
problems for nodes integrating into a running system [7]. If
a faulty node sends a frame with an invalid C-state, a
non-faulty node that has already integrated determines that
the frame is incorrect because the C-state of the frame does
not match the internal C-state of the receiving node. Nodes
that have not yet integrated do not know the correct C-state
of the system, and therefore cannot recognize the frame as
incorrect. During integration, they adopt the C-state of the
first valid frame they receive and attempt to integrate using
that C-state. If the C-state they adopt is incorrect, the inte-
grating node will not be allowed to enter the active state,
thereby preventing the perfectly operational node from in-
tegrating into the system.

In order to prevent SOS faults, masquerading during
startup, and failures in integration arising from frames with
invalid C-states, Ademaj et al. [7] implemented a star topol-
ogy with the central bus guardians. In the new design, bus
guardians located at the central hubs of the star topology are
authorized to perform “active signal reshaping” of the
transmitted frames [7]. The central bus guardians monitor
frames on the network and boost signals that are SOS in the
value domain and delay or block signals that are SOS in the
time domain. The central bus guardians also perform se-
mantic analysis of frame content to prevent faulty nodes

from masquerading as other nodes during startup and/or
transmitting frames with invalid C-states. Fault injection
experiments of the new design showed that central bus
guardians could prevent SOS faults from occurring. The
experiments also showed that the central bus guardians
could prevent faulty nodes from transmitting incorrect
cold-start frames and frames with incorrect C-state [7].

2.3. Symbolic model checking

We use a symbolic model checker to analyze our formal
models. Model checking is a systematic way to explore the
whole state space of a formal model. Previous work con-
taining formal models of TTP/C focuses on proving cor-
rectness of the protocol [8, 9, 10]. This is done using an
interactive theorem prover, which requires a considerable
amount of manual work. In contrast to that, model check-
ers, such as SMV, are fully automatic once the model is
written. The model presented in [10] contains more detail
than the model we use. However, we are not aware of any
formal models addressing the issue of centralized vs. dis-
tributed bus guardians.

3. Objective

The fault injection experiments of [7] showed that the
central bus guardian could be effective at stopping faults on
some nodes from propagating to other healthy nodes.
However, these experiments did not analyze the behavior
of the system in the presence of faults in the star couplers
themselves. Once a component in a decentralized system
has been given increased authority over other system com-
ponents, the system must be reevaluated to ensure that un-
intended behaviors do not emerge when the centralized
authority fails.

For example, TTP/C assumes that faults in either of the
two channels are passive. That is, a channel will either cor-
rupt or drop frames, but it will not generate frames. How-
ever, this may no longer be a valid assumption if the central
bus guardian is given certain authorities. For example, if
the central bus guardians have the ability to buffer entire
frames, a fault in the central guardian could cause it to
transmit frames outside of their intended time slots. If this
occurs, the assumption of passive faults in the guardian no
longer holds, because the bus guardian is essentially “gen-
erating” frames on the network.

In their analysis of failure mode assumption coverage in
the TTA, Bauer et al. [11] assert that in order to maintain

3

Node
1

Node
2

Node
N

Channel 0

....

Channel 1

Figure 1: TTA Bus Topology, TTTech

Computertechnik AG [5]

Star Coupler
Channel 1

Node
1

Node
2

Node
N....

Star Coupler
Channel 0

Figure 2: TTA Star Topology, TTTech

Computertechnik AG [5]

the fault assumption of passive faults in the channels, the
active star couplers must not be given the capability to store
frames and transmit them at a later time. They do not, how-
ever, explain why frame buffering should be prevented, nor
do they explore the system-level implications of that con-
straint.

In the requirements for the central bus guardian Bauer et
al. [2] specify the minimum number of bits that must be
buffered in order to perform semantic analysis of frames.
Semantic analysis is used to stop masquerading during
startup and problems in integration due to transmission of
frames with invalid C-state. This minimum buffer size is
proportional to the number of bits in the longest frame, as
well as the difference in clock rates between the nodes and
the star coupler. No analysis of the effects of these restric-
tions on other system parameters, such as frame length and
clock rates, is given.

