INSTRUCTION SET STRATEGIES

The WISC Concept

A proposal for a writable instruction set computer

THE TRADITIONAL COMPLEX in-
struction. set computer architecture with
its large, complicated instruction set has
become the mainstay of the microproces-
sor industry. Recently, however, pro-
ponents of the reduced instruction set
computer architecture have made the
controversial claim that RISC architec-
tures can execute programs more quickly
than CISC machines. Before you decide
which side of the line you’re on, I'd like
to present an alternative computer archi-
tecture that combines elements of both
RISC and CISC philosophies to produce
an interesting, streamlined, flexible, and
potentially fast machine.

My proposed architecture is called
WISC, for writable instruction set com-
puter. My purpose is not to show that
either the RISC or CISC approach is
somehow wrong, but rather to introduce
an alternative that blends RISC and CISC
concepts into a simple but powerful ar-
chitecture.

First, I want to look at the key ideas
from the RISC and CISC concepts. Then
I can select the best ideas for the pro-
posed WISC architecture. Finally, I will
combine these ideas to define the WISC
architecture and consider an overview de-
sign for a generic WISC machine.

Key RISC Concepts

RISC systems are based on the concept of
optimizing the few instructions that are
used the most and eliminating infre-
quently used instructions to reduce hard-
ware complexity and increase hardware
speed. 1 will look at the key RISC con-
cepts, examine their strong or weak

Phil Koopman

points, and pick the ones that are most
desirable for an alternative architecture.

First, RISC machines must execute all
instructions in a single memory cycle.
Some authors have referred to this as sin-
gle-clock-cycle operation, but the real
resource limitation is the amount of time
required to reference program memory.
The idea here is that if a CPU can execute
instructions as quickly as they are fetched
from memory, maximum system through-
put speed will resuit. Clearly, using as
much of the memory bandwidth as is
available is a desirable goal for WISC.

RISC machines must use hard-wired
control. The intent of using hard-wired
control is to allow for fast single-mem-
ory-cycle operation of op codes and
(when combined with a very small in-
struction set) reduce the amount of sili-
con area required for implementation on
a single chip.

But it is not clear whether hard-wired
control is an absolute requirement. Since
a designer can make a small amount of
microcode memory extremely fast in re-
lation to large amounts of program mem-
ory (while achieving a reasonable cost/
performance trade-off), there is no rea-
son why a microcoded processor cannot
achieve single-memory-reference-cycle
operation for most operations.

As for the chip-area argument, micro-
coded designs can have fewer gates than
hard-wired designs (exclusive of the
actual microcode memory). If I wish, I
can use the extra silicon area available in
a streamlined WISC single-chip imple-
mentation for microcode memory.

Next, RISC machines use relatively

few instructions and addressing modes.
This concept is a side effect of the need to
keep things simple in a hard-wired, sin-
gle-cycle processor. If a chip can support
additional instructions without reducing
the clock-cycle speed for basic instruc-
tions—as is often the case with micro-
coded CPUs but usually not with hard-
wired CPUs—no real incentive exists to
limit the number or types of instructions.
Instructions with fancy indirect-address
modes or multiple-memory-cycle opera-
tion should be supported if the net result
is a speed-up of the entire system for an
important application program or lan-
guage run-time environment. So 2 WISC
design should not unnecessarily restrict
the number and variety of possible in-
structions.

RISC processors use a load/store de-
sign, which allows “load from memory”
and ““store to memory” as the only mem-
ory-reference instructions. This tends to
reduce clock-cycle times by shortening
delays in the memory-to-CPU data path
and simplifying control logic. It also sim-
plifies restarting after a virtual memory
page fault. However, if virtual memory is
not being used (as is the case in the vast
majority of personal computers today) or
if a memory reference can be combined
with another operation for a net savings

continued

By day Phil Koopman is a U.S. Navy sub-
mariner and engineering duty officer; by
night he designs computer hardware,
software, and microcode. He can be
reached at 20 Cattail Lane, North Kings-
town, RI 02852.

