
© 2007, Philip Koopman 1 Interrupt Response Time

Worst Case Interrupt Response Time
Draft, Fall 2007

Philip Koopman
Carnegie Mellon University

© Copyright 2007, Philip Koopman

Reproduction and dissemination beyond students of CMU ECE 18-348 is prohibited.

1. Overview:
Interrupt Service Routines (ISRs) are commonly used to provide fast response times to external
events or timed events. Because the point of providing fast response is to meet deadlines, it is
important to know the worst case execution time of multiple concurrent interrupts competing for
processor resources. The usual scheduling theory math doesn’t work that well for this case
because most scheduling theory assumes preemptive task switching, while ISRs are usually
written to be non-preemptive (i.e., interrupts remain masked while the ISR is running). This is an
instance of the more general problem of determining the maximum response time for a
prioritized, non-preemptive tasking environment.

2. Importance:
If only a single interrupt is used in a system, determining interrupt service latency is relatively
easy. However, if multiple prioritized interrupts can occur, then some will be serviced quickly,
and others will be serviced more slowly. There will be some worst-case situation in which lower
priority interrupts will have to wait for one (or more) executions of all higher priority interrupts.
Ensuring that the worst case latency of lower priority interrupts is fast enough to meet real time
requirements is an important analysis issue. Unfortunately, it is often difficult or impossible to
create worst-case situations in a testing situation, so analytic approaches must be used to make
sure that testing doesn’t miss a particularly bad timing problem.

The ISR response scenario is an instance of the more general situation of a prioritized

cooperative scheduling tasking system. In such a system each task has a priority, but tasks run to
completion (i.e., tasks are non-preemptive).

3. Graphical Approach
For this discussion, we assume that there is a collection of prioritized tasks that needs to be
executed periodically. Those tasks could be ISRs, threads, processes, or any mixture of the above
so long as there is a static total ordering of priority across all tasks (i.e., fixed task priority). This
would be the case, for example, for prioritized ISRs which keep interrupts masked while
executing, deferring any higher priority interrupt servicing until the currently executing ISR has

© 2007, Philip Koopman 2 Interrupt Response Time

completed. This is usually how prioritized interrupts are executed. (The exception is when a
software developer explicitly re-enables interrupts during an ISR, but that is usually bad practice.)

First, let’s work out an example graphically to understand what is involved. Consider the

below example task set including prioritized interrupts, execution times, and periods:

ISR0 takes 5 msec to execute and occurs at most once every 15 msec
ISR1 takes 6 msec and occurs at most once every 20 msec
ISR2 takes 7 msec and occurs at most once every 100 msec
ISR3 takes 9 msec and occurs at most once every 250 msec
ISR4 takes 3 msec and occurs at most once every 600 msec

where ISR0 is the highest priority and ISR4 is the lowest priority. No ISR can preempt any other
ISR. When an ISR completes execution, the highest priority ISR that is ready to execute will
execute next. We assume that any underlying tasks don’t disable interrupts. There are a number
of other assumptions we are making to simplify this analysis, but those will be discussed later in
the analytic approach section.

The first question we want to ask is, what is the worst case latency for ISR2? For example if

ISR2 must complete within 50 msec of the time the interrupt is first requested, is there a case
where that won’t happen?

The problem is that ISR2 is not the only task running – other ISRs are competing for processor

resources. A bad case is when another lower priority task than ISR2 has just started to run when
ISR2 is triggered for execution. In particular, the worst case is when the task with the longest
running time having lower priority than ISR2 has just started to run. For this task set that is ISR3
(ISR3 and ISR4 are both lower priority than ISR2, but ISR3 has a much longer run time of 9
msec compared to the 3 msec run time of ISR4).

Why did we pick a lower priority instead of a higher priority interrupt to start with? The reason

is that in the worst case, the CPU will be unavailable for a while when an interrupt arrives,
causing other interrupts to pile up before the one we are interested even has a chance to compete
for CPU time. Because no interrupt with lower priority will execute after ISR2 becomes ready to
run, selecting one with a lower priority adds more work to the tasks that must be completed
before ISR2 can be started. We’ll take all the higher priority interrupts into account shortly. But
once ISR2 is ready to run, no lower priority interrupt can run, so only one such low priority
interrupt need be considered, and the longest execution time one is the worst case.