Our objective in this research is to examine the engi-
neering tradeoffs of adding centralized authority to a de-
centralized system by modeling a system based on the TTA
with star topology and central bus guardians. We demon-
strate why certain restrictions on the central authority are
necessary by assessing the impact on fault-tolerance of
full-frame buffering. We also analyze how added central-
ized authority can limit other system properties by showing
that limiting buffer length also restricts maximum frame
size and clock rates.

4. TTA star topology model

In order to demonstrate why a central buffer should not
be allowed to buffer an entire frame, we compare the
fault-handling capabilities of TTA systems with frame
buffering at the central bus guardian with systems contain-
ing star couplers with less authority.

4.1. Star-coupler feature sets

The four types of star-coupler authority we model are:

• Passive:

� does not stop frames

� does not shift frames in time

• Time windows:

� can open/close bus write access to nodes

� does not shift frames in time

• Small shifting:

� same authority as time windows

� also can make slight adjustment to frame timing
(e.g., shift slightly ahead to fit window)

• Full shifting:

� same authority as small shifting

� also can buffer frames to make large adjustment
to frame timing (e.g., save frames to send out at a
later time)

4.2. The formal model

In order to investigate the behavior of TTP/C in the pres-
ence of central star coupler faults, we create a synchronous
model of the channel, the couplers, and the nodes.
Formally, we define a (finite) set of states S, a set of initial
states I, and a transition relation R. The transition relation
relates two states x, x' � S if and only if there is a transition
from x to x'.

In order to obtain a tractable model, we abstract the be-
havior by merging all transitions that correspond to a single
time slot in the TDMA schedule, i.e., one transition of our
model corresponds exactly to one TDMA slot. As the slots
may have different lengths, a transition in our model may
correspond to different interval in real-time, depending on
the particular slot.

The set of states S is the set of possible valuations of the
state variables. The state variables consist of the variables
the nodes use to store their states and the variables used for
the two star couplers. SMV allows specifying I and R using
a list of constraints for each. The constraints are conjuncted
to form I and R, respectively.

4.3. Modeling a node

We model the following parts of the state of a single
TTP/C node:

• The TTP/C standard describes a state machine with
nine states that governs the behavior of the node:
freeze, init, listen, cold_start, active, passive, test,
await, and download. Initially, all nodes are in the
freeze state. The variable used to store this state is de-
noted by state.

• We record the number of correct and bad frames re-
ceived by the node during a TDMA round. This data
is for the benefit of the clique avoidance algorithm.
The names of the variables are
agreed_slots_counter and failed_
slots_counter, respectively.

• Each node has a variable slot containing the cur-
rent slot number in the TDMA schedule.

• In order to implement the ''big bang'' cold start algo-
rithm, each node stores a flag big_bang that is set
if a cold start frame is seen while the node is in the
listen state.

• The listen state requires a timeout counter, which is
modeled using a state variable for each node. In order
to simplify the model, we count the number of
TDMA slots using the variable listen_
timeout.

All other parts of the state of a node are not modeled.
This includes, in particular, the application data.

We define the following constraints on the transition re-
lation R. The unprimed variables denote the value of the
state variable before the transition, the primed variables de-
note the value of the state variable after the transition. Fur-
thermore, let slots denote the number of slots in the
TDMA schedule.

4

4.3.1. FREEZE and INIT. From the freeze state, the
node may make a transition into one of the states init, await,
or test. From init, it may transition back into the freeze state
or may proceed to the listen state. We model these choices
nondeterministically.

state=freeze � state’ � { freeze,
init, await, test }

state=init � state’ � { freeze,
initialize, listen }

No further constraints are imposed on the variables if the
node is in the freeze or init state.

