MODERN STACK COMPUTER ARCHITECTURE

Philip J. Koopman Jr.
Senior Scientist
Harris Semiconductor
2525A Wexford Run Rd.
Wexford, PA 15090

ABSTRACT

A new generation of stack processors based on the
Forth abstract machine has recently been
developed for embedded real-time control applica-
tions. These processors are optimized for mini-
mum system complexity, small program size, fast
but consistent processor performance, and excel-
lent response to external events. The Harris RTX
2000 is described as an example of a typical stack
processor.

INTRODUCTION

Hardware-supported Last In First Out (LIFO)
stacks have been used on computers since the late
1950’s. Originally, these stacks were used to in-
crease the execution efficiency of high level lan-
guages such as ALGOL. Since then they have
fallen in and out of favor with hardware desi gners,
eventually becoming incorporated as a secondary
data handling structure in most computers.

With the introduction of VLSI microproces-
sors, conventional methods of computer design
have been questioned once again. Complex In-
struction Set Computers (CISCs) have evolved into
complicated processors with comprehensive in-
struction sets. Reduced Instruction Set Com-
puters (RISCs) have challenged this approach by
using simplified processing cores to achieve higher
raw processing speeds for some applications. How-
ever, the next generation of RISC processors, based
onsuperscaler instruction dispatching technology,

Promises in its own way to be every bit as complex
as CISC designs.

153

Once more the time has come to consider
stack machines as an alternative to other design
styles. For some application areas they offer a
better set of speed and complexity tradeoffs than
RISC or CISC register-based processors. New stack
machine designs based on VLSI design technology
provide additional benefits not found on previous
stack machines. A key benefit is the ability to
include substantial stack memories on the same
chip as the CPU, thereby eliminating the need to
consume precious memory bus cycles shuffling
stack elements.

The first successful application area for stack
machines has been in real-time embedded control
environments. Stack machines offer processor
complexity that is much lower than that of CISC
machines, and overall system complexity that is
lower than that of either RISC or CISC machines.
Stack machines provide extremely fast subroutine
calling capability and superior performance for
interrupt handling and task switching. They ex-
ecute programs at competitive speeds without
reliance on techniques such as caching and
scoreboarding that result in non-deterministic ex-
ecution times in real-time applications. When put
together, these traits create computer systems
that are fast, nimble, and compact.

This paper starts with a discussion of the RTX
2000 stack processor as a concrete example of a
modern stack architecture. It then discusses the
architectural properties of stack processors in
depth, including comparisons to RISC and CISC
characteristics. and why they are well suited to
real-time embedded control applications.

THE RTX 2000 AS B
Modern stack architectures are distinguished from
earlier stack architectures, such as the Burroughs
family of processors (Earnest 1980) by a number of
architectural features. The older stack architec-
tures are based on the execution environment used
with block-structured languages such as ALGOL
and Pascal. Thus, they have a single stack that is
largely resident in program memory. Further-
more, while they often perform computations on a
push-down stack, traditional activation record
structures on this same stack are used for sub-
routine linkage.

The newer stack architectures have a dis-
tinctly different heritage. They are primarily
based on the Forth abstract machine computation
model (Kogge 1982, Moore 1980). This computa-
tion model includes a requirement for two stacks:
a data stack and a return stack. The data stack is
used both for expression evaluation and for sub-
routine parameter passing. The return stack is
used for subroutine return address storage and for
loop counter storage. When these new architec-
tures execute languages that require stack frames
for procedure linkage, they use a separate frame
pointer that addresses a data structure in memory
independent of the two hardware stacks. While
the emphasis on older stack machines was on
providing a very large stack buffer in program
memory, newer stack machines provide on-chip
buffers for both stacks, greatly reducing the
memory bandwidth bottleneck and increasing ex-
ecution speed. The Forth computational model
also places a great emphasis on the ability to per-
form subroutine calls quickly, which results in
hardware implementations typically implement-
ing single-cycle subroutine calls and returns.

Several Forth-based stack architectures have
been developed since 1985. Amongthe commercial
implementations are the: Novix NC4016 (Miller
1987), MISC M17 (MISC 1988), WISC CPU/16
(Koopman 1987), WISC CPU/32 (now called the
Harris RTX 32P) (Koopman 1988), Johns Hopkins
FRISC 3 (now called the Silicon Composers SC32)
(Hayes et al. 1987), and the Harris Semiconductor
RTX 2000 family (Harris Semiconductor 1988).
Other architectures are discussed by Koopman

154

(1989). 1t is anticipated that more architectures
will be announced in the next year or two.