APRIL 1987 - BYTE 187



WISC CONCEPT

No evidence exists
that a fast computer
requires an architecture
with a difficult
assembly language.

in time, then no reason exists for restrict-
ing the system to a load/store design.
Thus, WISC computers should not be
limited to a load/store design.

RISC machines use a fixed instruction
format. Fixed instruction formats allow
simpler decoding of instructions and re-
duced hard-wired logic. They also mini-
mize the number of microcoded instruc-
tions that are wasted on shifting and
interpreting op codes and operands.

Making all instructions the same size
(e.g., a 16-bit format aligned on even-
byte boundaries on a 16-bit machine)
makes a lot of sense for simple, fast hard-
ware design. You can argue: that com-
pressing variable-length instructions into
the smallest space possible speeds pro-
gram execution by reducing the number
of memory accesses. But the trade-offs in
unpacking these compressed instructions
and formatting them properly for execu-
tion might eat up much of the savings
with more complex hardware and extra
instruction fetching when refilling a pre-
fetch pipeline after a branch. Most people
seem willing to increase memory space
somewhat for faster program execution
speeds. So WISC should use a fixed in-
struction format.

Finally, RISC machines trade off more
sophisticated compiler technology for
less complex hardware. This argument is
based on the assumption that all program-
ming is done in high-level languages that
shield the user from the machine. No
doubt sophisticated compiler technology
can improve the speed of a high-level lan-
guage program. It remains to be seen
whether this speed increase can surpass
the capability of an experienced assembly
language programmer to handcraft the
few lines of code that might break the
speed bottleneck for a complex applica-
tion program. Inasmuch as no.evidence
exists that a fast computer requires an ar-
chitecture with a difficult assembly lan-
guage, WISC should not have features
that demand the use of a sophisticated
compiler, although it could benefit from
such a compiler.

A Major RISC Problem
For all its good, the RISC design has an
Achilles’ heel. The low semantic content

188 BYTE - APRIL 1987

of each instruction requires a high mem-
ory bandwidth, resulting in a sharp mem-
ory price/performance trade-off.

Consider the common operation of de-
crementing the value at a memory loca-
tion. In a RISC machine this would be ac-
complished by a load, decrement
register, and store using five memory
cycles: three for instructions and two for
memory data references. An efficient
CISC or WISC architecture might sup-
port a single decrement instruction that
uses only three memory cycles: one for
the instruction and two for memory data
references. If many commonly required
high-level language functions are not
supported in a RISC machine, memory
access for instructions can create a
bottleneck.

Another example is the absolute value
operation applied to a value already resi-
dent in a CPU register or hardware data
stack. In any processor without this func-
tion as a built-in primitive, absolute value
determination consists of a sign compari-
son, a conditional branch, and a subtrac-
tion (or two’s complement). This is a to-
tal of three instructions and a possible
conditional branch that upsets any in-
struction pipelining that might exist. If
the absolute value function is included in
the instruction set, execution requires
only one memory reference.

Now you might be thinking, “What
about a memory cache? Doesn’t that
solve the memory bottleneck problem?”
But a cache is only a partial solution.
First a cache speeds up memory refer-
ences only on the second and subsequent
accesses to a memory location. Thus, the
effectiveness of a cache is reduced by
compiler optimizations such as unrolling
loops. Second, a cache introduces addi-
tional system cost and complexity and re-
sults in extra delay when encountering a
cache “miss” that requires fetching an in-
struction from memory. Finally, a cache
design is often based on the concept of
“locality” of programs. This contradicts
the current sciiware doctrine of breaking
up programs into smaller and smaller
procedures and functions for modularity
and reusability—or forces greater mem-
ory usage by compiling functions and
subroutines as in-line code, which fur-
ther reduces cache effectiveness.

Simply put, it is better to have no mem-
ory bottleneck problem than to have a
limited memory bandwidth with a cache.
Therefore, WISC should be designed to
minimize the number of memory refer-
ences needed to accomplish each func-
tion in a high-level program.