4.3.2. LISTEN. In the listen state, the controller
watches the channels for frames to integrate on. The con-
troller may integrate on frames with explicit C-state or on
cold start frames. Let the frame type on channel 0 be de-
noted by channel0_frame, and the frame on channel 1
be denoted by channel1_frame. Each can be one of
none, denoting silence, cold_start, denoting a cold
start frame, c_state, denoting a frame with explicit
C-state, bad_frame, denoting a bad frame, or other,
denoting a regular frame without explicit C-state.

As described above, nodes do not integrate on the first
cold start frame received, but on the second. The variable
big_bang is used in order to distinguish the first and sec-
ond cold start frame.

big_bang’=

if state�listen then false

else if big_bang then true

else if channel0_frame=cold_start

� channel1_frame=cold_start then
true

else false

endif

Let integrating_on_cold_start denote a
shorthand for the condition for integrating on the cold start
frame currently on the channel:

integrating_on_cold_start=

state=listen �

(channel0_frame=cold_start �

channel1_frame=cold_start) �
big_bang

In contrast to cold start frames, frames with explicit C
state are used for immediate integration. Let integrat-
ing_on_C_state denote a shorthand for the condition
for integrating on a C-state frame that is currently on the
channel:

integrating_on_C_state=

state=listen �

(channel0_frame=c_state �
channel1_frame=c_state)

The node integrates if either condition is true:

integrating=integrating_on_C_state �
integrating_on_cold_start

If the node is integrating, the time slot counter is set to
the value found on the bus plus one. This value is denoted
by id_on_bus. Thus,

(state=listen � integrating) �
slot’=

if id_on_bus=slots then 1

else id_on_bus+1

endif

For startup, the node maintains a timeout counter for the
listen state. This counter is initialized with the number of
slots plus the number of the slot that is assigned to the node.
This slot is denoted by node_id. The timeout is reset also
if a good frame is seen on the channels. If no correct frame
is received, the node counts down the listen timeout coun-
ter.

listen_timeout’=

if (state�listen � state’=listen) �

channel0_frame=cold_start �

channel1_frame=cold_start �

channel0_frame=other �
channel1_frame=other then
node_id+N

else if listen_timeout�0 then
listen_timeout-1

else 0

endif

If the node is integrating, the node transitions into the
passive state. In case of a timeout, it transitions into the
cold_start state. If there is a cold start frame on either
channel that is not used for integration, the node stays in the
listen state even if the timeout counter just reached zero.

state=listen � state’=

if integrating then passive

5

else if channel0_frame=cold_start

� channel1_frame=cold_start then
listen

else if listen_timeout=0 then
cold_start

else listen

endif

4.3.3. COLD START. Upon entering the cold start
state, the node initializes the slot counter with its own slot
number.

(state�cold_start �

state’=cold_start) � slot’=node_id

As a shorthand, let next_slot denote the number of
the next TDMA slot. This is slot+1 if slot < slots,
and 1 otherwise. During cold start, the node maintains the
slot counter as if integrated.

(state=cold_start �

state’=cold_start) �
slot’=next_slot

(state=cold_start � state’=active)

� slot’=next_slot

During cold start, the node monitors the frames on the
buses. Once one TDMA round is finished, and traffic is ob-
served, the node performs the clique avoidance test. If it
succeeds, it transitions into the active state. Otherwise, it
transitions back into the listen state.

(state=cold_start) � state’=

if next_slot=node_id then

if agreed_slots_counter’<=1 �
failed_slots_counter’=0 then
cold_start

else if agreed_slots_counter >
failed_slots_counter then
active

else listen

endif

else cold_start

endif

4.3.4. ACTIVE. In the active state, the controller
maintains the slot counter:

(state=active � state’=active) �
slot’=next_slot

(state=active � state’=passive) �
slot’=next_slot

It may nondeterministically transition to freeze or pas-
sive:

state=active � state’ � { freeze,
active, passive }

Let frame_sent denote a shorthand for the frame that
is sent by the node:

frame_sent=

if state=active � slot=node_id
then c_state

else if state=cold_start �
slot=node_id then cold_start

else none

endif

4.3.5. The star couplers. Each of the two couplers
may have one of the following error states: none, corre-
sponding to error-free operation, silence, which re-
places any frame that is sent on the channel belonging to the
coupler by silence, bad_frame, which places a bad frame
or noise on the bus, regardless if a frame was sent or not.
Furthermore, the out_of_slot fault corresponds to
re-sending the last frame received by the coupler.

