Time Division Multiple Access
Without a Bus Master

Philip J. Koopman Jr. Bhargav P. Upender
koopman(@utrc.utc.com barg@utrc.utc.com
United Technologies Research Center
411 Silver Lane
East Hartford, CT 06108

Abstract

Time Division Multiple Access (TDMA) protocols have the potential to provide simple
but effective broadcast bus communications for embedded systems. However,
bus-master based protocols such as TDMA can be undesirable in practice because
the bus master node constitutes a single-point failure vulnerability and adds to
system expense. We present the Jam-TDMA (J-TDMA) protocol, which eliminates the
need for having a bus master through the use of a nondestructive jamming signal
for frame synchronization. We give a detailed description of the J-TDMA protocol
and show how to minimize the effects of speed differences among nodes on TDMA
systems, which can be critical for low-cost implementations. We believe that J-TDMA
reaps the benefits of TDMA protocols without suffering the reliability and system
complexity drawbacks of other TDMA methods.

Index terms: broadcast bus communication networks, time division multiple
access, multi-access protocols

P. Koopman 1 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

I. Introduction

In this paper we discuss Time Division Multiple Access (TDMA) protocols used
in broadcast bus communications for embedded systems. TDMA protocols have
the potential to be both simple and effective for embedded system applications.
In particular, TDMA is at its best when providing highly efficientuse of bandwidth
for a well characterized, periodic communication traffic workload as found in
many embedded systems. Additionally, the simplicity of TDMA lends itself well
to embedded systems with limited hardware resources at each node. TDMA also
avoids many subtle failure modes associated with more complex protocols, such
as duplicate tokens on token bus systems. TDMA can have low protocol overhead
if the multiplexed time slices are well balanced with respect to node workloads.
And, TDMA does not require collision detection circuitry, which can be difficult
or costly to implement in embedded systems.

Unfortunately, it is often difficult to actually use TDMA in practice because of
reliability and cost concerns. As described later, classical TDMA uses a single
bus-master node to synchronize communications. In many embedded systems,
single points of failure are unacceptable; this is true not only in military and
avionics systems, but also in many commercial systems, such as elevators and
automobiles. Furthermore, a bus master increases size, weight, power consump-
tion and cost. Alternatives to a single bus master seem to simply push complexity
comparable to the master node into slave nodes.

The key problem with using TDMA in practice is the need for a physical or
logical bus master. This seems to have in practice limited TDMA to those
applications that have a natural bus master, primarily satellite communications.

We shall show a way to implement TDMA without using a bus master of any
kind. Our technique permits nodes to come on-line and off-line freely, and is
accomplished with a minimal increase over the logic complexity of slave nodes
over classical TDMA. We feel that this will greatly increase the attractiveness of
using TDMA to provide both simple and reliable embedded communications.

Before presenting our new TDMA-based protocol, we first review classical
TDMA, then discuss previous solutions to the problems caused by having a bus
master.

II. Classical TDMA

In TDMA, bus access is controlled using a frame-based approach. As shown
in Figure 1, transmissions on the bus are grouped into frames. Each frame starts
with a frame sync, which is a unique bit pattern transmitted by the bus master. A
frame gap following the frame sync is required with some transmission technolo-
gies (e.g., transformer coupling) to allow time for the bus master’s transmitter to
return to a quiescent state.

The frame gap is followed by N time slices. In the simplest case, one time
slice is assigned to each of N slave nodes. When a frame sync is detected by a
slave node, that slave node starts a countdown timer that expires at the start of
its uniquely assigned time slice. Whena slave node’s time slice arrives, it transmits

P. Koopman 2 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

T

1[4 FRAME PERIOD *r{
FRAME | FRAME FRAME
sucena | FNE | Taap SLICE 0 SLICE 1 . stcen-1 | FEANE
/
/7
/ \\
\\
/ N\
AN
. /7
i GUARD
4 MESSAGE & GAP
;‘ SSAGE TIME
e TMESUCE —]

Figure 1. TDMA timeline.

a message. In some implementations a gap period after the message is required
to allow the transmitter to return to a quiescent state. After the message and gap,
a guard time is allocated to accommodate timing skew among the oscillators of
the nodes.

