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1. Overview: 
Interrupt Service Routines (ISRs) are commonly used to provide fast response times to external 
events or timed events. Because the point of providing fast response is to meet deadlines, it is 
important to know the worst case execution time of multiple concurrent interrupts competing for 
processor resources. The usual scheduling theory math doesn’t work that well for this case 
because most scheduling theory assumes preemptive task switching, while ISRs are usually 
written to be non-preemptive (i.e., interrupts remain masked while the ISR is running). This is an 
instance of the more general problem of determining the maximum response time for a 
prioritized, non-preemptive tasking environment.  

2. Importance: 
If only a single interrupt is used in a system, determining interrupt service latency is relatively 
easy. However, if multiple prioritized interrupts can occur, then some will be serviced quickly, 
and others will be serviced more slowly. There will be some worst-case situation in which lower 
priority interrupts will have to wait for one (or more) executions of all higher priority interrupts. 
Ensuring that the worst case latency of lower priority interrupts is fast enough to meet real time 
requirements is an important analysis issue. Unfortunately, it is often difficult or impossible to 
create worst-case situations in a testing situation, so analytic approaches must be used to make 
sure that testing doesn’t miss a particularly bad timing problem. 

 
The ISR response scenario is an instance of the more general situation of a prioritized 

cooperative scheduling tasking system. In such a system each task has a priority, but tasks run to 
completion (i.e., tasks are non-preemptive).  

3. Graphical Approach 
For this discussion, we assume that there is a collection of prioritized tasks that needs to be 
executed periodically. Those tasks could be ISRs, threads, processes, or any mixture of the above 
so long as there is a static total ordering of priority across all tasks  (i.e., fixed task priority). This 
would be the case, for example, for prioritized ISRs which keep interrupts masked while 
executing, deferring any higher priority interrupt servicing until the currently executing ISR has 
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completed. This is usually how prioritized interrupts are executed.  (The exception is when a 
software developer explicitly re-enables interrupts during an ISR, but that is usually bad practice.) 

 
First, let’s work out an example graphically to understand what is involved. Consider the 

below example task set including prioritized interrupts, execution times, and periods: 
 
ISR0 takes 5 msec to execute and occurs at most once every 15 msec 
ISR1 takes 6 msec and occurs at most once every 20 msec 
ISR2 takes 7 msec and occurs at most once every 100 msec 
ISR3 takes 9 msec and occurs at most once every 250 msec 
ISR4 takes 3 msec and occurs at most once every 600 msec 
 

where ISR0 is the highest priority and ISR4 is the lowest priority.  No ISR can preempt any other 
ISR.  When an ISR completes execution, the highest priority ISR that is ready to execute will 
execute next.  We assume that any underlying tasks don’t disable interrupts. There are a number 
of other assumptions we are making to simplify this analysis, but those will be discussed later in 
the analytic approach section.  

 
The first question we want to ask is, what is the worst case latency for ISR2? For example if 

ISR2 must complete within 50 msec of the time the interrupt is first requested, is there a case 
where that won’t happen? 

 
The problem is that ISR2 is not the only task running – other ISRs are competing for processor 

resources. A bad case is when another lower priority task than ISR2 has just started to run when 
ISR2 is triggered for execution.  In particular, the worst case is when the task with the longest 
running time having lower priority than ISR2 has just started to run.  For this task set that is ISR3  
(ISR3 and ISR4 are both lower priority than ISR2, but ISR3 has a much longer run time of 9 
msec compared to the 3 msec run time of ISR4).  

 
Why did we pick a lower priority instead of a higher priority interrupt to start with? The reason 

is that in the worst case, the CPU will be unavailable for a while when an interrupt arrives, 
causing other interrupts to pile up before the one we are interested even has a chance to compete 
for CPU time. Because no interrupt with lower priority will execute after ISR2 becomes ready to 
run, selecting one with a lower priority adds more work to the tasks that must be completed 
before ISR2 can be started. We’ll take all the higher priority interrupts into account shortly. But 
once ISR2 is ready to run, no lower priority interrupt can run, so only one such low priority 
interrupt need be considered, and the longest execution time one is the worst case. 