The fault state of the coupler is denoted by fault, i.e.,
the full names of the variables are coupler0.fault and
coupler1.fault, respectively. The out_of_slot
fault occurs only if the couplers are configured for full time
shifting. All other faults may be caused by any configura-
tion. In accordance with the TTP/C fault hypothesis, we re-
quire that at most one coupler has a fault at a given time:

couplerA.fault=none �
couplerB.fault=none

In order to model the behavior of the bus system in case
of an out-of-slot error, we add a state variable for each cou-
pler containing the id and type of the frame that was re-
ceived last. The variable for recording the id is called
buffered_id, the variable for the type is called buf-
fered_frame. The variables are initialized with 0 and
none respectively.

Let channel_id denote the id on the channel belong-
ing to the coupler. Let channel_frame denote the frame
type. Then,

buffered_id’=

if channel_id=0 then buffered_id

6

else channel_id

endif

buffered_frame’=

if channel_id=0 then
buffered_frame

else channel_frame

endif

The frame currently on the channel is

channel_frame=

if fault=silence then none

else if fault=bad_frame then
bad_frame

else if fault=out_of_slot then
buffered_frame

else if node[i].node_is_sending
then node[i].frame_sent

else none

endif

The id on the channel is defined analogously.

5. Experimental results

5.1. Property checked

We use the following correctness criterion: As the nodes
are modeled not to fail, no single fault may prevent any
node from integrating or losing membership. The TTP/C
standard requires that the affected node makes a transition
into the freeze state in this situation, i.e., we check that

(state=active � state=passive) �

state’�freeze

holds on all reachable states.

5.2. Results

For the passive, time windows, and small shifting cou-
plers we verify that the property above holds. For the con-
figuration that allows any star coupler to buffer full frames
and replay them in a later time slot, we obtain counter ex-
amples from the model checker that demonstrate a failure.

If a property does not hold, the SMV model checker pro-
duces a trace from any initial state to a state in which the
property does not hold. SMV produces the shortest possible
trace. However, the shortest error trace contains four
out-of-slot errors. As one might argue that such an accumu-

lation of errors is unlikely, we add a constraint to the model
which limits the number of out-of-slot errors to one.

This results in a slightly longer trace, but still produces
an error that is caused by a duplicated cold start frame:

1) Initially, all nodes are in the freeze state.
2) In the next state, all the nodes transition into the init

state.
3) Node A makes a transition into the listen state. The

other nodes remain in the init state.
4) The listen timeout counter of node A decreases down

to zero. Node B finishes its initialization and transi-
tions into the listen state.

5) Node A sends a cold start frame on the bus. Node B
ignores the frame due to the ''big bang'' requirements.
The nodes C and D make a transition into the listen
state.

6) A faulty star coupler replays the previous cold start
frame. Node B integrates on it, in compliance with
the ''big bang'' requirements.

7) Node A sends another cold start frame. Nodes C and
D use this frame to integrate on. Then transition into
the passive state.

8) Node C sends a C-state frame. Node B considers this
frame a faulty frame.

9) Node D sends a C-state frame. Node B considers this
frame a faulty frame.

10) Node B freezes due to a clique avoidance error.

The error may also be triggered by duplicating a C-state
frame. We obtain such a trace by adding a constraint which
prohibits the duplication of cold start frames:

1) Initially, all nodes are in the freeze state.
2) In the next state, all the nodes transition into the init

state.
3) Node A makes a transition into the listen state. The

other nodes remain in the init state.
4) The listen timeout counter of node A decreases down

to zero. Node C finishes its initialization and transi-
tions into the listen state.

