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Abstract

My dissertation work investigated an efficient evaluation tech-
nique for lazy functional programs based on combinator graph
reduction. Graph reduction is widely believed to be slow and
inefficient, but an abstract machine called the Threaded Interpre-
tive Graph Reduction Engine (TIGRE) achieves a substantial
speedup over previous reduction techniques. The runtime system
of TIGRE is a threaded system that permits self-modifying pro-
gram execution with compiler-guaranteed safety. This paper
describes an implementation of TIGRE in Forth for the Harris
RTX 2000 stack processor.

Introduction

The TIGRE (Threaded Interpretive Graph Reduction Engine)
abstract machine is a highly efficient mechanism for executing
combinators in a pure graph-reduction style [KOOP89],
{KOOP90]. TIGRE maps efficiently onto conventional hardware,
providing speeds that compare quite favorably with previous com-
binator graph reducers.

Since the interpreter of TIGRE is similar to a Forth threaded
code interpreter, Forth is an excellent language for exploring the
implementation of TIGRE. In fact, the first implementation of
TIGRE was done in Forth. This paper is a description of an
implementation of the TIGRE abstract machine on the Harris
RTX 2000 stack-based processor.

Background

[TURN?79] described a technique for impiementing normal-
order functional languages, sometimes referred to as SK-com-
binator reduction. The idea is based on the observation that all of
the variables in a functional program can be removed by trans-
forming it into a sequence of combinators which are drawn from a
small, pre-defined set of combinators. With all free variables
thence removed, the resulting program text becomes amenable to
representation as a graph in which subgraph sharing represents the

Figure 1.

sharing of subexpressions in the program, cycles represent recur-
sion, and combinator definitions represent graph rewrite rules.

As an example, Figure 1 shows the operation of the S com-
binator. When executed, the S combinator allocates nodes 3 and 4
from a garbage-collected heap, and rewrites the contents of node
Ototransform the subgraph (((S £) g) x) into ((fx)(gx)). Amazingly,
only two combinators, S and K, are necessary to represent any
program! (Although in practice, it is desirable to introduce other
combinators and integers for the sake of efficiency.) In this scheme,
executing programs becomes a process of graph reduction. Unfor-
tunately, previous methods of graph reduction have been extreme-
ly inefficient.

TIGRE,
A New Architecture for Pure Graph Reduction

The major sources of inefficiency in most graph reducers are
the traversing of the graph’s left spine (stack unwinding) and the
case analysis of node tags. If these costs are reduced or eliminated,
significant speedups may be possible.

One of the key points of TIGRE is the elimination of most of
the overhead for traversing tree nodes during the stack unwinding
process. This can best be accomplished by simply eliminating the
need for tags, thereby eliminating the cost of tag interpretation.
Figure 2 shows a generalized node representation which has tags
associated with both the left and right-hand sides of the node.
Figure 3 shows a tree for the expression ((+ 11) 22) which we shall
use as a running example. The numbers above the nodes serve as
labels for our discussion. Although only three tag types are shown
in the example, typically more tag types are used in actual im-
plementations.

As a first step in eliminating tags, we shall replace the cells
containing constant values by pointers to indirection nodes. (We
are assuming, without loss of generality, that all data items are
integers.) Figure 4 shows the result of this rewriting. Any graph can
be rewritten with constant values placed in the right-hand sides of
indirection nodes in a similar manner.

Now, notice that constants are only found as arguments to
indirection combinators. If we rename those I combinators in the
left-hand side of constant nodes as LIT combinators (short for
“literal value” combinators), as shown in Figure 5, the constant tag
is no longer needed, since the LIT combinator implicitly identifies
the argument as a constant value. All other special tag types can
be eliminated by defining new combinators in a similar manner.

Operation of the S combinator.
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Figure 2. Basic structure of a node.
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Figure 3. Example for expression ((+ 11) 22).
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Figure 4. Example using indirection nodes for constants.

The graph shown in Figure 5 now only has two tag types:
combinator and pointer. We can now greatly reduce the cost of tag
checking by using any number of standard tricks. For instance, all
nodes and therefore pointer values can be aligned on 2- or 4-byte
boundaries (which improves speed or is even required on many
machines). The lowest bit of a cell’s contents can then be used as
a one-bit tag. Figure 6 shows the graph rewritten in this style.

The case analysis for numeric constants has been replaced by
the need to reduce LIT combinators (although we argue that this
combinator is often present in the form of an I node anyway).
However, we have also reduced the amount of tag checking on all
other cells. This is the representation used for the C language
implementation of TIGRE.