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

Pending @ 9 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 1. ISR3 Executes before ISR0, ISR1, and ISR2 are triggered.

© 2007, Philip Koopman 3 Interrupt Response Time

Now we have a situation where ISR3 might get to run before ISR2 by just beating it to the

CPU. Beyond that, it is possible that every higher priority interrupt than ISR2 starts just after
ISR3 starts, but before ISR3 ends, so they could also get to run before ISR2 as well. Figure 1
shows this situation, with ISR3 starting to run, followed quickly by ISR0, ISR1, and ISR2 being
triggered. The times at which ISR0 and ISR1 can be retriggered are also shown in Figure 1, since
as we will find out they might have to be serviced one or more times before ISR2 finally gets a
chance to run.

When ISR3 finishes executing at 9 msec, all three of ISR0, ISR1, and ISR2 are pending. Since

ISR0 is the highest priority task, it goes first, followed by ISR1. While ISR1 is executing, ISR0
is triggered a second time at 15 msec, and ISR1 is triggered again at time 20 msec. Neither of
these events disturbs the execution of ISR1 since it is non-preemptable (interrupts are masked
while executing ISRs). This leads to a situation at time 20 where all three of ISR0, ISR1, and
ISR2 are still pending (Figure 2).

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 Pending @ 20 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 2. By the time ISR0 and ISR1 run once, they have been retriggered.

At 20 msec, ISR0 is the highest pending task, so it executes again, and is again followed by

ISR1, at 25 msec. ISR0 then retriggers at 30 msec, but ISR1 has not yet triggered again. So at 31
msec when ISR1 ends, only ISR0 and ISR2 are pending (Figure 3).

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 Pending @ 31 msec: ISR0, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 3. At 31 msec, ISR0 has retriggered and ISR2 is still pending, but it is not time for
ISR1 yet.

At 31 msec ISR0 is still the highest priority interrupt pending, so it runs until 36 msec (Figure

4).

© 2007, Philip Koopman 4 Interrupt Response Time

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 Pending @ 36 msec: ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 4. At 31 msec, ISR0 and ISR2 are pending, so ISR0 runs again.

At 36 msec, ISR0 has completed execution and is no longer pending (it won’t be triggered

again until 45 msec). Moreover, ISR1 is not due to run until 40 msec. This leaves ISR2 as the
only task pending, so it starts execution and runs until 43 msec. By 43 msec ISR1 has
retriggered, so it starts running (Figure 5), but does not interfere with the completion of ISR2
because interrupts are non-preemptable once started. Thus, in the worst case, ISR2 completes at
43 msec after it is triggered.

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR2ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 Pending @ 43 msec: ISR1

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 5. At 36 msec, ISR2 is the only task still pending, so it finally gets to execute.

4. Analytic Approach
Now that we have seen the types of complications that can arise when multiple tasks compete

for CPU time, we can take a more rigorous, mathematical, approach to the analysis. In this
section we’ll create a set of equations that computes the worst case latency for any task in a set of
tasks. These equations can be used to determine if each task in the set will meet its own particular
deadline.

The following notation is used in the equations below:
• Ti : Task i
• Ri : Response time of Task i, which is the worst-case time between when Ti is ready to start

executing and the time it actually starts execution.
• Wi : Completion time of Task i
• Ci : Computation time for one execution of Ti (worst case – largest possible Ci)

© 2007, Philip Koopman 5 Interrupt Response Time

• Pi : Period for execution Ti (worst case – fastest possible Pi). If the task is aperiodic, then
assume a Pi corresponding to shortest possible time between any two executions of Ti (i.e.,
reciprocal of worst case shortest inter-arrival time of task executions).

• Di : Deadline for Ti
• B : Blocking time caused by background tasks that mask interrupts, or other dependencies.
• ⎣ x ⎦ : floor function; rounds x down to next lowest integer

The following assumptions are used in the equations below as a starting point:

• There are prioritized N tasks, numbered 0 through N-1, with Task i called Ti. In the previous
example, each ISR handler was a task. Any other tasks running on the computer are referred
to as background tasks.

• Background tasks interfere with Tasks 0 through N-1 only via disabling interrupts or task
switching for some maximum blocking time B. (Blocking time was not shown in the
preceding graphical example.)