When all time slices have elapsed, the bus master transmits another frame
sync message to restart the cycle. This frame sync serves as a central time
reference point and is used to resynchronize the time bases of each slave node,
eliminating cumulative time skew caused by oscillator speed inaccuracies over the
duration of a frame. If a slave node has nothing to send during its time slice, or
the slave node is off-line, its time slice elapses unused. There are several possible
elaborations on this arrangement, such as allocating multiple time slices to nodes
with heavy communication workloads (e.g., [6]), and truncating unused slices (e.g.,

[41).

III. The Different Guises of Bus Masters

All previous implementations of TDMA seem to use either a permanent or
transient bus master of some kind. Unfortunately, use of a bus master tends to
introduce complexities and costs that detract from TDMA's advantages. Before
proposing a solution, we shall review what we believe to be the common ap-
proaches to dealing with bus mastership in TDMA: static allocation of mastership,
dynamic allocation of mastership, and initial allocation of mastership with stable
time bases.

P. Koopman 3 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

Static Allocation of Mastership

Static allocation of bus mastership is the classical TDMA approach [6]. In the
simplest case, a dedicated bus master is used. An alternative is to replicate the
extra logic for mastership within at least one slave node, then designate that node
as both a slave and the bus master. For example, node 0 could always be the bus
master. The problem with static allocation is obvious: whether the bus master is
dedicated or combined with a slave node, failure of the bus master causes network
failure.

Dynamic Allocation of Mastership

An alternative scheme is to designate a bus master among the operational
slave nodes during network initialization. Thus, rather than statically designating
a particular node as the bus master, the first node to be turned on could become
the bus master. Once a bus master takes control, it remains in control until it fails.
If a bus master fails, another slave node may detect the failure and become bus
master itself (a similar idea is described in [7]).

The problem with dynamic allocation of mastership is that if two nodes are
turned on almost simultaneously (within one bus propagation delay tpq), a conflict
arises. Some arbitration mechanism must be invoked that designates one, and
only one, bus master before proper network operation can proceed. This arbitra-
tion mechanism increases slave node complexity, and seems a high price to pay
for a function that is only used when the system is reset. The arbitration
mechanism is often complicated by the fact that collision detection circuitry is not
available due to cost and practicality constraints.

Even with dynamic allocation of mastership, the current master still consti-
tutes a single point of failure. If extra logic is included to facilitate automatic
network resets and redesignation of a bus master, single-point failures can be
minimized. However, the resultant node design is much more complicated than
the original TDMA slave node.

Initial Allocation of Mastership with Stable Time Bases

A somewhat different approach is taken by the ARINC-629 protocol. [4] In
ARINC-629, there is no single bus master during normal operation. Rather than
using a frame sync from a bus master, each node keeps track of time slices as they
elapse, whether there are transmissions or not. Frame starts are not explicitly
delineated by transmission events. In order to limit the effects of accumulated
time-base skew between nodes, two cross-checked time sources are incorporated
into each node, and nodes resynchronize at the end of every transmitted message.
ARINC-629 implementations must ensure that messages are sent occasionally to
avoid excessive timing skew, even with redundant oscillators at each node.

With ARINC-629, there must still be some initial synchronization event to start
operation. This is done with an arbitration scheme that must deal with potential
message collisions, just as in the case of dynamic allocation of mastership. The
difference with the use of stable time bases is that after the initial master gains

P. Koopman 4 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

B

iy,

control (by issuing a non-colliding message that all other nodes synchronize to),
mastership is then irrelevant for further operation.

The disadvantages of initial allocation of mastership with stable time bases
are that logic for an initial arbitration scheme must be included, and very stable
time bases must be used to minimize oscillator skew over the longest possible
time between messages on the network. One could reduce the effects of oscillator
skew by generating dummy messages periodically, but such messages would have
to be sent sparingly to gain the benefits of ARINC-629’s variable-width time slice
feature that compresses unused time slices to increase efficiency. A dummy
message scheme would also resemble a dynamically allocated master arrange-
ment, with the attendant complexity increase and failure modes. A further
problem with using stable time bases instead of frame syncs is that if a node is
reset or brought on-line after the bus has started operation, there is no predictable
reference for determining where the newly activated node’s time slice begins; and
no guarantee of how long the newly activated node will have to wait before some
recognizable signal is transmitted by other nodes on the bus.