To avoid the RISC memory bottleneck
problem and achieve high performance, 1
can borrow some concepts from CISC
machines. A CISC machine’s CPU has

an extensive and complex instruction set
that attempts to support high-level lan-
guage control and data structures di-
rectly. All of today’s widely used 16-bit
microprocessors are CISC designs.

Borrowing from CISC

* Two common CISC traits that might be

useful in a WISC design are a minimal se-
mantic gap and the inclusion of as many
high-level language-oriented instructions
as possible.

The driving force behind the complex-
ity of a CISC machine is the desire to
speed up common high-level language
operations such as character-string ma-
nipulation, pointer maintenance, loop-
ing, and array handling. By reducing the
so-called semantic gap between the high-
level language statements used in a pro-
gram and the machine-code instructions
available on the CISC machine, programs
should require fewer memory references,
take up less space, and run faster. To
handle the very complex instructions that
can be used, designers of CISC machines
often use microcoded implementations.
Likewise, to provide complex instruc-
tions while minimizing hardware com-
plexity, WISC should employ a micro-
coded design.

An unfortunate side effect of complex
and comprehensive instruction formats
can be an excessive amount of decoding
logic or multiple microcycles just to de-
code an instruction before any real work
is done. But this side effect can be re-
duced by the adoption of a simple fixed
instruction format for WISC instruc-
tions. Using a fixed instruction format
eliminates complex manipulation of in-
structions to extract the meaning of an op
code and its operands, thus reducing
hardware requirements and speeding up
the processor.

Powerful high-level language-oriented
instructions, such as decrementing a
memory-location value or string manipu-
lations, can speed up programs signifi-
cantly by reducing the number of instruc-
tion fetches from program memory. The
only pitfall is that such instructions must
be well suited to high-level languages, or
compilers ignore them in favor of synthe-
sizing primitive instruction sequences
that do the job exactly. Examples of prob-
lem areas include zero-based versus one-
based arrays and loop counters, subrou-
tine calling, parameter passing, and
list/record data-structure manipulation.

The answer to the semantic mismatch
caused by high-level language instruc-
tions that don’t quite meet high-level lan-
guage requirements is to customize the
processor’s instruction set for each lan-
guage environment. This customization

continued



wISC CONCEPT

would be accomplished in WISC with a
writable microprogram memory, some-
times called a writable conirol store, that
employs high-speed RAM to store micro-
code. Such an arrangement would let the
processor’s microcoded instruction set
be changed as the operating system
requires.

Therefore, a WISC goal should be to
execute all instructions in a single mem-
ory-reference cycle and use 100 percent
of available memory bandwidth, except
where a microcoded complex instruction
clearly results in performance superior to

L

multiple simple instructions for a particu-
lar application or high-level language
run-time environment. Of course, in-
structions involving memory operand ac-
cess will be longer than a single memory
cycle, but they will nonetheless tend to
keep the memory productively engaged at
all times,

Using Stacks

The WISC architecture should use one
final feature to synergistically work with
other design aspects to increase speed
and decrease complexity of the system:

190 BYTE « APRIL 1987

hardware-implemented push-down last-
in/first-out stacks.

The stack concept has proved its value
in computers and modern-language im-
plementations that use stacks for imple-
menting subroutine return-address stor-
age or parameter passing. However,
these stacks are generally realized as an
address register that points to main mem-
ory, with perhaps the top few elements of
the stack located in special registers. I
propose using completely independent
high-speed memories to implement two
stacks for the WISC architecture. One
stack would be primarily for subroutine
return-address storage and the other for
data storage.

The advantage of a hardware return-
address stack is that subroutine calls and
returns can be processed at a high speed,

i with the return address transferred to or

from the return stack in parallel with de-
coding the next instruction. A hardware
data stack lets subroutine parameters be
passed to subroutines without main-
memory accesses in addition to providing
for a large amount of scratch work space
for storing temporary results. In fact, the
underlying structure of modern lan-
guages such as Modula-2 seems to pre-
sume the existence of a stack of some
sort.

