Towards Execution Models of Distributed Systems
A Case Study Of Elevator Design

John V. D’Anniballe
jvd@utrc.utc.com
(203) 727-7067
M/S 129/85

Philip J. Koopman, Jr
koopman@utrc.utc.com
(203)727—-1624
M/S 129/48

United Technologies Research Center
411 Silver Lane
East Hartford, Ct. 06248

Abstract

Many of United Technologies’ products contain or will soon
contain a distributed network of processors. In order to
explore issues related to designing such systems, two different
methods of modeling system functionality have been applied
to a simplified elevator controller. One method results in
data flow oriented models which are executable within a con-
text of the association of units of functionality with distrib-
uted processors. Execution thus produces processing and
communication workloads which can be used for design
analysis. In order to allow rapid assessment of alternative de-
signs, an automated approach was developed which allowed
the units of allocated functionality to be arbitrarily fine. How-
ever, neither the data flow approach nor this automated al-
location handle the complexity of large models sufficiently
well. A similar elevator model has been defined with a tech-
nique which combines object—oriented analysis with formal
specification. This combination avoids unnecessary com-
plexity yet allows the model to have a formal semantics,
which is necessary (but not sufficient) to achieve the key
methodological requirement of executability. Future work
will integrate the object—oriented and data—flow ap-
proaches into a framework which supports specification, au-
tomated fine —grain allocation, and execution for large mod-
els.

1. Introduction

The products of United Technologies include elevators,
jet engines, helicopters, radars and sonars, heating and
ventilating equipment, vehicle components, and electron-
ic subsystems. All of these products contain or may soon
contain distributed embedded computers. The various
types of models which contribute to the development of
these systems are, in general, component—oriented, and
do not lay a basis for system—level tradeoffs.

The diverse methodological requirements for system—
level models include the capability to effect — multiple
views of system functionality, fast and inexpensive
construction, and automated analyses; as well as the ca-
pability to accommodate incompleteness when it is de-
sired or necessary to suppress detail. Some of these re-
quirements are in conflict with others. As the digital
electronic content of embedded systems increases, it
becomes more important to overcome the inhibitors to
cost—effective system—level models.

Figure 1 — System Level Models

Completeness/ System model components

consistency v~ _ - -
checks Functionality | gglocatio
I t‘/'
nput - _ _ |l ___._._ -
Workload * & Output

Execution = Performance Measures

(Elevator) example

f; — Hall call turns button light on e CPUs
1 3! ® Communication
f, — Determine next car destination s¢ channels
CPUj;
for f
------ L

" CPUIisl; % loaded
Execution = Communication channel is 1,% loaded
End—to—end response times

Passenger
workload

1.1 Execution models

Motivation. Our research program is focused on the
construction of system level models which, at least con-
ceptually, contain the components shown in Figure 1.

The main objective is to represent the functionality at a
level of detail so that execution based on some workload
and an allocation to resources such as CPUs and commu-
nication channels yields accurate measures of the system’s
performance. This would enable one important class of
system—level tradeoffs.

Executability would also lay a basis for analysis of a de-
sign’s robustness through observation of the effects of fail-
ures in functions and resources. Finally, and independent
of any allocation and execution, the propagation of many
design errors would be prevented by completeness and
consistency checks on the functional representation.

Inhibitors. Two main factors inhibit the timely construc-
tion and execution of adequate models:

® the functionality component must have a formal se-
mantics — or be straightforwardly traceable to a repre-
sentation with a formal semantics — without having
the detail (and complexity) of the actual system.

® the allocation process must not only be automated,
but unobtrusive in that it cannot require significant
changes to the functional representation nor dictate
unnatural structuring or methods to avoid such
changes.
We have made progress in both areas though neither re-
quirement is judged to have been sufficiently met.

1.2 Elevator controller test case

A simplified, single—car, elevator controller is being used
as a demonstration vehicle for the methods under devel-
opment. Current high—end elevators are both physically
and functionally partitioned into several different CPU
boards. In a simplified model, these partitions are:
sensors, signalling of lights, doors, drive/brake, motion
control, and scheduling.