• Tasks are statically prioritized, with Task 0 being the highest priority and Task N-1 being the
lowest

• Each task Ti executes only when no other task with higher priority is ready to execute, then
runs to completion without stopping (i.e., tasks are non-preemptable). If no task Ti is ready to
execute, then background tasks are run until some task T is triggered to run.

• Any task Ti can and will preempt any background tasks, possibly with a delay caused by
blocking time. (For example, ISRs preempt any non-ISR code.)

• Each task is triggered for execution no faster than once per stated period. Moreover, the
period represents the worst-case minimum inter-arrival time between triggers for that task to
execute. The period of each task may be different.

• The worst-case longest compute time for each task is known and used in the calculations.
• The deadline for each task is known, and is less than or equal to that task’s period.
• The cost of changing tasks (e.g., processing an interrupt and corresponding RTI instruction)

is accounted for in the worst-case compute time.

The values we are interested in finding are the completion times of all tasks. For a system to
perform properly, all tasks must complete their work Wi at or before the applicable deadline Di.
So, the ultimate goal is to ensure that:

(1)

Which states: for all values of i, the completion time of Task i is less than or equal to the

deadline of Task i (i.e., all tasks complete before their deadline).
The completion time of a task has two components: the time spent waiting to start execution

(the response time Ri) and the time spent actually doing the work of the task (the computation
time Ci).

(2)

In the systems we’re looking at, tasks are non-preemptable, so once the computation of a task

starts, that task runs to completion. Thus, Ci is a known constant value. But, Ri is trickier, because
it must take into account the fact that Task i has to wait for all higher priority tasks to execute and
also wait for any blocking time. For example, if Task 4 is an ISR, that ISR can’t execute until any
interrupt masking in the main program is completed (i.e., blocking time B) and all higher priority
interrupts 0, 1, 2, and 3 execute at least one time (because in the worst case all four of those

()iii DW ≤∀

iii CRW +=

© 2007, Philip Koopman 6 Interrupt Response Time

interrupts were triggered just after the beginning of the blocking time – such a small delay that we
will just be conservative and consider it to be zero elapsed time in our equations).

Accounting for blocking time starts the build-up of equations to obtain Ri:

(3)

By this we mean that Ri is at least as long as the blocking time, but possibly longer.

Now let us consider Task 0. Is B the only factor that could delay the start of execution? Even

though this is the highest priority task in the system, there is something else that can delay it. The
other factor is some other task with a lower priority that has already begun execution, because
tasks are non-preemptable (once started, they run to completion). The worst case is that the task
with the longest possible computation time has just started execution, and must complete before
Task 0 can run. In other words, a lower priority task can delay execution of a higher priority task
because it is allowed to run to completion. This, in effect, is a different form of blocking. In
general, for Task i, it is possible for some task with a higher task number (i.e., lower priority) to
be executing, delaying the start of Task i. Thus,

(4)

This means that the response time for Task i must be at least as bad as the worst case wait

caused by the longest computation time of any Task j with a lower priority than Task i. Task i
itself is not considered, because we assume that the deadline for each task is longer than its
period, so Task i must have completed execution before it attempts to execute again. For task N-
1, which is the lowest priority task that isn’t a background task, this delay is zero, since there is
no lower priority task to get in the way (but, even this task is subject to blocking time from the
background tasks).

Next, we combine the two starting factors of B and maximum Cj to get an initial lower bound

on response time. But rather than adding them, we can simply take the maximum of the two,
because both situations can’t happen at the same time. Consider the two possible situations.

Situation (1): If a task has to wait for blocking time B, then that means a task Ti isn’t already

running (because blocking can only occur due to a task other than Tasks 1..N-1 executing). If that
is the case, as soon as blocking has finished, the highest priority task will begin executing as soon
as blocking is over. This makes it impossible for a task with lower priority than Task i to delay
the start of task i after blocking. If Task i isn’t ready to execute when blocking is completed, then
the blocking time hasn’t delayed its response time, since it wasn’t ready to run.

Situation (2): If Task j, with lower priority than Task i, is already executing, then blocking

can’t occur, because when Task j completes, Task i (or some task with higher priority) will
immediately start executing rather than the background tasks. The background tasks that can
cause blocking won’t resume execution until all prioritized tasks, including Task i, complete
execution.