Before discussing the advantages of newer
stack architectures, it is useful to have an example
architecture for discussion. The Harris RTX 2000
is a 16-bit stack processor that is an architectural
descendent of the Novix NC4016, the first single-
chip Forth computer. The current implementa-
tions of the RTX 2000 use 1.5 micron feature size
standard cell CMOS technology and run at a 10
MHz clock rate.

Figure 1 shows that the RTX 2000 has char-
acteristics typical of a Forth-derived stack proces-
sor. The RTX 2000 has two on-chip hardware
stacks: the data stack and the return stack. The
sizes of these on-chip stacks varies among im-
plementations, but ranges from 64 words for each
stack in the RTX 2001A to 256 words each in the
RTX 2000. Studies have shown that this is an
ample amount of storage for most applications
(Koopman, 1989).

The ALU section contains a 2-element buffer
for the top elements of the data stack. The T
register holds the Top data stack element, and N
(Next) register holds the second-from-top data
stack element. There is also a special MD register
for support of multiplication and division as well
as an SR register for fast integer square roots. The
ALU may perform operations on the T register and
any one of the N, MD, or SR registers.

The I register is used as a buffer for the top
element of the Return Stack. Since Forth keeps
loop counters as well as subroutine return addres-
ses on the Return Stack, the Index register can be
decremented to implement countdown loops effi-
ciently.

The UBAR (User area Base Address Register)
may be used as a frame pointer for addressing
memory-resident activation record frames in sup-
port of conventional languages such as C. On
different RTX 2000 family implementations there
are also various functional blocks for byte swap-
ping within 16-bit words, interrupt control, stack
overflow/underflow control, timers, counters,
memory page registers, a separate off-chip data

M <+ EIf5.1)
ICK ——p] GA(2..0} -] INTERRUPT |« INTSUP
WAIT —p] CLOK GIO® ¢————— ! CONTROLLER |+ NMI
POLK aggr GRW" < Asng »> INTA
S 8uU > — IMR -~
TOLK CONTROL GO[15.00——— |\ rERFACE R
RESET apy
IGCR e
> STACK
Y 3
MA{19.1] <— CONTROLLER
LDS <«—4 MEMORY ;A
NEW <« BUS 7 ‘
TIMER/ |
Maoor < INTERFACE | A ERS
RW* <— 4
¥ TCRO § TPRO PRk
MD{15.0] <—»] e e 1CRO § TPRO |
< TBUS - - P y TCR2 | TPR2 f
L 2 [3
EXXX; I RXEZXXN v+ ¥
- A 4
] evre [*
4 SWAP
-1
D v i
L 2 y v v v
; CRJ MD | SR |
<] N N BUS . 16x 16
N i v Y BUS ¥ - v v v "1 MULTIPUER |
J —
v A\ 4 y v v
255 x 21 255 x 16 Y V1
RETURN INSTRUCTION PARAMETER ALU
STACK STACK
Figure 1.

Harris RTX 2000 processor block diagram.

path for I/O transfers, and a hardware multiplier.

A key to the RTX 2000 design is that it uses a
partially decoded 16-bit instruction format. If the
highest bit of the instruction is 0, then the instruc-
tion is a subroutine call with a 15-bit target ad-
dress. Otherwise, the instruction is in one of a few
formats in which each group of bits controls a
resource of the CPU. The RTX 2000 is able to
execute almost all instructions in a single clock
cycle, including subroutine calls. Memory loads
and stores take two clock cycles, since there is only
a single memory data bus that is shared between
instruction and data accesses. The RTX 2000 is
also able to execute subroutine return operations
in parallel with most instructions (i.e., subroutine
returns are “free”), because there is a separate bit
dedicated to indicating subroutine return opera-
tions in most instruction formats.

155

AN OVERVIEW OF EMBEDDED CONTROL
REQUIREMENTS

In order to properly evaluate the architectural
qualities of stack computers, we must first set the
context for comparison. Stack computers are
primarily used in embedded real-time control ap-
plications. The requirements of these applications
are very different from the requirements for en-
gineering workstation applications and general-
purpose mainframe programs upon which most
popular benchmarks are based.

Most embedded systems place severe con-
straints on the processor for size, weight, power,
cooling, performance, reliability, and cost. This is
because the processor is just a component of a
larger system, which has its own operating re-
quirements and manufacturing constraints. This

means that a need for high speed performance
cannot always be solved just by buying the latest
high-speed CPU.