5) Node A sends a cold start frame on the bus. Node C
ignores the frame due to the ''big bang'' requirements.
Node B makes a transition into the listen state.

6) Node A sends another cold start frame. Node C inte-
grates on the frame, and transitions into the passive
state. Node B ignores it according to the ''big bang''
requirements. Node D makes a transition into the lis-
ten state.

7) A faulty star coupler replicates the previous frame
into the next slot. Node D integrates on it, making a
transition into the passive state. The other nodes con-
sider the frame to be faulty.

8) In the next three frames, the nodes A, B, and C each
send a C-state frame. Node D considers all to be a
faulty frames.

9) Node D freezes due to a clique avoidance error.

Both traces are generated in less a than a minute on a 1.5
GHz AMD machine.

7

6. Analysis

The results from our model show that faults that cause
frames to be transmitted outside of their assigned time slot
can lead to failures during the startup and integration
phases of protocol service. Central bus guardians that are
allowed to buffer an entire frame are susceptible to these
types of faults, even in systems with independent, redun-
dant central guardians. If one bus guardian becomes faulty
and sends frames in the wrong time slot and the other bus
guardian is behaving correctly, receiving nodes that have
already integrated into the cluster will recognize that the
frame on the channel with the faulty bus guardian is incor-
rect because the frame’s C-state (which contains the incor-
rect global time and slot position) does not match its own
C-state. These nodes will use the correct frame on the
non-faulty channel, or no frame at all if none is transmitted
in that time slot. However, nodes that are integrating, ei-
ther during a cold-start or into a running cluster, are not able
to determine that the frame is incorrect, and may use the
faulty frame.

It is important to show the problems with system de-
pendability that arise when a central guardian is allowed to
buffer an entire frame because there are several reasons
why a system architect might be tempted to buffer an entire
frame. One reason is cost and ease of implementation. A
central guardian could use the same controller as the nodes
to receive frames, buffer them, and send them out again on
the network. This design would also violate the require-
ment that the central guardian be prohibited from knowing
how to generate a frame (including a valid CRC); however,
a central guardian that just receives frames and sends them
out again (without re-creating them) would similarly be a
simple solution that requires buffering. The addition of
new functionality to the central guardian could also lead to
buffering of frames. For example, an active central guard-
ian that keeps "mailboxes" with recent data values could
help provide data continuity if frames are corrupted by pro-
viding slightly stale values instead of no value. A central
guardian could also provide prioritized message service
(e.g., CAN emulation) if it were allowed to buffer frames
and send them in a specially reserved time slice, in priority
order. Both of these enhanced functions would require
buffering full frames.

In addition to examining the importance of restricting
buffer size, it is also useful to analyze the effects of this re-
striction on other system properties. For example, in the
TTA with star topology and central bus guardians, active
signal reshaping (in the time and value domains) and se-
mantic analysis of the C-state require the guardian to buffer
a minimum number of bits of a frame [2], which is deter-
mined from the maximum frame length and the relative dif-
ference in rates between the guardian and the nodes.

The restriction on the maximum buffer size (less than
the smallest frame) corresponds to a restriction on the rela-
tionship between frame lengths and clock rates. If the clock
rates of the sending node and the central guardian are dif-
ferent, the central guardian must buffer some part of a
frame before it can begin forwarding it. If the central
guardian is faster, it must wait to send the frame to ensure
that it does not run out of bits to send during the transmis-
sion. If the central guardian is slower, it must buffer some
of the bits until it has time to send them. This corresponds

to the idea of a “leaky bucket” where the fill rate is not equal
to the drain rate. The minimum buffer size Bmin is given by:

Bmin = �le + �	 * fmax (1)

where �le is the number of bits required for line encoding,
and fmax is the maximum frame size. �	 is the relative dif-
ference in clock rates of the faster 	max and the slower 	min:

�	 = (max - 	min) / 	max (2)

Bauer et al. [2] find that the �	 * fmax term was multiplied
by a factor of 2, however the assumptions in the paper that
lead to that conclusion are unclear. Therefore, we use equa-
tion (1) for this analysis.