In addition to reducing subroutine-call
overhead, use of a data stack simplifies
(and quickens) the machine’s operation
by eliminating the need for operand de-
coding. Since a stack machine implicitly
addresses certain elements on the stack
relative to the current stack pointer posi-
tion, the CPU does not suffer any delays
while source and destination registers are
selected from a large register bank. Fur-
thermore, the instruction bits freed by not
needing fields for selecting registers
allows the use of a narrow word size (16
bits or less), packing multiple op codes
into each program word, or using con-
stants or other values in the same word as
an op code, all while maintaining a sim-
ple instruction format.

In-line literal values are required in a
stack machine only for providing values
for variable initialization, arithmetic con-
stants, or branching addresses. These
values can either be incorporated into un-
used instruction bits or placed into a
memory cell after the instruction requir-
ing the value. One interesting approach
that some stack-oriented processors use
is to have two instruction types: one for
operations (consisting of an op code with
no parameters) and one for subroutine
branches (consisting of only an address
with a flag indicating an implied op code
of a call).

So the WISC design should include

continued



WISC CONCEPT

hardware stacks. The use of hardware
stacks will reduce subroutine-call over-
head and the complexity and delay asso-
ciated with operand decoding, since all
operands are implicit.

A Generic WISC Computer
Having described the attributes of a
WISC computer, 1 would like to present a
generic architecture for WISC imple-
mentation. Figure 1 shows a block dia-
gram of one possible format for a WISC
computer.

The resources of this generic WISC
computer are a data stack, an ALU witha
small number of registers (perhaps only

110 INTERFACE

Figure 1: A block diagram of a possible WISC machine implementation.

one), a return stack with a bidirectional
data path to the program counter for sub-
routine-call address manipulation, a pro-
gram memory, and a microcoded con-
troller. All the resources are connected to
a central data bus, with access to I/0 ser-
vices through an appropriate interface.
The WISC machine in figure 1 has sev-
eral interesting aspects. One feature not
always found on hardware-based stack
designs is that the registers above the
ALU can hold the top one or two data-
stack elements. These registers allow the
use of a single-ported data-stack RAM.
The entire instruction decoding path,
from the return-address stack all the way

192 BYTE * APRIL 1987

through to the microinstruction register,
is completely independent of the data
bus. This independence allows for ALU
and data-stack operations on data while
instructions are fetched and decoded
simultaneously. This structure allows use
of nearly 100 percent of the memory
bandwidth. An added benefit is that there
is no need to implement an instruction
prefetch unit; no time is lost flushing an
instruction queue when a branch is en-
countered. In fact, implementing a de-
layed branch similar to the ones used by
some RISC machines can eliminate al-
most all idle or wasted memory cycles.

The microinstruction register forms a
one-stage microinstruction pipeline and
eliminates wasted time that would other-
wise result from waiting for micropro-
gram memory access in a nonpipelined
design. The only drawbacks to this de-
sign are that a two-microcycle minimum
is imposed on all op codes and that de-
layed microinstruction branches must be
used for condition code testing. How-
ever, the small high-speed memory used
to implement the microprogram memory
and data-stack memory should allow for
multiple microcode cycles within each
memory-cycle time, essentially eliminat-
ing the impact of these drawbacks on sys-
tem performance.

A design approach for instruction de-
coding that could greatly simplify the
CPU hardware would be to use, for exam-
ple, an 8-bit op code that directly ad-
dresses a word in the microcode mem-
ory. This would directly address the first
microprogram instruction of a page of
microprogram memory; one page of
microprogram memory would be allo-
cated to each op code. This would allow
complete flexibility in instruction set as-
signment while using very little instruc-
tion decoding logic.