Section 2 discusses the application of a “baseline” method
to the elevator problem. The method is based on models
constructed with the SES/workbenchO [SES 92] toolset.
These models are data—flow based, graphical, and
executable. The baseline method is complete with respect
to Figure 1 — a system level model can be executed and
is additionally augmented with a character—based anima-
tion of car movement, doors, button lights, hall direction
lanterns and passengers.

The baseline method focused the methodological issues,
which are centered around the control of complexity, and
motivated a manual “trial” method discussed in Section 3.
This method is incomplete with respect to Figure 1 — ad-
dressing only the representation of functionality with an
approach which combines techniques of object—oriented
analysis and formal specification.

2. Baseline method
2.1 Functional representation

Since the approach to modeling system functionality in
the baseline method is largely shaped by the commercial
toolset, it is discussed here only to an extent necessary to
present the main issues. Figure 2 depicts the tool’s basic

Figure 2 — Directed Graph Hierarchy

hall_cancel hall_light Legend
assengers signal schedule
passene - N sub—graph

. N
~hall_cancel_arc ”—“ signdl_hall_call
hall_button, drc signal_hall_light

O 21

. Signal_hall_call” ~ N enter/return
halI_l;utton_arc hall_jjght_on B v > 4
) ST duplicate
hall_cancel_arc el ightoft hall ight are hall_call_are E
2]
sink

hall_light_arc

representational mechanism. Within a hierarchy of di-
rected graphs, transactions flow among nodes which are
“typed” in the sense that their operation is described by
grouping them into various classes, such as those which
duplicate transactions, those which delay them, etc. The

most general type of node is one whose semantics are en-
tirely specified by the user in a C—like programming lan-
guage. It is typical for, and in the elevator model it is the
case that, a transaction represents a flow of data.

2.2 Allocation and execution

This section also avoids elaborating the detail which was
required to effect execution of the elevator model and
instead examines one aspect of allocation which will high-
light the main issue.

Consider the classification of data flows as inter—proces-
sor or intra—processor, a basic requirement for the gen-
eration of a “communication workload” (itself a subset of
the desired performance measures). The need to auto-
mate this classification in turn leads to an examination of
just what it is the (sub) graphs which comprise the hierar-
chy represent.

If the graphs at the top level are equated with processors
in the communications network, then automated classifi-
cation is straightforward. Since any flows into and out of
these top—level graphs would be inter—processor and all
others would be intra—processor, the instrumentation re-
quired to automate classification would be localized to a
relatively small portion of the model. Any change to the
allocation relation, however, would impact the model at
the highest levels. Thus, implicit in this approach is the ex-
pectation that a “correct” allocation is guessed at — before
the generation of performance measures whose main pur-
pose presumably is to help one select the allocation.

This is convincing evidence that a better situation would
result by letting the top—level graphs represent “func-
tions”, or “objects” , or whatever name designates a unit
of functionality. But now automated classification of the
data flows becomes problematic, for now the possibility of
a different classification for a flow arises at a multitude of
points in the model. In particular, it arises at any point at
which a transaction flows between two nodes in a graph,
and where additionally it is desired to admit the possibility
that these two (graph) nodes may be allocated to different
processors.

One is left, it seems, with two options: either instrument
the data flows, or route the flows outside of the tool’s nor-
mal mechanism. Since the former would add a horrible
amount of conspicuous detail to the model, an approach
opting for the latter was developed and used in the eleva-
tor model. Each functional unit is characterized by the
“events” (flows) it recognizes and those it generates. At
initialization, these properties are “registered” so that the
events can be routed to the appropriate functional unit
during execution. (see Figure 3).

Figure 3 User—defined Routing

Functional unit : Register_Call_Button
Declare car_button in, car_call out

—~
(e &
1D, <function body>—i|]

At t=0, all functional
units declare those
“events” they will receive
and generate:

At each simulation step, the
transactions which represent
events are duplicated and routed
to all units which have registered
for them:

<functionalunits>

Car_Button_Light_O
car_ca

Dispatch
XX

Register_Call_Button
- - [flcar_call

This technique thus delays the binding for communication
between units of functionality until it is finalized by post—
processing of an (instrumented) “event trace”. A change
in the allocation relation does not require any changes to
a given functional representation. As explained in section
2.3.1, this is necessary but not sufficient for such allocation
to qualify as unobtrusive.