So, let’s define the effective blocking time B’ as:

(5)

BRi ≥

()
0

max

1 ≥

≥

−

<<

N

ji

R

CR
Nji

()
otherwiseBB

NiBCB

i

ji
Nji

;'

1;,maxmax'

=

−<⎥⎦
⎤

⎢⎣
⎡=

<<

© 2007, Philip Koopman 7 Interrupt Response Time

This means that the response time for Task i is bounded by an effective blocking time B’,

which is the longest lower priority task that might execute, or the blocking time B. Because there
is no lower priority task than Task N-1, then blocking time B is the only issue for that particular
task.

For Task 0, our response time calculation is done. Because there are no higher priority tasks,

Task 0 will run to completion once the effective blocking effect has passed (either waiting for
background task blocking B or the longest lower priority task to complete).

(6)

The next factor in response time calculations is that higher priority tasks can execute before

lower priority tasks. In the worst case, Task i will have to wait for every possible Task m with
higher priority to execute at least once. From this point on, the response time will have to be
computed iteratively to account for the fact that enough time may pass for high priority tasks to
re-trigger.

We’ll use the notation Ri,k to represent the kth iteration of the computation for Ri, with the
computation iterated by increasing k until the answer converges to a final value. To keep things
simple, and conform to the graphic approached used previously, we start the iteration with the
effective blocking value B’:

(7)

Next, we have to account for the execution time of all tasks with higher priority than Task i,

because it is possible all of them triggered just as Task i was triggering. The number of times a
particular Task m executes in time T is one more than the rounded-down (integer floor function)
number of times the response time Ri,k can be divided by the period of Task m:

(8)

For example, with a period of 7 and an elapsed time of 22, a task could have been triggered not

22/7 = 3.14 times, but rather that number rounded down, which is 3, plus 1 to account for the fact
the task must assumed to have been triggered at time zero, which gives a total of 4 times (i.e., at
times 0, 7, 14, and 21 msec). (Note that a ceiling function might seem attractive instead of the
floor function. But, the ceiling function doesn’t quite work if a response time is an exact multiple
of a period.)

Once the number of executions is known, the amount of delay that higher priority Task m

causes to the waiting Task i by the time Task i is ready to run is the number of executions of Task
m that have taken place by Ri times the computation time of Task m:

(9)

ii BR '0, =

00 'BR =

⎥
⎦

⎥
⎢
⎣

⎢
+= 1

m
m P

Texecutions

m
m

i
mmm C

P
RCexecutionsdelay ⎥

⎦

⎥
⎢
⎣

⎢
+== 1

© 2007, Philip Koopman 8 Interrupt Response Time

The amount of time that is taken by each execution is the task’s computation time Ci.
Therefore, the total amount of waiting time for Task i caused by waiting for higher priority tasks
is the sum across all those tasks:

(10)

We still need to account for the initial effective blocking time before any of those high priority

tasks can execute, so the complete equation is:

(11)

But, here’s the tricky part. The amount of time during which other tasks can execute depends

on the time spent waiting – it is a recursive equation with Ri appearing on both sides. In this case,
we can break the recursion by simply using an iterative evaluation, where we keep re-evaluating
Ri for longer and longer times until the result converges to a final value. (If the result doesn’t
converge, that means Task i will never execute in the worst case.)

(12)

The response time is the result of iterating the above until it converges, which is obtained by

taking the limit of Ri,k as k approaches infinity. As a practical matter the process only needs to be
repeated until the same answer is obtained on two successive iterations.

(13)

The worst case completion time Wi is then the worst case response time plus the execution

time of Task i:

(14)

As a reminder, we are assume the tasks are non-preemptable, so it is not possible for another

task to interrupt the execution of Task i once it has started.

0;1
1

0

>⎥
⎦

⎥
⎢
⎣

⎢
+≥ ∑

−=

=

iC
P
RR

im

m
m

m

i
i

0;1'
1

0

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
++= ∑

−=

=

iC
P
RBR

im

m
m

m

i
ii

0;1'
1

0

,
1, >⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
++= ∑

−=

=
+ iC

P
R

BR
im

m
m

m

ki
iki

()kiki RR ,lim
∞→

=

() ikikiii CRCRW +=+=
∞→ ,lim

© 2007, Philip Koopman 9 Interrupt Response Time

This completes all the pieces we need. To recap, below is the final set of working equations:

Figure 6. Summary of equations.