IV. The J-TDMA Protocol

In order to avoid the problems of other TDMA protocols, we propose a new
scheme that completely eliminates the need for abus master. Because the protocol
is based on using a “jam” signal as the frame sync, we call it J-TDMA.

Classically, a TDMA bus master’s frame sync is used to avoid collisions among
slave nodes by limiting accumulated timing skew. This resynchronization at the
start of each frame, combined with a guard time at the end of each time slice,
prevents slave node transmissions from overlapping. Typically, the frame sync
signal consists of a unique waveform pattern such as an intentionally misplaced
signal transition edge or a long sequence of ones that is otherwise illegal in a
bit-stuffed transmission scheme.

The reason that collisions are undesirable in TDMA is that they are difficult
or expensive to detect. If two transmitters were to attempt to send frame syncs
concurrently, they might be enough out of phase to cause waveform interference
between high and low physical signal levels on some or all of the bus as their
signals propagate. This interference could cause some receivers to miss some or
all of the frame sync message. Even on systems where such interference might
not be a problem at the physical level, TDMA designs traditionally designate a bus
master.

The key idea of J-TDMA is to use a nondestructive frame sync signal, so that
more than one transmitter can send a frame sync without adverse interaction
among signals. While most other TDMA protocols focus on having a single bus
master issue frame syncs, J-TDMA is designed to tolerate multiple overlapping
frame sync transmissions. Thus, the issue of establishing a unique bus master is
rendered moot in J-TDMA.

An excellent candidate for such a frame sync signal corresponds to a “jam
signal” used to enforce recognition of collisions in collision-based protocols (e.g.,
[2]). For example, in a baseband multimode fiber optic system, one or more
transmitters can jam by emitting light (baseband “on") for a period of several bit
times. As another example, current-mode transformer coupled systems can jam
by having one or more transmitters assert a physical “high” value for longer than

P. Koopman 5 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

a bit time. In general, any signal which nondestructively propagates throughout
the communication medium can serve as a jam signal. No data need be commu-
nicated by the jam signal — only the presence of a jam signal need be detected in
order to establish a synchronization event.

Detecting a jam signal is inherently easier than detecting a collision, because
during jamming all transmitters are asserting mutually non-destructive wave-
forms, whereas during a collision between arbitrary data transmissions the wave-
forms may destructively interfere. Care must be taken to ensure that
communications bus noise is unlikely to falsely trigger jam detection; in most
cases this simply means that the jam signal must be longer than a bit time rather
than shorter.

A jam signal is not the same as a “bit dominance” signal such as that used by
the Controller Area Network (CAN) protocol.[1] In bit dominance a transmitter
broadcasting a logical “1" must dominate over some other transmitter broadcast-
ing a logical "0". For jamming, it is sufficient that transmitters not interfere with
each other while each is broadcasting only a “high"” level. So, bit dominance may
be used to implement jamming, but jamming does notrequire a full bit dominance
capability.

Once we decide to use a jamming signal as the frame sync, all questions of
establishing a unique bus master disappear. Itis perfectly acceptable for multiple
nodes to be designated as bus masters and issue overlapping frame sync signals,
because they won't interfere with each other; only a single elongated frame sync
will be detected by any receiver on the bus. Furthermore, issues of implementing
an arbitration mechanism to momentarily pick a bus master (as in the case of
ARINC-629) also disappear. There truly never needs to be a unique bus master,
because all nodes can assert frame syncs without concern for collision.

J-TDMA Protocol Description

J-TDMA follows the same time sequence shown in Figure 1 for TDMA. The
major difference is that more than one node may issue overlapping frame sync
signals. Figure 2 gives a Finite State Machine (FSM) diagram for the logic contained
in each node when implementing J-TDMA. In the description we shall use “frame
sync” to mean the logical operation of establishing a time reference, and “jam” to
mean the physical act of transmitting a jam signal to implement a frame sync
operation.