Size and Weight

Size and weight restrictions can greatly limit the
complexity of the hardware which can be brought
to bear on solving a particular embedded control
problem. A typical embedded controller may have
a size budget of a few cubic inches, and a weight
budget of a few pounds (including the power supp-
ly).

The problem with size and weight restrictions
is that high performance processing systems tend
to be larger and heavier than slower systems. At
the CPU level, a processor that has a large number
of pins takes up scarce printed circuit board area.
At the system level, a design that needs cache
memory controller chips and large amounts of
memory takes even more printed circuit board
area.

The key to the size and weight issue is to keep
the component count small. The smallest systems
are those which do not require external support
chips (especially cache memory support), and
which allow small, efficient encodings of programs.

Power and Cooling

The processor complexity can affect the power
consumption of the system. High power consump-
tion increases the size and weight requirements of
the power supply. Since essentially all power con-
sumed by a computer is eventually given off as
heat, increased power consumption results in in-
creased cooling requirements.

The amount of power used by the processor is
related to the number of transistors and pins on
the processor chip. Processors that rely on exotic
process technology for speed usually require more
power than is available in a tightly constrained
embedded system. Processors that need large
numbers of high speed memory devices likewise
can exceed a power budget.

The key to the power and cooling issue is to
minimize system complexity to reduce the number
of transistors in the system that can consume
power. Also, the integration level should be kept
as high as possible to minimize the number of pins
in the system.

Computing Performance

Computing performance in a real-time embedded
control environment is not simply an instructions-
per-second rating. While raw computational per-
formance is important, other vital factors include
interrupt response characteristics, context switch-
ing overhead, and I/O performance. Because real-
time tasks are characterized by frequent, often
unpredictable events, the performance of a proces-
sor at handling interrupts is crucial to its
suitability for real-time processing. Since a con-
trol application usually involves a reasonable
amount of communication with the outside world
(such as reading sensors and activating control
circuits), good I/O performance is also important.

A key consideration for more difficult real-
time control applications is predictability. For
real-time control with hard deadlines, a designer
must be able to predict with absolute certainty the
running time of the piece of code responding to an
external event. If a system has elements of statis-
tical performance, such as cache memory, the
designer must be extremely pessimistic about the
performance of these features, and plan on the
worst case.

Reliability

Embedded processing applications are notorious
for extreme operating conditions, especially in
automotive and military equipment. The process-
ing system must deal with vibration, shock, ex-
treme heat and cold, and perhaps radiation. In
remotely installed applications, such as spacecraft
and undersea applications, the system must be able
to survive without field service technicians to
make repairs.

The general rule to avoiding problems caused
by operating environments is to keep the com-
ponent count and number of pins as low as pos-

156

sible. Also helpful is keeping the system as cool as
possible to inhibit aging of the system’s com-
ponents.

Cost

The cost of the processor itself may be very impor-
tant to low- and medium-performance systems,
especially consumer electronics products. Since
the cost of a chip is related to the number of
transistors and to the number of pins on the chip,
low complexity processors have an inherent cost
advantage.

In high-performance systems, the cost of the
processor may be overwhelmed by the cost of the
multi-layered printed circuit boards, support
chips, and high-speed memory chips. In these
cases, overall system complexity must be reduced
to keep system costs down. It may be attractive to
use a standard cell design with a CPU macro-cell
and custom peripheral cells, if this reduces overall
system complexity.

ARCHITECTURAL INSIGHT INTO STACK
MACHINES

Total system performance includes not only raw
execution speed, but also total system cost and
system adaptability when used in real world ap-
plications. The execution speed component of sys-
tem performance includes not only how many
instructions can be performed per second on
straight line code, but also speed in handling inter-
rupts, context switches, and performance degrada-
tion due to factors such as procedure calls.

Program Size

A popular saying is that “memory is cheap.”
Anyone who has watched the historically rapid
growth in memory chip sizes knows the amount of
memory available in a system can be expected to
increase dramatically with time. Yet, somehow
the problems that computers are called on to solve
seems to keep up with the supply of memory, so in
many systems memory space is still a limiting
factor. Further aggravating the situation is the
widespread use of high level languages for all
phases of programming. This results in bulkier

programs, but of course improves programmer
productivity.