 

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

Pending @ 9 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 1.  ISR3 Executes before ISR0, ISR1, and ISR2 are triggered. 
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Now we have a situation where ISR3 might get to run before ISR2 by just beating it to the 

CPU. Beyond that, it is possible that every higher priority interrupt than ISR2 starts just after 
ISR3 starts, but before ISR3 ends, so they could also get to run before ISR2 as well. Figure 1 
shows this situation, with ISR3 starting to run, followed quickly by ISR0, ISR1, and ISR2 being 
triggered. The times at which ISR0 and ISR1 can be retriggered are also shown in Figure 1, since 
as we will find out they might have to be serviced one or more times before ISR2 finally gets a 
chance to run. 

 
When ISR3 finishes executing at 9 msec, all three of ISR0, ISR1, and ISR2 are pending.  Since 

ISR0 is the highest priority task, it goes first, followed by ISR1.  While ISR1 is executing, ISR0 
is triggered a second time at 15 msec, and ISR1 is triggered again at time 20 msec.  Neither of 
these events disturbs the execution of ISR1 since it is non-preemptable (interrupts are masked 
while executing ISRs).  This leads to a situation at time 20 where all three of ISR0, ISR1, and 
ISR2 are still pending (Figure 2). 

 

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 Pending @ 20 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 2.  By the time ISR0 and ISR1 run once, they have been retriggered. 
 
At 20 msec, ISR0 is the highest pending task, so it executes again, and is again followed by 

ISR1, at 25 msec.  ISR0 then retriggers at 30 msec, but ISR1 has not yet triggered again.  So at 31 
msec when ISR1 ends, only ISR0 and ISR2 are pending (Figure 3). 

 

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 Pending @ 31 msec: ISR0, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 3.  At 31 msec, ISR0 has retriggered and ISR2 is still pending, but it is not time for 
ISR1 yet. 

 
At 31 msec ISR0 is still the highest priority interrupt pending, so it runs until 36 msec (Figure 

4). 
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TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 Pending @ 36 msec:  ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 4.  At 31 msec, ISR0 and ISR2 are pending, so ISR0 runs again. 
 
At 36 msec, ISR0 has completed execution and is no longer pending (it won’t be triggered 

again until 45 msec).  Moreover, ISR1 is not due to run until 40 msec.  This leaves ISR2 as the 
only task pending, so it starts execution and runs until 43 msec.  By 43 msec ISR1 has 
retriggered, so it starts running (Figure 5), but does not interfere with the completion of ISR2 
because interrupts are non-preemptable once started.  Thus, in the worst case, ISR2 completes at 
43 msec after it is triggered. 

 

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR2ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 Pending @ 43 msec:  ISR1

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

 Figure 5.  At 36 msec, ISR2 is the only task still pending, so it finally gets to execute. 
 

4. Analytic Approach 
Now that we have seen the types of complications that can arise when multiple tasks compete 

for CPU time, we can take a more rigorous, mathematical, approach to the analysis. In this 
section we’ll create a set of equations that computes the worst case latency for any task in a set of 
tasks. These equations can be used to determine if each task in the set will meet its own particular 
deadline. 

 
The following notation is used in the equations below: 
• Ti : Task i 
• Ri : Response time of Task i, which is the worst-case time between when Ti is ready to start 

executing and the time it actually starts execution.  
• Wi : Completion time of Task i 
• Ci : Computation time for one execution of Ti (worst case – largest possible Ci) 
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• Pi : Period for execution Ti (worst case – fastest possible Pi). If the task is aperiodic, then 
assume a Pi corresponding to shortest possible time between any two executions of Ti (i.e., 
reciprocal of worst case shortest inter-arrival time of task executions). 

• Di : Deadline for Ti    
• B : Blocking time caused by background tasks that mask interrupts, or other dependencies. 
• ⎣ x ⎦ : floor function; rounds x down to next lowest integer 

 
The following assumptions are used in the equations below as a starting point: 

• There are prioritized N tasks, numbered 0 through N-1, with Task i called Ti. In the previous 
example, each ISR handler was a task.  Any other tasks running on the computer are referred 
to as background tasks.  

• Background tasks interfere with Tasks 0 through N-1 only via disabling interrupts or task 
switching for some maximum blocking time B. (Blocking time was not shown in the 
preceding graphical example.)  

• Tasks are statically prioritized, with Task 0 being the highest priority and Task N-1 being the 
lowest 

• Each task Ti executes only when no other task with higher priority is ready to execute, then 
runs to completion without stopping (i.e., tasks are non-preemptable).  If no task Ti is ready to 
execute, then background tasks are run until some task T is triggered to run. 