Initialization is handled by having each newly activated node wait for an entire
frame period to determine if the network is active. If a frame sync is detected, the
node joins the active network. If no signals are detected for an entire frame period,
then the node is the only active node on the bus, so it asserts a frame sync to start
bus operation. It is permissible for multiple nodes to assert this first frame sync
without arbitrating for initial mastership, because multiple jammers are allowed.

In normal operation, each node waits for its assigned slot interval beyond the
frame sync, and sends a message at the appropriate time. It then waits until the
anticipated end of the frame time, then emits a frame sync. If a node detects a
frame sync before its computed end of frame time, it simply accepts the incoming
frame sync signal as the start of a frame without emitting its own frame sync. It
is possible that multiple nodes will start transmitting frame syncs within a

P. Koopman 6 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

[IE—

Any Error
Transmitter Reset yor

Power Turned On *Transmitter Confused”

! {

SYNCHRONIZE

wait for:

Bus Jam Bus Idle For
Detected OR Frame Period

T
Bus Idle |
for Frame |

Period 1

JAM
; THE BUS
i (FRAME SYNC)
i

‘! A

Bus Jam

Jam Period
Detected Elapsed

WAIT FOR
ALL JAMMERS
TO FINISH

Ceases

FRAME
GAP

Frame Gap
Time Elapsed

WAIT FOR
mth SLICE

This Transmitter's
Time Slice Amves

TRANSMIT
MESSAGE

WAIT

Jamming

Y

T

M

Frame Sync
Detected

FOR NEXT
FRAME

Time for

o

Next
Frame Sync

Figure 2. Finite State Machine for J-TDMA protocol.

P. Koopman 7
B. Upender

© Copyright 1993
All Rights Reserved; U.S. Patent Pending

o

propagation delay of each other, because they won't receive other frame syncs
until up to a propagation delay after other nodes assert them. With this method,
the nodes with fast oscillators will assert frame syncs, while other nodes resyn-
chronize to them. As nodes come on-line and off-line, and components age, the
fastest operating nodes will set the frame period.

In all fairness, JTDMA still has a potential single-point failure mode: jabbering.
If a single node transmits a continuous jamming signal or data transmission, other
nodes will be prevented from using the communication bus. However, this failure
mode is inherent in any shared-medium communications scheme, and so is no
worse a problem than that found in other media access protocols.

Simplified Equations

Now that we have described the protocol, we shall turn our attention to
deriving equations to describe the various parameters that mustbe used to actually
implement the protocol. We shall start by assuming that oscillators are highly
accurate as a way of illustrating the effects of propagation delay on synchroniza-
tion. In the next section we shall augment the equations with factors that account
for oscillator skew found in real systems.

In systems using highly accurate oscillators, calculating the parameters of
interest is relatively straightforward. In all cases we assume that computational
delays at each node are negligible. Table 1 is a summary of our notation. All times
are considered to be measured at each individual node unless otherwise noted.

The minimum frame sync length A, measured at node m, must account for a
21pd worst case round-trip time in order to guarantee that potential signals from
all jamming nodes (which can be skewed in starting time by up to one propagation

fmin, fnom, fmax = oscillator frequency (minimum, nominal, maximum)
~ Tpd = maximum signal propagation delay
" A = minimum frame sync length |
y = frame gap
' M = maximum message length (including any preamble and message gap)
- Tm = start time of mth time slice after frame sync
® = frame length
c = oscillator skew ratio

G = guard time within a time slice
V= guard time overhead ratio

A, G, T, @, and V' apply to optimal-length time slice scheme
AL, G, T, @, and V" apply to fixed-length time slice scheme

Table 1. Summary of notation.

P. Koopman 8 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

delay) have time to reach all receivers (requiring a second propagation delay). This
minimum jamming period ensures that the jamming will be received as an
uninterrupted waveform at all receivers without gaps caused by skewed jam
starting times.

() A= 21pd (no oscillator skew)

We define the minimum time to the start of the mth time slice Tm, to be
measured, at node m, from the end of the collective frame sync waveform.
Therefore, Tm must take into account the frame gap length y, and maximum
message length M allowed within the system. There will be up to one tpg skew
between nodes resulting from the travel time of the frame sync signal. Another
1pd is required to prevent collision between the end of one message and the start
of the next message caused by propagation delay between successively transmit-
ting nodes. Both tp4 terms must be added into each time slice so that every pair
of transmitters has a 21p4 gap between transmissions; this accommodates the case
where the transmitter that was first to jam (from a global perspective) is followed
in transmission by the transmitter that jammed just short of a 1pa later (also from
a global perspective) where the two transmitters are at opposite ends of the
communications bus.