5. Examples
After all this, we can get the answer to whether tasks will meet their deadlines by computing Wi
for all tasks. Let’s do this using the example from the previous graphical analysis and see how the
equations work.

Let us revisit the previous example and see if the analytic approach yields the same result as the
graphical approach. The example we used was:

N=5
B=0
ISR0 takes 5 msec and occurs at most once every 15 msec; C0 = 5 ; P0 = 15
ISR1 takes 6 msec and occurs at most once every 20 msec; C1 = 6 ; P1 = 20
ISR2 takes 7 msec and occurs at most once every 100 msec; C2 = 7 ; P2 = 100
ISR3 takes 9 msec and occurs at most once every 250 msec; C3 = 9 ; P3 = 250
ISR4 takes 3 msec and occurs at most once every 600 msec; C4 = 3 ; P4 = 600

5.1. B=0 example
For B=0, let’s find the worst case completion time of ISR2, which is W2.

() () []

9'

90,3,9max,,maxmax,maxmax'

20,2

432
52

==

==⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡=

<<

BR

BCCBCB j
j

Given this starting point (which corresponds to Figure 1), we us R2,0=9 to iterate Ri,k:

()

() ikikii

im

m
m

m

ki
iki

ii

ji

CRWD

iC
P
R

BR

iBR

NiBCB
Nji

+=≥

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
++=

>=

−<⎥⎦
⎤

⎢⎣
⎡=

∞→

−=

=
+ ∑

<<

,

1

0

,
1,

0,

lim

0;1'

0;'

1;,maxmax'

With the following equations applying instead of the above for some special cases:

00

1

'
'

BR
BB N

=
=−

© 2007, Philip Koopman 10 Interrupt Response Time

206596151961
20
951

15
99

11'1' 1
1

0,2
0

0

0,2
2

1

0

,
21,2

=++=⋅+⋅+=⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

=⎥
⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
++= ∑

=

=

C
P

R
C

P
R

BC
P
R

BR
m

m
m

m

ki

Note that P2,1 is 20 msec, which is the same result as Figure 2. From this, it becomes evident

that the iterative equation is doing the same thing mathematically that we did graphically in the
previous approach.

This iteration brings us to 31 msec, corresponding to the situation shown in Figure 3.

This iteration brings us to 36 msec, corresponding to the situation shown in Figure 4 in which

all ISRs with higher priority than ISR2 have just finished execution.

Because iteration R2,3 hasn’t changed compared to R2,2, we can terminate the computation and

know that additional iterations won’t change the answer from 36. This gives us a time to
completion of:

which is 43 msec, the same answer shown in Figure 5 and is the worst case completion time. If
the deadline were 50 msec, this task would always be able to meet its deadline under the given
assumptions.

5.2. B=13 Example
As an example of what happens when the effective blocking time is dominated by background
task blocking time rather than lower priority tasks, consider what happens when B=13 msec
instead of 0 msec:

() () []

13'

1313,3,9max,,maxmax,maxmax'

20,2

432
52

==

==⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡=

<<

BR

BCCBCB j
j

311210961
20
2051

15
20911' 1

1

1,2
0

0

1,2
22,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

361215961
20
3151

15
31911' 1

1

1,2
0

0

1,2
22,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

361215961
20
3651

15
36911' 1

1

2,2
0

0

2,2
23,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

() 43736lim 2,22 =+=+=
∞→

CRW kk

© 2007, Philip Koopman 11 Interrupt Response Time

TIME (msec)

ISR3

ISR2
ISR1
ISR0

Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Pending @ 13 msec: ISR0; ISR1; ISR2

Figure 7. B=13 at time 13 msec.

24651361
20
551

15
513

11'1' 1
1

0,2
0

0

0,2
2

1

0

,
21,2

=++=⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

=⎥
⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
++= ∑

=

=

C
P

R
C

P
R

BC
P
R

BR
m

m
m

m

ki

TIME (msec)

ISR3

ISR2
ISR1
ISR0

Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Pending @ 24 msec: ISR0; ISR1; ISR2

Figure 8. B=13 at time 24 msec.

TIME (msec)

ISR3

ISR2
ISR1
ISR0

Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Pending @ 35 msec: ISR0; ISR2

Figure 9. B=13 at time 35 msec.