The amount of program memory available for
an application is fixed by the economics of the
actual cost of the memory chips and printed circuit
board space. It is also affected by mechanical limits
such as power, cooling, or the number of expansion
slots in the system (limits which are also based on
economics). Small program sizes reduce memory
costs, component count, and power requirements,
and can improve system speed by allowing the
cost-effective use of smaller, higher speed memory
chips. Embedded microprocessor applications are
very sensitive to the costs of printed circuit board
space and memory chips, since these resources
form a substantial proportion of all system costs
(Ditzel et al. 1987).

The traditional solution for a growing pro-
gram size is to employ a hierarchy of memory
devices with a series of capacity/cost/access-time
tradeoffs. Typical members of this hierarchy are
on-chip register files, cache memory, DRAM pro-
gram memory, and hard disk for long-term storage.

A problem with cache memory is that it must
be big enough to hold enough program fragments
long enough for eventual reuse to occur. Another
problem is that the non-determinism introduced
by cache misses can create problems when dealing
with time-critical sequences in a control system.
For these two reasons, cache memory with accept-
able performance for RISC and many CISC proces-
sors must often be larger than can be afforded for
a particular system.

Davidson and Vaughan (1987) suggest that
RISC computer programs can be up to 2.5 times
bigger than CISC versions of the same programs
(although other sources, especially RISC vendors,
would place this number at perhaps 1.5 times big-
ger.) They also suggest that the RISC computers
need a cache size that is twice as large as a CISC
cache to achieve the same performance. Further-
more, 8 RISC machine with twice the cache of a
CISC machine will still generate twice the number
of cache misses (since a constant miss ratio
generates twice as many misses for twice as many
cache accesses), resulting in a need for higher

157

speed main memory devices as well for equal per-
formance. This is corroborated by the rule of
thumb that a RISC processor in the 10 MIPS (Mil-
lion Instructions Per Second) performance range
needs 128K bytes of cache memory for satisfactory
performance, while high end CISC processors typi-
cally need no more than 64K bytes.

Stack machines have much smaller programs
than either RISC or CISC machines. Stack com-
puter programs can be 2.5 to 8 times smaller than
CISC code (Harris 1980, Ohran 1984, Schoellkopf
1980), although there are some limitations to this
observation having to do with the instruction set
and programs executed. This means that a RISC
processor’s cache memory may need to be bigger
than a stack processor’s entire program memory to
achieve comparable average memory response
times.

Small program size on stack machines not
only decreases system costs by eliminating
memory chips, but can actually improve system
performance. This effect happens by increasing
the chance that an instruction will be resident in
high speed memory when needed, possibly by using
the small program size as a justification for placing
an entire program in fast memory. Also, placing
an entire program in high-speed memory greatly
improves consistency of program execution by
eliminating the possibility of cache misses entirely.

How can it be that stack processors have such
small memory requirements? There are two fac-
tors that account for the extremely small program
sizes possible on stack machines. The more ob-
vious factor, and the one usually cited in the litera-
ture, is that stack machines have small instruction
formats. Conventional architectures must specify
not only an operation on each instruction, but also
operands and addressing modes. For example, a
typical register-based machine instruction to add
two numbers together might be: ADD R1,R2 .
This instruction must not only specify the ADD
opcode, but also the fact that the addition is being
done on two registers, and that the registers are
R1 and R2.

On the other hand, a stack-based instruction
set need only specify an ADD opcode, since the

operands have an implicit address of the current
top of stack. The only time that an operand is
present is when performing a load or store instruc-
tion, or pushing an immediate data value onto the
stack.

A less obvious, but actually more important
reason for stack machines having more compact
code is that they efficiently support code with
many frequently reused subroutines, often called
threaded code (Bell 1973, Dewar 1975). While such
code is possible on conventional machines, the
execution speed penalty is severe. In fact, one of
the most elementary compiler optimizations for
both RISC and CISC machines is to compile proce-
dure calls as in-line macros. This, added to most
programmers’ experience that too many procedure
calls on a conventional machine will severely
degrade program performance, leads to sig-
nificantly larger programs on conventional
machines.

Stack oriented machines are built to support
procedure calls efficiently. Since all working
parameters are always present on a stack, proce-
dure call overhead is minimal, requiring no
memory cycles for parameter passing. On most
stack processors, procedure calls take one clock
cycle, and procedure returns take zero clock cycles
in the frequent case where they are combined with
other operations.