(2) Tm = y+mQ21pd+ M) (no oscillator skew)

The frame period ®, measured at node m, is simply A plus the time of the start
of the Nth time slice (where the highest transmitter number is N-1):

3) O =A+TN=21pd+Y+NQ21pi+ M) (no oscillator skew)

Optimal Time Slice Starting Times in the Presence of Oscillator Skew

In all real communication systems, the oscillator at each node operates at a
slightly different frequency than the oscillators at other nodes. Most current
systems, including TDMA systems, are relatively insensitive to slight inaccuracies
in oscillator speed in normal operation. This insensitivity stems from the use of
commonly available, high accuracy crystal oscillators (e.g., +0.01% or better), and
operation at moderately high data rates (e.g., 1 Mbit/sec), resulting in a small
cumulative skew between resynchronizations.

As distributed microcontrollers become more common in embedded systems,
there will be cost pressure to accommodate significant amounts of time skew
caused by use of less expensive crystal oscillators (e.g., +0.1% or worse); relatively
inaccurate RC-based on-CPU oscillators (e.g., £10% or worse), and slower data rates
over inexpensive communication channels. In order to address these issues we
explicitly include skew introduced by oscillator speed inaccuracies in the following
equations. Again, all times are measured independently at each individual node
m.

We use a skew parameter, o, to compensate for the differences among
oscillator speeds within the communications network. The strategy used is to

P. Koopman 9 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

make all time delays long enough to accommodate the worst-case skew between
any pair of nodes, thus avoiding overlapped transmissions (except during frame
sync, when itis used to ensure overlapped transmissions without gaps). We define
the oscillator skew ratio o to be the inaccuracy of the oscillator:

ﬁwm fma.x
fmin > fnom

slightly

_ ﬁ:om

(4) °= fmin

where in general practice*

where the nominal system frequency (from) may vary to be as fast as (fmax) or as
slow as (fmin) as specified by the oscillator manufacturer for expected system
operating conditions. Specifications in real oscillators are typically given as
nominal operating frequency combined with a skew percentage, leading to a slight
asymmetry in skew ratios between the worst-case fast and slow oscillators. We
assign o the slightly higher value of the two (while we could have defined o as the
ratio of the maximum to minimum frequency, this definition would have been at
odds with data sheet specifications).

The minimum frame sync length A' must account for the possibility of some
nodes having fast oscillators, and so uses the skew parameter o to extend the
length of the frame sync, ensuring that a small gap in the jamming waveform is
not caused by oscillator speed differences. The minimum frame sync length A" is
given by:

(%) AN=2twmdo ;1<o

The start of the mth time slice Tm', must use the skew factor ¢ to account for
the different oscillator speeds at different nodes, because each node measures
slightly different times for the frame gap and time slices. For convenience, we
define a as:

(©) o =2(c-1) : 130«%

o accounts for o with a scaling factor of 2 to ensure thata node with a fast oscillator
(o times faster than nominal) does not start a message conflicting the end of a
message from some preceding node with a slower oscillator (c times slower than
nominal). The range restriction on o ensures physical realizability of the following
equations. If o is close to 3/z, skew time will account for most of the network
bandwidth, and the system will be impractical.