The Key Insight

The generic graph shown in Figure 7 is executed by traversing
the leftmost spine, placing pointers to ancestor nodes onto a spine
stack. When a combinator is encountered in the graph, some code
to implement the combinator is executed. The data structure is
controlling the execution of the program. Another, more insight-
ful, view is that the data structure is itself a program with two
instruction types: pointer and combinator. Then graph reduction
is essentially a process of interpreting a threaded program that
happens to reside in the node heap. In other words, the tree is a
program that consists mainly of calls to subroutines. These sub-
routines then contain calls to other subroutines, and so on unti,
finally, some other executable code is found. The C implementa-

tion of TIGRE thus is actually a threaded code interpreter
[BELL73].
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Figure 5. Example using LIT nodes instead of indirection nodes for
constants.

Figure 6. Example with tags removed.

The key idea is that the spine stack is actually just a subroutine
return stack for the interpreted threaded program. As control flows
from node 0 to node 1 to node 2 to node 3 in the graph of Figure 7,
pointers to these nodes are stored on the spine stack. These
pointers will eventually be used to access the right-hand side values
of the ancestor nodes as arguments {0 a2 combinator, so what we
really want saved on the stack are pointers to the right-hand sides
of each node. If the left-hand sides of each node are viewed as
subroutine call instructions, then the return addresses which would
be automatically saved would be the right-hand cell addresses of
the spine of the graph, which is exactly the desired behavior.

Combinator nodes, such as node 3 in Figure 7, contain some
sort of token value that invokes a combinator. At some point
during program execution, this value will have to be resolved to an
address for a piece of code to be executed, so the assembler version
of TIGRE simply stores the actual code addresses of the com-
binator action routines instead of token values. In fact, we store a
subroutine call to the combinator code, so the address of the
right-hand side of node 3 in Figure 7 will be pushed onto the spine
stack, and the combinator will have all its arguments pointed to by
the spine stack (which is now the subroutine return stack). A
pleasant side effect of this scheme is that there is now only one type
of data in the graph: the pointer. Hence there is only one type of
node, and therefore no conditional branching or case analysis is
required at runtime. All nodes contain either pointers to other
nodes or pointers to combinator code. Since all node values (except
the right-hand sides of LIT cells) are subroutine call instructions,
we can simplify matters by simply saying that each cell contains a
pointer that is interpreted as a subroutine call by the TIGRE
execution engine.

In a Forth implementation, TIGRE graph nodes can be imple-
mented as pairs of subroutine call words. Since the RTX 2000
supports direct execution of a graph pointer as a subroutine call



Proceedings of the 1990 Rochester Forth Conference

SPINE STACK .
POINTERTO O
POINTER TO 1 AN
POINTERTO 2
POINTERTO 3
PROGRAM
— SUBGRAPH
I I N\ PROGRAM
SUBGRAPH
PROGRAM
SUBGRAPH
PROGRAM
SUBGRAPH

Figure 7. An example TIGRE program graph, emphasizing the left spine.

instruction, the hardware’s native subroutine calling mechanism is
used to traverse the spine, using the subroutine return stack as the
spine stack. Thus, the representation of the graph shown in Fig-
ure 8 is actually a directly executable data structure on the
RTX 2000.

While the graph shown in Figure 8 is simple, its operation is not
necessarily obvious. Evaluation of a program graph is initiated by
doing a subroutine call to the left-hand side of the root node of a
subgraph. The machine’s program counter then traverses the left
spine of the graph structure by executing the call instructions of the
nodes following the leftmost spine. When a node points to a
combinator, the RTX 2000 simply begins executing the com-
binator code, with the return address stack providing addresses of
the right-hand sides of parent nodes for the combinator argument
values.

The processor is in no sense interpreting the graph. It is direcrly
executing the data structure, using the hardware-provided sub-
routine call instructions to do the stack unwinding. The data
structure is modified every time a combinator is executed, resulting
in a situation where the processor is executing self-modifying code.
However, unlike other self-modifying code techniques, the com-

°| CALL 1 | CALL 3 |

"[CALL + [CALL2 | ?[CALL LT[ 11 |

2{CALL LIT|

22 |

CC'?O,QE FORLIT )

Figure8. Example with pointers replaced by subroutine callinstructions.

piler can completely guarantee the correctness and safety of the
process. Indeed, since graph reduction is inherently a self-modify-
ing process, one could say that techniques that do not rely on
self-modifying code are by their very nature inefficient.

Briefly, TIGRE uses an interpretive pointer to do subroutine
call operations down the left spine of the graph. When combinators
are reached, they pop their arguments from the return stack,
perform graph rewrites, and then jump to the new subgraph to
continue traversing the new left spine. The use of the return stack
for graph reduction is slightly different than for “normal” sub-
routines in that subroutine returns are never performed on the
pointers to the combinator arguments, but rather, the addresses
are consumed from the return stack by the combinators. (This
seems to be a characteristic of other combinator reducers as well).