• Any task Ti can and will preempt any background tasks, possibly with a delay caused by 
blocking time. (For example, ISRs preempt any non-ISR code.) 

• Each task is triggered for execution no faster than once per stated period. Moreover, the 
period represents the worst-case minimum inter-arrival time between triggers for that task to 
execute. The period of each task may be different. 

• The worst-case longest compute time for each task is known and used in the calculations. 
• The deadline for each task is known, and is less than or equal to that task’s period. 
• The cost of changing tasks (e.g., processing an interrupt and corresponding RTI instruction) 

is accounted for in the worst-case compute time. 
 
 

The values we are interested in finding are the completion times of all tasks. For a system to 
perform properly, all tasks must complete their work Wi at or before the applicable deadline Di. 
So, the ultimate goal is to ensure that: 

 
(1)  

 
Which states: for all values of i, the completion time of Task i is less than or equal to the 

deadline of Task i (i.e., all tasks complete before their deadline). 
The completion time of a task has two components: the time spent waiting to start execution 

(the response time Ri) and the time spent actually doing the work of the task (the computation 
time Ci). 

 
(2)  

 
In the systems we’re looking at, tasks are non-preemptable, so once the computation of a task 

starts, that task runs to completion. Thus, Ci is a known constant value. But, Ri is trickier, because 
it must take into account the fact that Task i has to wait for all higher priority tasks to execute and 
also wait for any blocking time. For example, if Task 4 is an ISR, that ISR can’t execute until any 
interrupt masking in the main program is completed (i.e., blocking time B) and all higher priority 
interrupts 0, 1, 2, and 3 execute at least one time (because in the worst case all four of those 

( )iii DW ≤∀

iii CRW +=
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interrupts were triggered just after the beginning of the blocking time – such a small delay that we 
will just be conservative and consider it to be zero elapsed time in our equations). 

 
Accounting for blocking time starts the build-up of equations to obtain Ri: 
 

(3)  
 
By this we mean that Ri is at least as long as the blocking time, but possibly longer.   
 
Now let us consider Task 0. Is B the only factor that could delay the start of execution?  Even 

though this is the highest priority task in the system, there is something else that can delay it. The 
other factor is some other task with a lower priority that has already begun execution, because 
tasks are non-preemptable (once started, they run to completion). The worst case is that the task 
with the longest possible computation time has just started execution, and must complete before 
Task 0 can run. In other words, a lower priority task can delay execution of a higher priority task 
because it is allowed to run to completion.  This, in effect, is a different form of blocking. In 
general, for Task i, it is possible for some task with a higher task number (i.e., lower priority) to 
be executing, delaying the start of Task i. Thus, 

 
(4)  

 
 
 
This means that the response time for Task i must be at least as bad as the worst case wait 

caused by the longest computation time of any Task j with a lower priority than Task i. Task i 
itself is not considered, because we assume that the deadline for each task is longer than its 
period, so Task i must have completed execution before it attempts to execute again. For task N-
1, which is the lowest priority task that isn’t a background task, this delay is zero, since there is 
no lower priority task to get in the way (but, even this task is subject to blocking time from the 
background tasks). 

 
Next, we combine the two starting factors of B and maximum Cj to get an initial lower bound 

on response time. But rather than adding them, we can simply take the maximum of the two, 
because both situations can’t happen at the same time. Consider the two possible situations. 

 
Situation (1):  If a task has to wait for blocking time B, then that means a task Ti isn’t already 

running (because blocking can only occur due to a task other than Tasks 1..N-1 executing). If that 
is the case, as soon as blocking has finished, the highest priority task will begin executing as soon 
as blocking is over.  This makes it impossible for a task with lower priority than Task i to delay 
the start of task i after blocking. If Task i isn’t ready to execute when blocking is completed, then 
the blocking time hasn’t delayed its response time, since it wasn’t ready to run. 

 
Situation (2):  If Task j, with lower priority than Task i, is already executing, then blocking 

can’t occur, because when Task j completes, Task i (or some task with higher priority) will 
immediately start executing rather than the background tasks. The background tasks that can 
cause blocking won’t resume execution until all prioritized tasks, including Task i, complete 
execution. 