Processor and System Complexity

When speaking of the complexity of a computer,
two levels are important: processor complexity and
system complexity. Processor complexity is the
amount of logic (measured in chip area, number of
transistors, etc.) in the actual core of the processor
that does the computations. System complexity
considers the processor embedded in a fully func-
tional system which contains support circuitry,
the memory hierarchy, and software.

CISC computers have become substantially
more complex over the years. This complexity
arises from the need to be very good at all their
many functions simultaneously. A large degree of
their complexity stems from an attempt to tightly
encode a wide variety of instructions using a large

158

number of instruction formats. Added complexity
comes from their support of multiple programming
and data models.

The complexity of CISC machines is partially
the result of encoding instructions to keep
programs relatively small. The goal is to reduce of
the semantic gap between high level languages and
the machine to produce more efficient code. Un-
fortunately, this may lead a situation where almost
all available chip area is used for the control and
data paths (for instance the first three generations
of the Motorola 680x0 and Intel 80x86 products).
Additionally, an argument made by RISC
proponents is that CISC designs may be paying a
performance penalty as well as a size penalty.

The concept behind RISC machines is to make
the processor faster by reducingits complexity. To
this end, RISC processors have fewer transistors
in the actual processor control circuitry than CISC
machines. This is accomplished by having simple
instruction formats and instructions with low
semantic content. The instruction formats are
usually chosen to correspond with requirements
for running a particular programming language
and task, typically integer arithmetic in the C
programming language.

This reduced processor complexity is not
without a substantial cost. Most RISC processors
have a large bank of registers to allow quick reuse
of frequently accessed data. These register banks
must be multi-ported memory (allowing simul-
taneous accesses at different addresses) to allow
fetching both source operands and storing a result
on every cycle. Furthermore, because of the low
semantic content of their instructions, RISC
processors need much higher memory bandwidth
to keep instructions flowing into the CPU. This
means that substantial on-chip and system-wide
resources must be devoted to cache memory to
attain acceptable performance. Also, RISC proces-
sors characteristically have an internal instruction
pipeline. This means that special hardware or
compiler techniques must be employed to manage
the pipeline.

Different RISC implementation strategies
make significant demands on compilers such as:

scheduling pipeline usage to avoid hazards, filling
branch delay slots, and managing allocation and
spilling of the registers. While the decreased com-
plexity of the processor makes it easier to get
bug-free hardware, even more complexity shows
up in the compiler. This makes compilers complex
as well as expensive to develop and debug. The
reduced complexity of RISC processors comes with
an offsetting (perhaps even more severe) increase
in system complexity.

Stack machines strive to achieve a balance
between processor complexity and system com-
plexity. Stack machine designs realize processor
simplicity not by restricting the number of instruc-
tions, but rather by limiting the data upon which
instructions may operate: all operations are on the
top stack elements. In this sense, stack machines
are “reduced operand set computers” as opposed to
“reduced instruction set computers.”

Limiting the operand selection instead of how
much work the instruction may do has several
advantages. Instructions may be very compact,
since they need specify only the actual operation,
not where the sources are to be obtained. The
on-chip stack memory can be single ported, since
only a single element needs to be pushed or popped
from the stack per clock cycle (assuming the top
two stack elements are held in registers.) More
importantly, since all operands are known in ad-
vance to be the top stack elements, no pipelining
is needed to fetch operands. The operands are
always immediately available in the top-of-stack
registers. As an example of this, consider the T and
N registers in the RTX 2000 design, and contrast
these with the dozens or hundreds of randomly
accessible registers found on a RISC machine.

Stack machines are extraordinarily simple:
16-bit stack machines such as the RTX 2000 typi-
cally use only 20 to 35 thousand transistors for the
processor core. In contrast, the Intel 80386 chip
has 275 thousand transistors and the Motorola
68020 has 200 thousand transistors. Even taking
into account that the 80386 and 68020 are 32-bit
machines, the difference is significant.

Stack machine compilers are also simple, be-
cause instructions are very consistent in format

159

and operand selection. In fact, most compilers for
register machines go through a stack-like view of
the source program for expression evaluation,
then map that information onto a register set.
Stack machine compilers have that much less work
to do in mapping the stack-like version of the
source code into assembly language. Forth com-
pilers, in particular, are well known to be exceed-
ingly simple and flexible.

Stack computer systems are also simple as a
whole. Because stack programs are so small, exotic
cache control schemes are not required for good
performance. Typically the entire program can fit
into cache-speed memory chips without the com-
plexity of cache control circuitry.