An RTX 2000 Implementation

The code listing at the end of this paper shows an implementa-
tion of TIGRE for the Harris RTX 2000. The RTX 2000 is a
stack-based processor that can efficiently execute Forth programs
[HARRSS]. In particular, the RTX 2000 supports singlecycle
subroutine calls, which should make the graph traversal threading
operation extremely fast.

In the RTX 2000 implementation, combinators are built as
Forth words with braces around the name of the combinator (e.g.,
{s} for the S combinator). The word ~* is used to compile a
reference to a combinator, and the word ~ is used to compile a
reference to another heap node. Note that on the RTX 2000
subroutine calls are stored as the call address shifted right one bit,
causing a proliferation of 2* and U2/ shifting operators through the
code. A full-featured implementation would include a stop-and-
copy garbage collector; this code aborts when it is out of heap
space.

Two examples are included in the listing. The routine SUC takes
an integer on the data stack, builds a graph to compute the
successor function, executes the graph, and returns the resuit on
the data stack. Similarly, FIB computes the Nth Fibonacci number.
Note that the use of the data stack for parameter passing means
that graph reduction code can be seamlessly merged with tradition-
al Forth code, as is done with the word FIB-TABLE.
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The RTX 2000 version of TIGRE performs approximately
450K reduction applications per second (RAPS) for the SKI com-
binator set implementation of FIB on a 10 MHz RTX 2000. This
is almost twice the speed as the NORMA machine which was
custom-built specifically for graph reduction [SCHES86]. It is also
faster than the 322K RAPS rating of a SparcStation I workstation
and the Cray Y-MP at 352K RAPS. In fact, only the 16.67 MHz
DECstation 3100, which uses the MIPS R2000 processor to obtain
495K RAPS, is faster than the RTX 2000. Most of this speed
advantage for the R2000 comes from its support for a split instruc-
tion and data cache, giving it twice the available memory bandwidth
available as the RTX 2000 (but, the RTX 2000 is still faster if the
system clock speeds are normalized).

One of the important application areas for graph reduction is
in parallel processing. In this area, the absolute speed of the
processor is not as important as the aggregate speed of the proces-
sors that may affordably be placed in a box. Stack processors, with
their high level of integration and small transistor count, seem to
provide good levels of performance while requiring minimal
hardware resources, and therefore may be well suited as processor
units in a graph reduction parallel processing system. Of course,
16-bit processors have limited addressability, so a 32-bit stack
processor would be more desirable for a large-scale project.

Further Reading

The subject of graph reduction and functional programming
languages is not easily grasped upon casual inspection. The follow-
ing publications are recommended for those interested in learning
more about this subject. [BACK78] ignited the current interest in
functional programming with his Turing Award lecture.
[HENDS80] and [FIEL88] are commonly available textbooks on
functional programming. [PEYT87] contains detailed descriptions
of implementation techniques for functional programming lan-
guages, including a chapter on combinator graph reduction tech-
niques. {BELI87] described an eager graph reduction
implementation in Forth. [HUGH84] presents a thought-provok-
ing discussion of the importance of functional programming (many
of the arguments in this article also apply to Forth, although
perhaps in different ways).

Conclusions

Through its simplicity, TIGRE gives fundamentally better in-
sight into the operation of graph reducers. Since TIGRE uses
threaded code techniques and stack-based references to the spine
stack, Forth makes an excellent environment for experimenting
with implementation techniques. The RTX 2000 provides good
performance for TIGRE with minimal hardware cost, making it
attractive for use as a parallel processing unit for graph reduction.
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Source Listing

\ TIGRE for the RTX 2000 using AppForth

\ (C) Copyright 1958, all rights reserved — Philip Koopman
\ Special thanks to Rick VanNorman for significant speedups
DECIMAL

\ Portability & trace words
: CELLS 2* ;
: t\ [COMPILE] \ ; immediate

\ Heap space management

5009 CONSTANT #HEAP-CELLS \ Size of heap for tree data
VARIABLE HEAP-SPACE  #HEAP-CELLS CELLS 2* 120 + ALLOT
HEAP-SPACE #HEAP-CELLS CELLS 2* + CONSTANT HEAP-LIMIT

s INIT-HEAP ( - )
HEAP-SPACE 4 G! HEAP-LIMIT 6 G! ;
: HEAP_ALLOCATE  ( nbytes — first.addr )
468 + 4 DUPG!
puP 6 G& U>
IF -1 ABORT" Out of heap space!" THEN ;

\ Initia)l tree building helpers

Functional Programming,

\ Make a nop for run-time trace

s A~ CELLS 2* HEAP-SPACE + >ta U2/ ;
;A COMP ' >TA U2/ <literal> ; IMMEDIATE
s h, SWAP 4Ge ! 1 CELLS 4Ge + 4G!