 
So, let’s define the effective blocking time B’ as: 
 

(5)  
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This means that the response time for Task i is bounded by an effective blocking time B’, 

which is the longest lower priority task that might execute, or the blocking time B. Because there 
is no lower priority task than Task N-1, then blocking time B is the only issue for that particular 
task. 

 
For Task 0, our response time calculation is done. Because there are no higher priority tasks, 

Task 0 will run to completion once the effective blocking effect has passed (either waiting for 
background task blocking B or the longest lower priority task to complete).  

 
(6)  

 
The next factor in response time calculations is that higher priority tasks can execute before 

lower priority tasks. In the worst case, Task i will have to wait for every possible Task m with 
higher priority to execute at least once. From this point on, the response time will have to be 
computed iteratively to account for the fact that enough time may pass for high priority tasks to 
re-trigger.  

We’ll use the notation Ri,k to represent the kth iteration of the computation for Ri, with the 
computation iterated by increasing k until the answer converges to a final value. To keep things 
simple, and conform to the graphic approached used previously, we start the iteration with the 
effective blocking value B’: 

 
(7)   

 
Next, we have to account for the execution time of all tasks with higher priority than Task i, 

because it is possible all of them triggered just as Task i was triggering.  The number of times a 
particular Task m executes in time T is one more than the rounded-down (integer floor function) 
number of times the response time Ri,k can be divided by the period of Task m: 

 
 

(8)  
 
 
For example, with a period of 7 and an elapsed time of 22, a task could have been triggered not 

22/7 = 3.14 times, but rather that number rounded down, which is 3, plus 1 to account for the fact 
the task must assumed to have been triggered at time zero, which gives a total of 4 times (i.e., at 
times 0, 7, 14, and 21 msec).  (Note that a ceiling function might seem attractive instead of the 
floor function.  But, the ceiling function doesn’t quite work if a response time is an exact multiple 
of a period.) 

 
Once the number of executions is known, the amount of delay that higher priority Task m 

causes to the waiting Task i by the time Task i is ready to run is the number of executions of Task 
m that have taken place by Ri times the computation time of Task m: 
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The amount of time that is taken by each execution is the task’s computation time Ci.  
Therefore, the total amount of waiting time for Task i caused by waiting for higher priority tasks 
is the sum across all those tasks: 

 
(10)  

 
 
 
We still need to account for the initial effective blocking time before any of those high priority 

tasks can execute, so the complete equation is: 
 
 

(11)  
 
 
 
But, here’s the tricky part.  The amount of time during which other tasks can execute depends 

on the time spent waiting – it is a recursive equation with Ri appearing on both sides.  In this case, 
we can break the recursion by simply using an iterative evaluation, where we keep re-evaluating 
Ri for longer and longer times until the result converges to a final value.  (If the result doesn’t 
converge, that means Task i will never execute in the worst case.) 

 
 

(12)  
 
 
The response time is the result of iterating the above until it converges, which is obtained by 

taking the limit of Ri,k as k approaches infinity.  As a practical matter the process only needs to be 
repeated until the same answer is obtained on two successive iterations. 

 
(13)  

 
 
The worst case completion time Wi is then the worst case response time plus the execution 

time of Task i: 
 

(14)  
 
 
As a reminder, we are assume the tasks are non-preemptable, so it is not possible for another 

task to interrupt the execution of Task i once it has started. 
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This completes all the pieces we need.  To recap, below is the final set of working equations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Summary of equations. 

5. Examples 
After all this, we can get the answer to whether tasks will meet their deadlines by computing Wi 
for all tasks. Let’s do this using the example from the previous graphical analysis and see how the 
equations work. 

 
Let us revisit the previous example and see if the analytic approach yields the same result as the 
graphical approach.  The example we used was: 

 
N=5 
B=0 
ISR0 takes 5 msec and occurs at most once every 15 msec; C0 = 5  ; P0 = 15 
ISR1 takes 6 msec and occurs at most once every 20 msec; C1 = 6  ; P1 = 20 
ISR2 takes 7 msec and occurs at most once every 100 msec; C2 = 7  ; P2 = 100 
ISR3 takes 9 msec and occurs at most once every 250 msec; C3 = 9  ; P3 = 250 
ISR4 takes 3 msec and occurs at most once every 600 msec; C4 = 3  ; P4 = 600 

5.1. B=0 example 
For B=0, let’s find the worst case completion time of ISR2, which is W2.   
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Given this starting point (which corresponds to Figure 1), we us R2,0=9 to iterate Ri,k: 
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Note that P2,1 is 20 msec, which is the same result as Figure 2. From this, it becomes evident 

that the iterative equation is doing the same thing mathematically that we did graphically in the 
previous approach. 