Now we define the guard time, Gm', required for each time slice as:

(7) Gm' o (Tn,' + 2 Tpd+ M) +a Gm'

1

—& (T +2 Tpd + M)
03

Il

® Gn=o

This definition of guard time accounts for both the oscillator skew up to the start

of the mth time slice, skew during the message (with 2tpd included as in Equation

P. Koopman 10 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

2), and skew that occurs during the Gmth guard interval itself. Based on this guard
time definition, we can iteratively define the start of each time slice Tm' as:

1
9 To' = y+aTo = ——v
l ~a

(lo) T = Tm—l”+21pd+M+Gm—l' ;m>0

The first time slice starts after the frame gap (and associated skew). The start of
each time slice is delayed by increasingly long guard times as skew accumulates
throughout the frame time. This has a closed-form solution of:

] -a

m+l m I
(1 T,,,':(—l——j v+ (2:,,4+M)Z(l—:l;) ‘m >=0

i=1

The frame period @' is simply the frame sync A’ plus the time of the start of
the Nth time slice (where the highest transmitter number is N-1):

(12) O = A+ TN

This value of @' is optimal in the sense that itis the shortest possible frame period
that safely accommodates worst case oscillator skew. We define the guard time
overhead V' of this method to be:

N-1

> G
(13) V= =0

V' provides a measure of the effect of skew on overall system efficiency.

Fixed-Length Time Slices in the Presence of Oscillator Skew

While the value of @ from the preceding section is optimal, this value may be
difficult to achieve in practice, because it results in each time slice in the system
being a different length (larger values of m are later in the frame, have more
accumulated skew, and thus a longer guard time). It is easier to implement and
perform configuration management on systems where the size of each time slice
is constant (as in the traditional TDMA scheme). Therefore, we derive the equa-
tions for constant-size time slices below. Once again, all times are measured
independently at each individual node m. A comparison of optimal-size slice vs.
constant-size slice efficiency is given in the next section.

The starting time of the mth time slice, Tm", is simply the sum of m
constant-length time slices and the frame gap:

(14) To" =y +mQpd+M+G")

P. Koopman 11 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

where the guard time G" for each constant-width time slice must account for
accumulated skew over all N time slices plus the skew that accumulates during
the guard time of each slice:

(15) G" =aTn =a(y +N(2Tpd+M+G"))
(16) G":ﬁ;\j(y +N (2 1pd + M)) where a<]%<<l

and the frame length ®" is:
(17) O = A+ TN
Finally, we define the guard time overhead V" of this method to be:

N1

Z Gi"
(18) pn o i=0 - NG"
@“l q)"

Examples

To illustrate the effects of limited oscillator precision and resultant skew,
Examples 1 and 2 show two representative system designs.

Example 1 is representative of a relatively fast, small system with moderately
stable oscillators. The maximum guard time is less than a bit length, and guard
time overhead is well under one percent. In many real systems, oscillators are
typically better than 1 partin 10%, or a worst-case oscillator can be replaced with
one not quite so bad. Also, temperature is relatively uniform across nodes, and
system lives are moderately short, limiting aging effects. So, in many cases, design
engineers can ignore oscillator skewand still have a system that works most of the
time.

However, Example 2 shows a situation similar to one we have encountered in
practice. In this example the bit rate is much slower (because of the use of
inexpensive twisted pair wires), and tpd is much longer because itis a physically
large installation. Most critically, o is worse because nodes are physically sepa-
rated and exposed to different and varying operating conditions, the system life
is extremely long, and less precise oscillators are used when possible to reduce
system costs. In this case the guard time must be almost 7 bits long for proper
operation, so it is unlikely that this system would be manufacturable without
calculating and allowing for a guard time. The overhead for optimal-length time
slices (V') is approximately half the overhead for fixed-length time slices (V").
Using optimal-length time slices saves more than a millisecond per frame of
overhead, which is roughly equivalent to one message per frame bandwidth
improvement. And, as shown by the graph, the efficiency savings would increase
dramatically with even slightly higher levels of oscillator inaccuracy.

P. Koopman 12 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

B. Upender

Data rate: 1 usec/bit (1 Mbps)
N=8 nodes 5
tpd = 0.2 usec 3

— E @
M = 100 pusec T OPTMAL.

