\' >

Time-Saving Debugger

Redefining Words

Phil Koopman, Jr.
FPO San Francisco, California

One of the biggest time wasters in
writing large Forth programs is the
compiling delay that occurs whenever a
word defined near the beginning of the
dictionary must be changed. The re-
compilation of the dictionary after a
redefinition can often take several min-
utes for a large application. Numerous
methods have been tried to reduce this
delay, typically addressing methods to
speed up the Forth compiler. Most
methods involve large numbers of ex-
tra word definitions and significant
changes to the dictionary structure of
Forth.

This article discusses a simple meth-
od to eliminate the time-consuming
recompile step after making a minor
change. Only one screen of source code
is used, and absolutely no changes to
the Forth compiler or dictionary struc-
ture are required.

The Method

When a small bug is corrected (us-
ually involving the definition of only
one word) all that is needed to make
the entire program correct is to compile
the revised definition and somehow
ensure that all references to the old
definition are changed to reference the
revised definition.

The first way that comes to mind to
compile the new word is just to compile
it to the end of the dictionary. This will
mean that any new word defined will
use the revised definition, but no previ-
ously defined words will do so. This
method fails when the word being
revised is used by any previously com-
piled word.

Another method might be to compile
the revised definition directly into the
memory used by the old definition in
the dictionary. This eliminates all need
to change words that use the revised
word, since the location of the defini-
tion does not change. This method
works fine unless the revised definition
is larger than the original definition,
and therefore will not fit into the dic-
tionary in the old definition’s spot.

The solution presented in screen 180
is a combination of the two above
methods. The technique used is to
define the revised word at the end of
the dictionary, then modify the old
definition so that it merely executes a
jump to the revised definition.

How It Works

The redefinition process is in three
steps: using REDEFINE to alert the sys-
tem that a word is to be redefined,
redefining the word and then using the
word PATCH to actually put the new
definition into effect.

REDEFINE alerts the system that a
word is about to be redefined. It is used
in the format

REDEFINE < name>
where <name>> is the word name to
be redefined. It saves the PFA of the
old definition of <name> in the
variable PATCHADDR.

The second siep of the redefinition
process is to define the revised defini-
tion of <name>. This is usually by
means of a LOAD, but any means may
be used. Note that no special words
within the definition are needed, and
no editing of screens is required.

The third step of the redefinition
process is to use the word PATCH to
actually patch the old definition to
point to the revised definition. PATCH is
used in the format

PATCH < name>

where <name> is the name of the
revised definition. The name used with
PATCH is usually the same as the name
used with REDEFINE, but does not have
to be. PATCH uses the factored word
MAKE-PATCH to compile the run-time
action word <PATCH> into the first cell
of the old definition’s parameter field.
The PFA of the revised definition is
stored in the second cell of the old
definition’s parameter field.

At run time, the word <PATCH> is
executed by the old definition.

<PATCH> removes the pointer to the
old definition from the return stack
and replaces it with a pointer to the pa-
rameter field of the revised definition.
This ensures that any remaining words
in the parameter field of the old defini-
tion are ignored, and that the return
stack is not cluttered up with another
return address (in case the revised word
uses an unusual exiting technique or is
otherwise expecting certain values on
the return stack).

Screen 181 shows a very simple test
that illustrates the ease of use of this
redefinition facility. First, the words
ATEST, BTEST and TEST are defined and
used. Then the word ATEST is redefined
and incorporated into the dictionary
without having to redefine BTEST and
TeEST. Note that the return stack con-
tents are identical for both the old and
new versions of ATEST.

Limitations

First, this facility is not designed to
be very ‘‘smart.”’ It will be perfectly
happy to crash if the exact sequence of
REDEFINE ... LOAD ... PATCH is not
properly used. Also, it only works for
high-level definitions and will not work
for code words, constants, variables or
the like.

Another limitation is that the word
redefined must have at least two cells in
its pararneter field. This means that a
null definition cannot be redefined
with this system (a null word is in the
form: NULL ;). Only one word may
be redefined in any REDEFINE ... LOAD
... PATCH sequence.

FORGETting the redefined word with-
out also FORGETting the original defin-
ition can cause the system to crash.

<PATCH> may have to be redefined
on systems that pre-increment the 1P
instead of post-incrementing it. The
change is simply:

< PATCH>
R> 2+
@ >R ;

for a sixteen-bit cell size.

FORTH Dimensions

36

Volume Vi}, No. 4

On the Bright Side

The words REDEFINE and PATCH pro-
vide a very quick way to change a word
definition and examine its results with-
out recompiling the whole dictionary.
No change is made in the dictionary
structure. When the application is fully
debugged (or when a substantial num-
ber of bugs have been corrected), the
application can be recompiled one time
to clean it up and free the extra space
used by word redefinitions. Addition-
ally, multiple redefinitions of the same
word can be written and quickly tested
in the context of the entire system
without recompiling.

Summary
The words REDEFINE and PATCH pro-

vide an extremely simple yet effective
way to practically eliminate recompile

time during debugging. This technique
has provided substantial time savings
while developing a hotel cash reg-
ister/control system. The program was
developed on ECS MVP/FORTH (a
Forth-79 compatible system) running
on a well-known 8088-based personal
computer system.

Further investigations of redefining
words might include greater safeguards
against accidental misuse and simul-
taneous multiple-word redefinitions.

Editor’s note: This technique is some-
times referred to as ‘*hotpatching’’ and
must be used very carefully, due to the
problems that can arise when the
source and object code versions of a
program differ.

SCREEN #180

O \ DEBUGGING FATCH WORDS P. KDOPMAN JR. 2B8DECS4

1 DECIMAL \ DEFINITIDNS IN THE FUBLIC DOMAIN
2 VARIABLE PATCHADDR \ PFA FOR REDEFINE, USED EY PATCH
3

4 1 <PATCH> (=>) ¢ ACCEPTS IN-LINE PFA FROM DICTIDNARY)
5 R>® OR ;

6

7 : MAKE-PATCH (PFA-NEW PFA-OLD ~>)

B 7 <PATCH> CFA OVER ' 2+ 1

9

10 : REDEFINE ¢ —->) (USAGE: REDEFINE name)

11 [COMPILE] > PATCHADDR ! ;

12

13 : FATCH ¢ =) (USAGE: PATCH name)

14 [COMPILE] > PATCHADDR @ MAKE-PATCH ;

15
SCREEN #181

0 \ TEST SCREEN FOR PATCHING PJK 28BDECBA MVP FORTH
1 DECIMAL

2 1 ATEST ." TOP OF RETURN STACK=" R® U. CR ;

3 : BTEST ." BTEST IS AN UNCHANGING WORD IN DEFINITION" CR ;
4 : TEST CR CR ATEST BTEST CR ;

5

6 TEST

7

8 REDEFINE ATEST

9 : ATEST ." THIS IS A REDEFINED ATEST. R?=" R® U. CR
10 PATCH ATEST
11

12 TEST
13
14
15

Volume Vii, No. 4

37