It has been shown that a central bus guardian must be
prohibited from buffering an entire frame; therefore, the
maximum buffer size Bmax is limited by the smallest frame
transmitted on the network, such that:

Bmax = fmin - 1 (3)

where fmin is the number of bits in the smallest frame. If bmin,
�le, and �� are known the largest allowable frame, fmax, is
found by setting Bmin = Bmax:

fmax = (fmin - 1- �le) / �	 (4)

The maximum frame size, therefore, is inversely propor-
tional to the relative difference in clock rates between the
nodes and guardian. Suppose the nominal clock rates of the
star coupler and all of the nodes are equal. Even in this
case, variations in the manufacturing process could lead to
slight variations in the actual clock rates of the nodes and,
although very small, �	 will not be zero. For example, a
typical commodity crystal oscillator may have a clock rate
that varies by approximately 100ppm. If we assume that in
the worst-case scenario the clock in the star coupler is
100ppm fast and the node is 100ppm slow, the difference in
clock rates between the two is:

�	 = 2 * (0.0001) = 0.0002 (5)

According to the TTP/C Bus-Compatibility Specifica-
tion [12], the shortest frame in TTP/C, an N-frame with no
application data and an implicit CRC, is 28 bits long (4 bits
for the mode change request and frame type and 24 bits for
the CRC). The minimum cold-start frame requires 40 bits
(1 bit for the frame type, 16 bits for the global time, 9 bits
for the round-slot position, and 24 bits for the CRC)[5, 12].
The minimum frame with explicit C-state is an I-frame with
48 bits (4 for the mode change request and frame type, 16
bits for the global time, 16 bits for the MEDL position, 16
bits for membership, and 24 bits for the CRC) [12]. Al-
though our model showed that only cold-start frames and
frames with explicit C-state caused failures when an
out-of-slot fault occurred, the system should be designed to
prevent any frame from being transmitted outside of its as-
signed time slot; therefore, this analysis assumes a maxi-
mum buffer length that is less than 28 bits long.

Using the values fmin = 28, 	 = 0.0002, and �le = 4 we
get:

8

fmax = (28 - 1 - 4) / (0.0002) = 115,000 bits (6)

The longest allowable frame size for TTP/C is 2076 bits (an
X-frame with 4 bits for mode change request and frame
type, 96 bits for C-state, 1920 data bits, 48 bits for two
CRCs, and 8 bits for CRC padding) [12]. In this example
longest allowable frame size of 115,000 bits is much larger
than the number of bits in the largest allowable frame.

This calculation is for nodes and central bus guardians
with the same nominal clock rate. What happens if the
nominal clock rates of the nodes and the central guardian
are not equal? It is possible to calculate the maximum al-
lowable difference in clock rates, given set values of fmin

and fmax, by rearranging equation (3):

�	 = (fmin - 1- �le) / (fmax) (7)

The smallest possible value of fmax is the size of the larg-
est frame required for protocol operation. This is an I-frame
of length 76 bits (4 bits for the mode change request and
frame type, 16 bits each for global time, MEDL position,
and membership, and 24 bits for CRC). If we set fmax = 76
bits, �le = 4,and fmin = 28 we get:

�	 = (28 - 1 - 4) / (76) = 0.3026 (8)

This means that in order to achieve minimal protocol oper-
ation, the relative difference in clock rates between the bus
guardian and the slowest node can not be more than
30.26%.

Now suppose nodes are allowed to send X-frames of
maximum length, the longest frames in the protocol. With
fmax = 2076, the limit of �	 becomes:

�	 = (28 - 1 - 4) / (2076) = 0.0111 (9)

In this scenario, a system that utilizes the maximum possi-
ble frame size cannot have a relative difference in clock
rates between the bus guardian and the slowest node that is
greater than 1.11%. The situation becomes more con-
strained if the protocol is altered to allow longer frames, or
if the equation in [2] is used.