— LENGTH
y = 10 usec 5 N

pd
. -4 o
o = 1.0001 (inaccuracy approx. £107) j r
A' = 0.400 psec 2
GN' = 0.163 psec T
¢' = 814.341 usec V' = 0.09%
G" = 0.183 psec ulO-"’ 1071 1(;‘” 1072 10"' 10°
" =814903 psec V' =0.16% OSCILLATOR INACCURACY
(c-1)
Example 1. Example system with small guard time
80 I
Data rate: 10 usec/bit (100 Kbps) i /
|
N=32 nodes R | "
O |
tpd = 2.0 psec a 7 oo
J
M = 1000 psec E 7 @
I OPTIMAL-
y = 10 usec G ‘0 l | / LENGTH
pzd |
. 3 w —‘“—' =T
o = 1.001 (inaccuracy approx. +10™) EJJ
A' = 4.004 psec <§(20 4+
GN' = 68.592 psec T
@' = 33227.369 usec V' =3.27% ,

“wo_ 0 "]l, i “n% i “..% PR nAu{ A4 s
G"” = 68.671 psec 107% 1074 1072 1077 107! 10§
©" = 34339.474 ysec V" = 6.40% OSCILLATOR INACCURACY

(o-1)
Example 2. Example system with large guard time
P. Koopman 13 © Copyright 1993

All Rights Reserved; U.S. Patent Pending

V. Simulation Results

We have developed an SES/workbench model [5] to simulate a J-TDMA net-
work. In particular, the model accounts for signal propagation delays along the
bus and models time skew among nodes having different speed oscillators. The
simulation also detects any unintentional collisions among node transmissions.

We do not report simulation throughput and latency results here, because the
behavior of TDMA networks is well known (e.g., [3]). Rather, the purpose of the
model was to help us validate the finite state machine and equations. The
equations presented have been tested via simulation, including checking optimal-
length time slices to verify optimality. Understanding and properly accounting
for of clock skew and propagation delay effects was harder than we anticipated,;
the simulations proved a valuable tool in furthering our understanding of skew
effects.

V1. Variations to Improve Performance

Because J-TDMA is an improved frame synchronization mechanism for TDMA,
most techniques for improving TDMA performance also apply to J-TDMA.

More efficient use of the bus may be made by assigning multiple time slices
to nodes with heavy workloads. For example, if one node transmits twice as many
messages as any other node, it may be assigned two slices instead of one. Of
course this technique results in a minor increase in node logic complexity.

Another efficiency improvement technique is to use time slice compression,
as done in ARINC-629. With this scheme, if a time slice goes unused for a
predetermined period of time shorter than the entire slice time, all nodes auto-
matically progress to the next time slice without any signaling taking place. This
scheme compresses unused time slices to improve efficiency. In this case, the
frame period varies with the number of messages actually transmitted.

VII. Conclusions

This paper has introduced a new communications protocol, which we call
J-TDMA. By using a jamming signal, one or more nodes may assert frame sync
signals without destructively interfering, eliminaiing the need for a bus master.
Arbitration to select a transient bus master for bus initialization is similarly
avoided. We have also derived equations for system parameters that account for
variations in oscillator accuracy, enabling implementors to build systems with less
accurate, less expensive time bases. We believe that our results show how to build
significantly simpler and less expensive TDMA systems, while at the same time
permitting more flexible and robust system design.

VIII. Acknowledgements

The authors wish to thank Alan Finn of UTRC for his technical and editorial
contributions.

P. Koopman 14 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

References

[1] Robert Bosch GmbH (1991), CAN Specification, Ver. 2.0, Stuttgart, Ger-
many, September.

[2] P. Gburzynski & P. Rudnicki (1989) A virtual token protocol for bus
networks: correctness and performance, INFOR 27(2): 183-205, May.

[3] H. W. Lee & L. Liang (1990), A Generalized Analysis of Message Delay in
STDMA, Computer Networks and ISDN systems, 19(1), September.

[4] National Semiconductor Corp. (1992), ARINC 629 Communication Inte-

grated Circuit Data Sheet, Rev. 2.0.

[5] Scientific and Engineering Software, Inc. (1992), SES/workbench Reference
Manual Release 2.1, Austin, Texas.

[6] W. S. Stallings (1991), Data and Computer Communications, 3rd ed.,
Macmillan, New York.

[7] G.J.W. van Dijk & A.J. van der Wal (1989), Performance measurements of a
communication protocol implemented for distributed real-time systems, In: Pro-
ceedings of the 14th Conference on Local Computer Networks, 1IEEE Computer
Society, 307-314.

P. Koopman 15 © Copyright 1993
B. Upender All Rights Reserved; U.S. Patent Pending