In those cases where the program and/or data
1s too large to fit in affordable memory, a software-
managed memory hierarchy can be used: frequent-
ly used subroutines and program segments can be
place in high speed memory, while infrequently
used program segments are placed in slow memory.
Inexpensive single-cycle calls to the frequent sec-
tions in the high speed memory make this techni-
que very effective, yet provide complete
determinism in program execution for embedded
control systems.

Stack machines, therefore, achieve reduced
processor complexity by limiting the operands
available to the instruction. This does not force a
reduction of the number of potential instructions
available, nor does it cause an explosion in the
amount of support hardware and software re-
quired to operate the processor.

Processor Performance

Processor performance is a very tricky area to talk
about. Untold energy has been spent debating
which processor is better than another, often based
on sketchy evidence from questionable
benchmarks. While some progress has been made
on workstation benchmarks, embedded control
benchmarks are still in their infancy.

The problem of finding exact performance
measures is not going to be resolved here. Instead,
we shall concentrate on a discussion of some

reasons why stack machines can be made to go
faster than other types of machines on an instruc-
tion-by-instruction basis, why stack machines
have good system speed characteristics, and what
kinds of programs stack machines are well suited
to.

Instruction Execution Rate

Most first-generation RISC processors strive for
an instruction execution rate of one instruction
per processor clock cycle. This is accomplished by
pipelining instructions into some sequence of in-
struction address generation, instruction fetch, in-
struction decode, data fetch, instruction execute,
and data store cycles as shown in Figure 2a. This
breakdown of instruction execution accelerates
overall instruction flow, but introduces a number
of problems. The most significant of these
problems is management of data to avoid hazards
caused by data dependencies. This problem comes
about when one instruction depends upon the
result of the previous instruction. This can create
a problem, because the second instruction must
wait for the first instruction to store its results
before it can fetch its own operands. There are
several hardware and software strategies to al-
leviate the impact of data dependencies, but none
of them completely solves it.

Stack machines can execute programs as
quickly as RISC machines, perhaps even faster,
without the data dependency problem. It has been
said that register machines are more efficient than
stack machines because register machines can be
pipelined for speed while stack machines cannot.
This problem is caused by the fact that each in-
struction depends on the effect of the previous
instruction on the stack. The whole point is, how-
ever, that stack machines do not need to be
pipelined to get the same speed as RISC machines.

Consider how the RISC machine instruction
pipeline can be modified when it is redesigned for
a stack machine. Both machines need to fetch the
instruction, and on both machines this can be done
in parallel with processing previous instructions.
For convenience, we shall lump this stage in with
instruction decoding.

160

In the next step of the pipeline, the major
difference becomes apparent. RISC machines
must spend a pipeline stage accessing operands for
theinstruction after (at least some of) the decoding
is completed. A RISC instruction specifies two or
more registers as inputs to the ALU for the opera-
tion. A stack machine does not need to fetch the
data; they will be waiting on top of the stack when
needed. This means that the stack machine can
dispense with the operand fetch portion of the
pipeline.

The instruction execute portion of both the
RISC and stack computers are probably about the
same since the same sort of ALU can be used by
both systems.

The operand storage phase takes another
pipeline stage in some RISC designs, since the
result must be written back into the register file.
This write conflicts with reads that need to take

place for new instructions beginning execution,
causing delays or the need for a triple-ported
register file. Conversely, the stack machine simply
deposits the ALU output result in the top-of-stack
register and is done. An additional problem is that
extra data forwarding logic must be provided in a
RISC machine to prevent waiting for the result to
be written back into the register file if the ALU
output is needed as an input for the next instruc-
tion. A stack machine always has the ALU output
available as one of the implied inputs to the ALU.

Figure 2b shows that stack machines need
only a two-stage pipeline: instruction fetch and
instruction execute. Figure 2a shows that RISC
machines need at least three pipeline stages and
perhaps four to maintain the same throughput:
instruction fetch, operand fetch, and instruction
execute/operand store. Also, we have noted that
there are several problems inherent with the RISC
approach, such as data dependencies and resource

INSTR. INSTR.
ADDRESS ADDRESS
INSTR. INSTR.
FETCH FETCH
INSTR. INSTR.
DECODE DECODE
DATA DATA
FETCH FETCH
EXECUTE EXECUTE
r— DATA_—I DATA DATA
LSTORE_J STORE STORE
TIME TIME
a) pipelined RISC computer b) stack computer
Figure 2.