2.3 Issues with the baseline method

The next two sub—sections support our (subjectively
derived) conclusion that both the approach to allocation
and to the representation of functionality, though both
are supported by automation, are inadequate for “large”
models in general (and a full—function elevator controller
in particular).

2.3.1 Limitations of automated allocation

To say that an allocation can change without a change to
a given functional representation is not to say that the
granularity of functionality available for allocation in a
given representation is satisfactory. And if the functional
representation must change in order to make the granu-
larity satisfactory, then the allocation process is not unob-
trusive.

Tool characteristics dictate that the functional units in the
user —defined routing scheme discussed in section 2.2 be
separate sub—graphs. Thus, for example, given a unit such
as that in Figure 4:

Figure 4 — Fine—grained allocation

.-
hall button_arc [[75, \,
[ERN
<

Register_Hall_Call . el call an
’

hall_light_arc

to ‘processor B

want: to processor A

not:

hall_button_arc

>

Register_Hall_Button hall_call_arc

all_call_arc >
N all_light_arc
Button_Light On -Es

o

<function units>

Register_Hall_Button

1
1

Button Light On

it is not possible to allocate the computational abstrac-
tions to separate processors unless they are made into sep-
arate sub—graphs. This can be done, of course, but at this
point a figurative pencil which could group the abstrac-

-3 -

tions in an arbitrary way would be much more desirable.
This requirement to fragment the functional representa-
tion forfeits what little capability directed graphs have for
organizing large models to begin with — presumably
something related to visual proximity of dependent com-
putations.

In short, fine—grained allocation unobtrusive enough for
large models remains an unreached goal.

2.3.2 Complexity due to the representation

Some level of complexity in system—level models is un-
avoidable — especially in view of the requirement for a
formal, executable, semantics. However, the representa-
tion approach of hierarchical directed graphs annotated
with code in a third—generation language contributes to
the complexity due to:

1. afailure to explicitly distinguish whether a data flow
into a functional unit is providing a service or request-
ing a service. An “untyped” model, whereby all com-
munication between units is classified as data flow, is
appropriate for viewing a system in execution, whereas
a model which distinguishes provided and required
services is more appropriate for viewing a system un-
der specification.

2. lack of a compact (and thereby lucid) representa-
tional mechanism for state machines.

3. the “low level of abstraction” provided by a third—
generation (C—like) programming language.

4. the tendency for the data—flow orientation to
spread detail around the model in a manner poorly
suited to accommodate the (inevitable) changes which
come with large models [Parnas 72].

Although these claims are not precise enough for objec-
tive consideration, they are consistent with an evaluation
of a model we produced with a commercial tool which of-
fered to “raise the level of abstraction” while providing an
automatic feed into the data—flow based representation.
The tool’s real —time structured analysis (RTSA) [Hatley
88] approach resulted in a model judged to be only mar-
ginally “higher—level”. This was likely due to the failure
of the data—flow oriented RTSA to address most of the is-
sues above (in fact all but #2).

3. Trial method
3.1 Functional representation

Given the issues with the baseline method, object—ori-
ented analysis (OOA) techniques offered promise as an
approach to modeling system functionality. The require-
ments for executability and for suppressing as much im-
plementation detail as possible dictated an abstract, yet
still formal, approach for specifying behavior. Several of
the common OOA approaches were found wanting in this
regard.

Primarily because of the absence of any reliance on data
flow for the specification of behavior, the approach of
[Coleman 92] was selected and adapted as required for the
elevator problem. The objects in models constructed with
the adapted method:

® are characterized by the services they provide and re-
quire.
® have their services precisely defined (in terms of ser-
vices they require) by extended finite state machines
[Harel 87] and formal transition specifications. The
latter are comprised of pre and post conditions in the
style of Z [Spivey 92].
® are related to one another by relationships defined
with the same (Z—like) notation used by the transition
specifications. This results in a clear and mathemati-
cally consistent approach when objects (in relation-
ships) must be identified by such specifications.
The elevator test case has been recast in this formal, ob-
ject—oriented framework. The Annex summarizes the
method and excerpts the elevator model. The environ-
ment objects (passengers, car travel, etc.) have not been
specified, and may in fact require a methodological exten-
sion for objects which must be created and destroyed dy-
namically.
3.2 Comparison with the baseline method
3.2.1 Allocation and execution
Neither of these notions are fully defined within the trial
method and will be the subject of future work; the remarks
below represent preliminary ideas.
Since the object—oriented model has a formal semantics,
a notion of execution outside the context of allocation to
processors can be put forth in a manner analogous to that
in [Shlaer 92]. (Progressing from the notion to automation
is problematic, however, because of the “higher—level” of
Z.) The eventual definition, however, must lie inside the
context. This implies coming to grips with the issue of
fine—grained allocation discussed in 2.3.1, which be-
comes, in the context of the trial method, the need to ad-
mit the possibility of allocating different “parts” of an ob-
ject to different processors.