This dependancy between clock rates and frame lengths
is not limited to the TTA with a star topology and central
bus guardian, but rather, it is a fundamental property of any
decentralized system with a centralized supervision of
communication that is prohibited from buffering complete
frames. Whenever the clock rate of the central supervisor
differs from the clock rate of any one of the supervised
components, this central supervisor must buffer some part
of the communication and the minimum size of this buffer
Bmin is proportional to the difference in clock �	 and the
maximum frame size fmax. In order to maintain system de-
pendability, the maximum size of this buffer Bmax must be
less than the minimum frame size fmin. In other words if the
difference between the minimum and maximum buffer is
large, the difference in clock between the central authority
and the guarded nodes cannot be. From equations (2) and
(7) we can calculate the ratio of 	max / 	min:

	max / 	min = (fmax) / (fmax - fmin + 1+ �le) (10)

Figure 3 depicts this relationship for �le = 4, where the
range of possible values lie below the curve. This graph
shows that systems with a wide range of frame lengths can-
not also have a wide range of clock rates. The same is true
for systems with a short maximum frame size. It is interest-
ing to note that if the maximum and minimum frame size
are both 128 bits the ratio of 	max / 	min is not equal to fmax,
but rather is fmax / 5 = 25. This is due to the 1 + �le term in
equation (10). This is a significant limit at high clock ratios
when the transmission time of a frame at the high clock
speed approaches the �le time at the low clock speed.

One simple way to comply with this restriction is to sim-
ply require all nodes and bus guardians to have the same
clock rate. However, there are several reasons why a sys-
tem architect might choose to have some nodes have differ-
ent connection speeds to the hub. Slow, inexpensive nodes
(that need a few short frames) might use slow, inexpensive
links, whereas fast, capable nodes (that usually generate
and consume more network traffic) might have fast links.
Different clock rates may also be desirable if the hub is de-
signed to filter traffic. From a TDMA point of view, each
frame could get the same size time slice. Frames that are
readable to slow nodes would have only a few bits. Frames
with more bits would have to run at a higher bit rate, and
would only be readable by faster, more capable nodes. An
active central guardian could allow faster nodes to ex-
change longer frames, while at the same time preventing
these unreadable frames from being sent to the slower
nodes. Unfortunately, it may not be possible to safely im-
plement these systems because the restrictions on buffer
size might not allow significant differences in clock rates.

7. Conclusion

We have demonstrated that allocating some types of au-
thority to the central bus guardian can lead to the same fail-
ures the authority was intended to prevent. In particular,

9

Figure 3: Relationship between frame size range

and ratio of clock rates

systems that are allowed to stop transmission of frames
with invalid C-states or invalid cold-start frames and have
the authority to buffer entire frames can experience the
same problems in startup and re-integration when faults
occur in a star coupler as systems without centralized con-
trol that experience faults at individual nodes.

The example presented in this paper focused on a syn-
chronous system, the TTA. However, the same effect could
also be observed in asynchronous systems. The failures de-
scribed above were essentially masquerading failures
caused when the centralized authority introduced invalid
frames containing erroneous identification information
onto the network. The same type of masquerading failures
could occur in a distributed, asynchronous system because
the underlying issue is not timing, but rather identification.
A central authority with access to the other nodes’ knowl-
edge (e.g., identification methods) may have the ability to
introduce masquerading failures into a decentralized sys-
tem, whether that system is synchronous or asynchronous.

In addition, we have shown that restrictions on the au-
thority of a central buffer correlate to increased restrictions
on other system parameters. In the case of the TTA with a
star topology and central bus guardians, the restrictions on
buffer size in the star coupler lead to increased restrictions
on frame size and clock rates. In this example, the restric-
tions are primarily due to the fact that frame senders are
partially identified by the frame timing. The problem is not
limited to synchronous systems, however, because some of
the failures occurred with cold-start frames, which are used
in normal operation before the system has synchronized .