Instruction execution phases for RISC and stack computers.

161

contention, that are simply not present in the
stack machine.

What this all means is that there is no reason
that stack machines should be any slower than
RISC machines in executing instructions, and
there is a good chance that stack machines can be
made faster and simpler using the same fabrication
technology.

System Performance

System performance is even more difficult to
measure than raw processor performance. System
performance includes not only how many instruc-
tions can be performed per second on straight-line
code, but also speed in handling interrupts, context
switches, and system performance degradation be-
cause of factors such as conditional branches and
procedure calls. Approaches such as the Three-
Dimensional Computer Performance technique
(Rabbat et al. 1988) are better measures of system
performance than the raw instruction execution
rate.

RISC and CISC machines are usually con-
structed to execute straight-line code as the
general case. Frequent procedure calls can
seriously degrade the performance these
machines. The cost for procedure calls not only
includes the cost of saving the program counter
and fetching a different stream of instructions, but
also the cost of saving and restoring registers,
arranging parameters, and any pipeline bubbles
that may occur. The very existence of a stack
computer structure called the Return Address
Stack should imply how much importance stack
machines place upon flow-of-control structures
such as procedure calls. Since stack machines keep
all working variables on a hardware stack, the
setup time required for preparing parameters to
pass to subroutines is very low, usually a single
instruction.

Interrupt handling is much simpler on stack
machines than on either RISC or CISC machines.
On CISC machines, complex instructions that take
many cycles may be so long that they need to be
interruptible. This can force a great amount of
processing overhead and control logic to save and

restore the state of the machine within the middle
of aninstruction. RISC machines are not too much
better off, since they have a pipeline delays the
time between the occurrence of the interrupt and
the time at which the interrupt instruction actual-
ly executes. Many RISC designs also have a large
number of registers that need to be saved and
restored in order to give the interrupt service
routine resources with which to work. It is com-
mon to spend several microseconds responding to
an interrupt on a RISC or CISC machine.

Stack machines, on the other hand, can typi-
cally handle interrupts within a few clock cycles.
Interrupts are treated as hardware invoked sub-
routine calls. There is no pipeline to flush or save,
so the only thing a stack processor needs to do to
process an interrupt is to insert the interrupt
response address as a subroutine call into the in-
struction stream, and push the interrupt mask
register onto the stack while masking interrupts
(to prevent an infinite recursion of interrupt ser-
vice calls). Once the interrupt service routine is
entered, no registers need be saved, since the new
routine can simply push its data onto the top of the
stack. As an example of how fast interrupt servic-
ing can be on a stack processor, the RTX 2000
spends only 4 clock cycles between the time an
interrupt request is asserted and the time the first
instruction of the interrupt service routine is ac-
tually executed.

Context switching is perceived as being
slower for a stack machine than other machines.
However, experimental results presented by Koop-
man (1989) show that this is not the case. In fact,
context switching costs for stack machines are
approximately the same as CISC machines, and
less than for most RISC machines. Furthermore,
simple software techniques such as cooperative
multitasking (Koopman 1990) can reduce the con-
text switching costs to essentially zero.

A final advantage of stack machines is that
their simplicity leaves room for algorithm-specific
hardware on customized microcontroller im-
plementations. For example, the Harris RTX has
an on-chip hardware multiplier. Other examples
of application-specific hardware for semicustom
components might be an FFT address generator,

162

A/D or D/A converters, or communication ports.
Features such as these cansignificantly reduce the
parts count in a finished system and dramatically
decrease program execution time.

Program Execution Consistency

Advanced RISC and CISC machines rely on many
special techniques that give them statistically
higher performance over long time periods
without guaranteeing high performance during
short time periods. System design techniques that
have these characteristics include: instruction
prefetch queues, complex pipelines, scoreboarding,
cache memories, branch target buffers, and branch
prediction buffers. The problem is that these tech-
niques cannot guarantee increased instantaneous
performance at any particular time. An unfor-
tunate sequence of external events or internal data
values may cause bursts of cache misses, prefetch
queue flushes, and other delays. While high
average performance is acceptable for some
programs, predictably high instantaneous perfor-
mance is important for many real-time applica-
tions.

Stack machines use none of these statistical
speedup techniques, yet achieve good system per-
formance. As a result of the simplicities of stack
machine program execution, stack machines have
a very consistent performance at every time scale,
which is especially important for control applica-
tions.