The Past, Present, and Future

of WISC

Constructing a hodgepodge of previously
successful computer design techniques
does not guarantee success. The WISC
design criteria presented here represent a
careful balance of often conflicting de-
sign requirements. That said, I will look
at some past and current computers that
inspired some of the WISC machine’s
unusual design features.

The Burroughs B1700, a microcoded
machine, had a different instruction set
for each language it supported: BASIC,
FORTRAN, and COBOL/RPG-II. The
tailored instruction set for each language
resulted in smaller programs and much
faster execution speed than that found on
comparable machines of the time. But the
complexity of the architecture for vari-

continued



WISC CONCEPT

able-width operand support made the
machine expensive.

The current RISC II and MIPS proces-
sors (see “How Much of a RISC?” by
Phillip Robinson on page 143) strive to
achieve single-memory-cycle execution
with the use of fixed instruction formats.
Interestingly, the IBM RT PC and the
Pyramid 90x computers use hybrid hard-
wired/microcoded designs to allow for
some complex instructions within a RISC
framework.

One early reference to a stack machine
was a design for a 1950s ALGOL lan-
guage-specific processor known as
ALCOR. While it was never built, it
called for a two-stack machine that would
have used one stack for operand storage
and another stack for instruction storage.

More recently, the Novix NC4016
chip (see “Stack Machines and Compiler
Design” by Daniel L. Miller on page
177) efficiently executes the dual-stack-
based FORTH language with a hard-
wired RISC architecture. The NC4016 is
designed with single-cycle operation in
mind and has low procedure-calling over-
head due to the use of stacks, but it has a
hard-wired instruction set like other
RISC processors. Another stack-oriented
processor, the MVP Microcoded CPU/

16, combines hardware stacks with writ-
able microprogram memory to allow
redefinable instruction sets but is not op-
timized for single-memory-cycle instruc-
tion execution.

While none of the individual design
features of WISC are new, I believe that
implementing a true WISC machine will
lead to discoveries about the nature of
modern computer architectures and how
to make them better. In the end, design-
ing a more efficient computer architec-
ture will lead to less expensive, more cap-
able computers. m

BIBLIOGRAPHY

Amsterdam, Jonathan. *‘Programming
Project: Building a Computer in Soft-
ware.” BYTE, October 1985.

Bauer, F. L. “Between Zuse and Ruti-
shauser—The Early Development of Dig-
ital Computing in Central Europe.” .4
History of Computing in the Twentieth
Century, N. Metropaolis et al., eds. New
York: Academic Press, 1980.

Colwell, R. P., et al. “Computers, Com-
plexity, and Controversy.” Computer,
May 1977.

Fernandez, E. B., and T. Lang, eds. Soft-
ware-Oriented Computer Architecture (a
Tutorial). Washington, DC: IEEE Com-

puter Society Press, 1986.

Jennings, E. “The Novix NC4000 Proj-
ect.” Computer Language, October 1985.

Katevenis, M. G. H. Reduced Instruction
Set Computer Architectures for VLSL.
Cambridge, MA: MIT Press, 1985.

Koopman, P. “MVP Microcoded CPU/
16-Architecture.” The Journal of FORTH
Applications and Research, volume 4,
number 2, 1986.

Meyers, G. I. Advances in Computer Ar-
chitecture. New York: John Wiley &
Sons, 1982.

Multinovic, V., ed. Tutorial on Micro-
processors and High-Level Language
Computer Architectures. Washington,
DC: IEEE Computer Society Press,
1986.

Patterson, D. A., and C. H. Séquin. “A
VLSI RISC.” Computer, September
1982.

Przybylski, S. A., et al. “Organization and
VLSI Implementation of MIPS.” Stan-
Jord University Technical Report Number
84-259. Stanford, CA: April 1984.

Ragan-Kelly, R., and R. Clark. “Applying
RISC Theory to a Large Computer.”
Computer Design, November 1983,

Simpson, Richard O. “The IBM RT Per-
sonal Computer.” Inside the IBM PCs,
Fall 1986 BYTE.