3512101361
20
2451

15
241311' 1

1

1,2
0

0

1,2
22,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

© 2007, Philip Koopman 12 Interrupt Response Time

4012151361
20
3551

15
351311' 1

1

2,2
0

0

2,2
23,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

TIME (msec)

ISR3

ISR2
ISR1
ISR0

Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Pending @ 40 msec: ISR1; ISR2

Figure 10. B=13 at time 40 msec.

TIME (msec)

ISR3

ISR2
ISR1
ISR0

Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 ISR1

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Pending @ 46 msec: ISR0; ISR2

Figure 11. B=13 at time 46 msec.

Pending @ 51 msec: ISR2

TIME (msec)

ISR3

ISR2
ISR1
ISR0

Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 ISR1 ISR0

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Figure 12. B=13 at time 51 msec.

4618151361
20
4051

15
401311' 1

1

3,2
0

0

3,2
24,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

5118201361
20
4651

15
461311' 1

1

4,2
0

0

4,2
25,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

© 2007, Philip Koopman 13 Interrupt Response Time

At this point the computation has converged, so we know that ISR2 will start execution at time

51 msec.

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR2Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 ISR1 ISR0

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Figure 13. ISR2 executes starting at 51 msec and ending at 58 msec for B=13.

Thus the graphical and analytic techniques both arrive at the same answer in the same way,
and ISR2 has a worst-case execution time of 58 msec for this particular case.

5.3. Other Examples

As further exercises, the reader should confirm the following results both graphically and

analytically for this example task set with various values of B:

B=0 B=2 B=4 B=12 B=13
W0 = 14 W0 = 14 W0 = 14 W0 = 17 W0 = 18
W1 = 20 W1 = 20 W1 = 20 W1 = 28 W1 = 29
W2 = 43 W2 = 43 W2 = 43 W2 = 46 W2 = 58
W3 = 46 W3 = 46 W3 = 47 W3 = 66 W3 = 67
W4 = 57 W4 = 59 W4 = 61 W4 = 91 W4 = 92

As an additional example, the graphical results showing the timing for the B=2 case are below:

5118201361
20
5151

15
511311' 1

1

5,2
0

0

5,2
25,2 =++=⎥⎦

⎥
⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++=⎥

⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++= C

P
R

C
P

R
BR

() 58751lim 2,22 =+=+=
∞→

CRW kk

© 2007, Philip Koopman 14 Interrupt Response Time

TIME (msec)

ISR3
ISR4

ISR0
ISR1
ISR2

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR0

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Figure 13. ISR0 worst case latency for B=2. ISR3 causes the longest effective blocking

time.

TIME (msec)

0 5 10 15 20 25 30 35 40 45 5550 60

ISR0 ISR1

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

ISR3

ISR3
ISR4

ISR0
ISR1
ISR2

Figure 14. ISR1 worst case latency for B=2. ISR3 causes the longest effective blocking
time.

TIME (msec)

ISR2

0 5 10 15 20 25 30 35 40 45 5550 60

ISR0 ISR1 ISR0

ISR0 ISR0
ISR0

ISR1
ISR1

ISR0 ISR1

ISR0
ISR1

ISR3

ISR3
ISR4

ISR0
ISR1
ISR2

Figure 15. ISR2 worst case latency for B=2. ISR3 causes the longest effective blocking
time.

© 2007, Philip Koopman 15 Interrupt Response Time

TIME (msec)

ISR2 ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR0 ISR0

ISR0 ISR0
ISR0

ISR1
ISR1

ISR0 ISR1 ISR1

ISR0
ISR1

ISR4

ISR4

ISR0
ISR1
ISR2
ISR3

Figure 16. ISR3 worst case latency for B=2. ISR4 causes the longest effective blocking

time.

TIME (msec)

ISR2B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1ISR1 ISR0ISR0

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

ISR0
ISR1
ISR2
ISR3
ISR4

Background Tasks Only

ISR3 ISR4

Figure 17. ISR4 worst case latency for B=2. B is the longest effective blocking time

because there are no lower priority interrupts to process.

6. More Information
The more generalized problem includes computing execution times for both preemptive tasks

running under an operating system and non-preemptive ISRs. A description of the math for that
more general case can be found in: Y. Wang, M. Saksena, Scheduling fixed-priority tasks with
preemption threshhold, IEEE International Conference on Real-Time Computing Systems and
Applications, December 1999.

Thanks to Jen Morris Black for her research work in this area.