CONCLUSIONS

The new generation of stack computers embodies
a distinct set of design tradeoffs that result in
systems optimized for minimum complexity, fast
program execution, ability to quickly service inter-
rupts, small memory requirements, and consistent
performance. These tradeoffs are different from
those made by processors targeted at the worksta-
tion or personal computer markets, and make
stack computers very well suited for embedded
real-time control applications.

REFERENCES

Bell, J. (1973) Threaded code. Comm. of the ACM,
June 1973, 16(6) 370-372

Davidson, J. & Vaughan, R. (1987) The effect of
instruction set complexity on program size
and memory performance. In: Proc. of the
Second Int. Conf. on Architectural Support for
Programming Languages and Operating Sys-
tems (ASPLOS I1), Palo Alto CA, 5-8 October
1987, pp. 60-64

Dewar, R. (1975) Indirect threaded code. Comm.
of the ACM, 18(6) 330-331, June

Ditzel, D., McLellan, H. & Berenbaum, A. (1987)
Design tradeoffs to support the C program-
ming language in the CRISP microprocessor.
In: Proc. of the Second Int. Conf. on Architec-
tural Support for Programming Languages
and Operating Systems (ASPLOS II), Palo
Alto CA, 5-8 October 1987, pp. 158-163

Earnest, E. (1980) Twenty years of Burroughs
high-level language machines. In: The Proc.
of the Int. Workshop on High-Level Language
Computer Arch., 26-28 May 1980, Fort
Lauderdale FL, pp. 64-71

Harris, N. (1980) A directly executable language
suitable for a bit slice microprocessor im-
plementation. In: Proc. of the Int. Workshop
on High-Level Language Computer Arch.,
Fort Lauderdale FL, 26-28 May 1980, pp. 40-
43

Harris Semiconductor (1988) RTX-2000 Real
Time Express Microcontroller Data Sheet,
Harris Corporation, Melbourne FL

Hayes, J., Fraeman, M., Williams, R. & Zaremba,
T. (1987) An architecture for the direct ex-
ecution of the Forth programming language.
In: Proc. of the Second Int. Conf. on Architec-
tural Support for Programming Languages
and Operating Systems (ASPLOS II), Palo
Alto CA, 5-8 October 1987, pp. 42-49

Kogge, P.(1982) An architectural trail to threaded-
code systems. Computer, 15(3):22-32, March

Koopman, P. (1987) The WISC concept. Byte,
12(4) 187-194, April

163

Koopman, P. (1988) 32 Bit RTX Chip Prototype,
Journal of Forth Application and Research,
5(2) 331-335

Koopman, P. (1989) Stack Computers: the New
Wave, Ellis Horwood, Chichester, UK

Koopman, P. (1990) “Heavyweight Tasking”, Em-
bedded Systems Programming, 3(4) 42-52,
April

Miller, D. (1987) Stack machines and compiler
design. Byte, 12(4) 177-185, April

MISC (1988) MISC M17 Technical Reference
Manual, MISC Inc., Aurora, Colorado

Moore, C. (1980) The evolution of Forth, an un-
usual language. Byte, 5(8), August

Ohran, R. (1984) Lilith and Modula-2. Byte, 9(8)
181-192, August

Rabbat, G., Furht, B., & Kibler, R. (1988) Three-
dimensional computer performance. Com-
puter, 21(7) 59-60, July

Schoellkopf, J. (1980) PASC-HLL: A high-level-
language computer architecture for Pascal.
In: Proc. of the Int. Workshop on High-Level
Language Computer Arch., Fort Lauderdale
FL, 26-28 May 1980, pp. 222-225

164

Systems Design &\ﬁptworks Conference

The Conference on Computer Svsfcms, Peripherals and Networks
Santa Clora Convention Center, Santa Clara, CA

Conference Proceedings
Microprocessor Track

aj o &1

Tape

Controlier

Controller
Gigabit Backend Lin

CH 1

IEEE 802.5

Token Ring
o compue rour |—1]
[- 1 | IR
> - > PBX
FDDI atewa
r 4 Backbone
Network ,
C g !
MAC
Bridge ‘
\EEE 802.3 Lm
Ethernet —_m
| SnaRA——)
Printer r == station
4
FDDI Front End Network. o
MAY 8-10, 1990
SANTA CLARA, CA

EDITOR

Kenneth Maijithia
Sponsored By: In Cooperation with: MAPLE
Electronic Design # PRESS

EDCON &
SFBAC OF IEEE (a Penton Publication) and ACM