System architects may be tempted to add centralized au-
thority to a decentralized system in order to increase the ef-
ficiency, dependability, or functionality of the system. Our
results show that this additional authority must be scruti-
nized to ensure that it does not negatively affect other prop-
erties of the system.

8. Acknowledgments

This work is supported in part by the General Motors
Collaborative Research Laboratory at Carnegie Mellon
University, Bombardier Transportation, and by the Penn-
sylvania Infrastructure Technology Alliance.

This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions or recommendations
expressed in this publication are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

This research was sponsored by the Semiconductor Re-
search Corporation (SRC) under contract no. 99-TJ-684,
the National Science Foundation (NSF) under grant no.
CCR-9803774, the Office of Naval Research (ONR), the
Naval Research Laboratory (NRL) under contract no.
N00014-01-1-0796, and by the Defense Advanced Re-
search Projects Agency, and the Army Research Office
(ARO) under contract no.\ DAAD19-01-1-0485.

9. References

[1] P. Verissimo and L. Rodrigues, Distributed Systems for
System Architects, Kluwer Academic Publishers, 2001.

[2] G. Bauer, H. Kopetz, and W. Steiner, “The Central
Guardian Approach to Enforce Fault Isolation in the
Time-Triggered Architecture,” in Proceedings of the Sixth
IEEE International Symposium on Autonomous
Decentralized Systems (ISADS’03), Pisa, Italy, April 2003,
pp. 37-44.

[3] A. Ademaj, “Slightly-Off-Specification Failures in the
Time-Triggered Architecture”, in Proceedings of the
Seventh IEEE International Workshop on High Level
Design Validation and Test (HLDVT'02), Cannes, France,
October 2002, pp 7-12.

[4] Model Checking at Carnegie Mellon University
http://www-2.cs.cmu.edu/~modelcheck/

[5] TTTech Computertechnik AG, Time-Triggered
Protocol TTP/C High-Level Specification Document
edition 1.0.0, TTTech Computertechnik AG, Vienna,
Austria, 2002.

[6] L. Lamport, R. Shostak, M. Pease, “The Byzantine
Generals Problem,” in ACM Transactions on
Programming Languages and Systems, vol. 4 no. 3, pp.
382-401, 1982.

[7] A. Ademaj, H. Sivencrona, G. Bauer, J. Torin,
“Evaluation of Fault Handling of the Time-Triggered
Architecture with Bus and Star Topology,” in
Proceedingsof the 2003 IEEE International Conference on
Dependable Systems and Networks (DSN’03), San
Francisco, California, June 2003, pp. 123-132.

[8] H. Pfeifer, D. Schwier, and F. v. Henke, “Formal
Verification for Time-Triggered Clock Synchronization,”
In Proceedings of Seventh IFIP International Working
Conference on Dependable Computing for Critical
Applications, pp. 207-226, 1999.

[9] J. Rushby, “Systematic Formal Verification for
Fault-Tolerant Time-Triggered Algorithms” IEEE
Transactions on Software Engineering, vol. 25, no. 5,pp.
651-660, 1999.

[10] H. Pfeifer, “Formal Verification of the TTP Group
Membership Algorithm”. In IFIP TC6/WG6.1
International Conference on Formal Description
Techniques for Distributed Systems and Communication
protocols and Protocol Specification, Testing and
Verification, FORTE/PSTV 2000, Pisa, Italy, October
2000, pp. 3-18.

[11] G. Bauer, H. Kopetz and P. Puschner, "Assumption
Coverage under Different Failure Modes in the
Time-Triggered Architecture", In Proceedings 7th IEEE
International Conference on Emerging Technologies and
Factory Automation, Antibes - Juan les Pins, France,
October 2001, pp. 333-341.

[12] TTTech Computertechnik AG, Time-Triggered
Protocol TTP/C Bus-Compatibility Specification edition
1.0.0, TTTech Computertechnik AG, Vienna, Austria,
2002.

10