4Ge t 1CELLS 4G® + 4G! ;
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\ Compilation helping words \ EXAMPLE: computes nth Fibonacci number
: Jeells ™ CELLS ] literal " evaluate ; IMMEDIATE \ (s ((s {(S (x IF)) ((s <) (K 3)}))) (x 1)))
: 2args " R> @ 2* execute " evaluate ( Evaluate lst argument ) \ ((S ({s (x +)) ((5 (x cYCLE)) ((S -) (x 1))}))
" R@ @ 2* execute " evaluate { Evaluate 2nd argument ) ; \ ((s (x cycLE)) ((s -) (x 2)}))).
IMMEDIATE \ Note: CYCLE refers to node 2, which is root of function subtree
s strict " [ {1it} ] LITERAL OVER R> 2 - | * EVALUATE ; IMMEDIATE : <FIB> ( n - suc }
\ Ix->x ( perform a jump to x ) INIT-HEAP n A
s {1y (=) ( RS: “myrhs — ) t\ ." 1* () 2 ,l h,
e 2% oR: (1) {1it) SWAP h,
>t {2) 3~ 15~h,
\ Kecx->1c ( performa jump to ¢ ) (3) ~ (S} &4~h,
: (K} (=) { RS: “parentrhs “myrhs - ) t\ .” K" (4) 5§~ 13~h,
R> @ R>DROP 2* >R; {(s) ~{s} 6~ h,
\' $fgx-> (fx) (g x) (perform a jump to rhs address ) (6) 7~ 9~h,
1 (s} (-) ( RS: ~grandrhs ~parentrhs “myrhs — ) t\ .* S * (7) ~ (s} 8~n,
R> @ \f (8) ~ {k} ~' {IF} h,
R> @ \fg (9) 18~ 11~h,
Re @ DUP Vfgxx (1) ~ (s} ~* {<}h,
[ 4 Jcells HEAP_ALLOCATE Vfgxxa (11) ~" (K} ~ {3} h,
[ 3 Jcells + Vfgxxd (12) {1it) 3 h,
4 1- \ f gxb ( 13) ~{x} ~ {1} h,
2 1+ DUPR \fge (14) (it} 1h,
4 - \fa (15) 16~ 27 ~h,
g t+ U2/ \ ~a (16) ~ (S} 17~h,
R> 02/ \ ~a “c ( 17 ) 18 ~ 20 ~ h,
R> \ ~a~c f (18) ~ (S} 19~ h,
N N (19) ~ (K ~ (4} b,
2 1+ \ e (28) 21~ 23~h,
>R; 3 ( 1 ) ~ (S) 22~ hn

2
$DE20 CONSTANT {LIT} ( 232;" )24 N “‘;5 A"’h’ h, \ cycle
\ +xy->LIT sum ( perform a return ) (24) ~ (s} ~ (-},
:{+} (-) ( RS: raddr ~parentrhs ~myrhs — ) t\ .* +* (25) ~' (K} ~' {1} h,
2args + strict 3 (26 ) {1it} 1 h,
-+ (-) ( RS: raddr ~parentrhs ~myrhs - ) t\ .* - * (27) 28 ': 38~ h, )
2args - strict ; (28) ~ {s} 29~h,
’ (29) ~ {K} 2~h, \ cycle
: {<} (=) ( RS: raddr ~parentrhs ~myrhs — ) t\ .* <" (3@) 31~ 32~h,

2args < strict ; (31) A~ {S} ~' {-}n,
\ IFexy->Ix]|1y (32) ~ {x} ~' {2} b,
{1IF} (~-) ( RS: ~grandrhc ~parentrhs ~myrhs — ) t\ .* IF " (33) {1it} 24,
R> @ 2* EXECUTE 2 CELLS HEAP_ALLOCATE DROP HEAP-SPACE >R; 3
1F s FIB-TABLE { )

R> @ CR ." n FIB(n)"

~ A1) R ."— —" (R

OVER R> 13 1 DO

2 !- I 3U.R TFIB 7 U.R CR

! LOOP ;

2* >R;
THEN
R>DROP
R>
2 8-
A (1)
SWAP |

2% >R; 3

s

\ Fast constants for small integers
{1} 1
{2} 2 ;
{3} 3;
EXAMPLE: suc(n) = n+l
(s ((s(x+))(x1)))1).
SUC ( n - suc )
INIT-HEAP
(@) 2~ 1~h,
{1it} SWAP h,
3~ o~ (1} h,
~ (S} 4~h,
) 5~ 7%,
5) ~ (s} 6~h,
(6) ~ {k} ~' {+} b,
(7) ~ (x} 8~h,
(8
P A

[T

—~ b~

{1it} 1 h,
OCATE DROP HEAP-SPACE >R; ;

=~

2 CELLS HEAP_AL