 
This iteration brings us to 31 msec, corresponding to the situation shown in Figure 3. 

 
This iteration brings us to 36 msec, corresponding to the situation shown in Figure 4 in which 

all ISRs with higher priority than ISR2 have just finished execution. 

 
Because iteration R2,3 hasn’t changed compared to R2,2, we can terminate the computation and 

know that additional iterations won’t change the answer from 36. This gives us a time to 
completion of: 

 
 
 

which is 43 msec, the same answer shown in Figure 5 and is the worst case completion time. If 
the deadline were 50 msec, this task would always be able to meet its deadline under the given 
assumptions. 

5.2. B=13 Example 
As an example of what happens when the effective blocking time is dominated by background 
task blocking time rather than lower priority tasks, consider what happens when B=13 msec 
instead of 0 msec: 
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TIME (msec)
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Pending @ 13 msec:  ISR0; ISR1; ISR2

 
Figure 7.  B=13 at time 13 msec. 
 

24651361
20
551

15
513

11'1' 1
1

0,2
0

0

0,2
2

1

0

,
21,2

=++=⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

=⎥
⎦

⎥
⎢
⎣

⎢
++⎥

⎦

⎥
⎢
⎣

⎢
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
++= ∑

=

=

C
P

R
C

P
R

BC
P
R

BR
m

m
m

m

ki

 

 

TIME (msec)

ISR3

ISR2
ISR1
ISR0

Blocking time B

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

Pending @ 24 msec:  ISR0; ISR1; ISR2

 
Figure 8.  B=13 at time 24 msec. 
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Figure 9.  B=13 at time 35 msec. 
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Figure 10.  B=13 at time 40 msec. 
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Figure 11.  B=13 at time 46 msec. 
 

Pending @ 51 msec:  ISR2
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Figure 12.  B=13 at time 51 msec. 
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At this point the computation has converged, so we know that ISR2 will start execution at time 

51 msec. 
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Figure 13.  ISR2 executes starting at 51 msec and ending at 58 msec for B=13. 
 

 
 
 

Thus the graphical and analytic techniques both arrive at the same answer in the same way, 
and ISR2 has a worst-case execution time of 58 msec for this particular case. 

5.3. Other Examples 
 
As further exercises, the reader should confirm the following results both graphically and 

analytically for this example task set with various values of B: 
 
B=0  B=2  B=4  B=12  B=13 
W0 = 14 W0 = 14 W0 = 14 W0 = 17 W0 = 18 
W1 = 20 W1 = 20 W1 = 20 W1 = 28 W1 = 29 
W2 =  43 W2 = 43 W2 = 43 W2 = 46 W2 = 58 
W3 =  46 W3 =  46 W3 =  47 W3 =  66 W3 =  67 
W4 =  57 W4 =  59 W4 =  61 W4 =  91 W4 =  92 
 
As an additional example, the graphical results showing the timing for the B=2 case are below: 
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Figure 13.  ISR0 worst case latency for B=2. ISR3 causes the longest effective blocking 

time. 
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Figure 14.  ISR1 worst case latency for B=2. ISR3 causes the longest effective blocking 
time. 
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Figure 15.  ISR2 worst case latency for B=2. ISR3 causes the longest effective blocking 
time. 
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Figure 16.  ISR3 worst case latency for B=2. ISR4 causes the longest effective blocking 

time. 
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Figure 17.  ISR4 worst case latency for B=2. B is the longest effective blocking time 

because there are no lower priority interrupts to process. 

6. More Information 
The more generalized problem includes computing execution times for both preemptive tasks 

running under an operating system and non-preemptive ISRs.  A description of the math for that 
more general case can be found in: Y. Wang, M. Saksena, Scheduling fixed-priority tasks with 
preemption threshhold, IEEE International Conference on Real-Time Computing Systems and 
Applications, December 1999. 

 
Thanks to Jen Morris Black for her research work in this area.  
 