An approach which appears promising is to define a classi-
fication based on those object “parts” which specify be-
havior — pre—conditions, post—conditions, and event—
generation — and then implement a concept analogous to
the user—defined routing (described in 2.2) to make the
allocation independent of the model organization.

3.2.2 Controlling complexity

The trial method avoids unnecessary complexity in the fol-

lowing ways:
1. Provided and required services. Events and services
exist in a convenient duality. They are equivalent when
you expect them to be and different when you expect
them to be. They are different when defining the ob-
ject interface, where an object is characterized by the
services it provides and requires. These services are
further classified, for example, into those which
change the object’s state and those which do not. On
the other hand, when defining state transitions, all ser-
vice invocations “collapse” into events. In a typical
data—flow based approach, the event (data—flow) lev-
el is the only level provided to the modeler, who must
therefore repeatedly (and at the risk of error), abstract

— 4 —

events into services whenever that view of the system
is desired.
2. Compact representation for state machines. The
specification of each object’s behavior uses a natural
notation for extended finite state machines.
3. Level of annotations/specifications. The Z-—like
notation allows more abstract specifications than a
third—generation programming language —
constructs such as functions and sequences can sup-
press implementation detail.
4. Better model organization. Conventional OOA, by
virtue of associating attributes with objects, has better
organizational mechanisms for “persistent data” than
a data—flow approach. The adapted method improves
on conventional OOA by further partitioning attrib-
utes into those which are observed, hidden, or struc-
tural. This helps distinguish which attributes are avail-
able to clients of the object, which are needed merely
to complete the (formal) specification, and which are
needed merely to conveniently effect relationships.
4. Issues
Near term. The most important issue for the near—term
is fine—grained allocation and execution of the object—
oriented representation. In addition, because the only
features put into the trial method were those required
specifically to specify the elevator controller, missing are
several features one might expect from a “true” object—
oriented method. (or from a “production—quality” meth-
od). These include:
® dynamic objects (This capability was not needed
since a priori identification of all instances was ade-
quate, given the scope of the elevator model.)
® rich semantic modeling features (e.g. aggregation,
inheritance)
® a convenient syntax and rules for effecting scopes of
names.
Long term. There are other broader (and interrelated) is-
sues which must be addressed in the long—term:

1. Multiple representations — The usual interpreta-
tion of an OOA model is that it is a specification of ag-
gregate (all objects together) behavior of a system over
time and thus is in the “problem space”, rather than in
the “solution space” as a model of the properties of a
particular behavior (including those properties relat-
ing to time). Because the fidelity of performance and
robustness assessments may depend on a particular
system structure, rather than aggregate behavior, it is
useful to ask whether the usual interpretation, in view
of such assessments, should be discarded.

An answer of yes leads to the question of what a speci-
fication looks like if not this (OOA), or whether a spec-
ification is needed at all. An answer of no seems more
defensible — one would simply ascribe less risk to as-
sessments done on a (object—oriented) design derived
from an OOA.

How many representations are needed and precisely
what constitutes consistency among them?

2. Time — Assuming the usual interpretation of an
OOA model is not rejected, what mechanisms should
it contain to specify behavior over time? Three well—
thought out approaches have fundamental differences
in this area. In [Shlaer 92] the actions associated with
state transitions consume time; their analogues in
[Coleman 92] do not. Neither approach is satisfactory:
it is not even clear what time consumption means in a
specification, nor is it clear, for the alternative, how
one removes an (apparently unavoidable) simplifica-
tion which makes the specification, if taken literally,
impossible for any design to meet. [SPC 92] differs
drastically from the first two by modeling the inputs
and outputs as functions of time — required response
times, for example, are straightforwardly specified
within the formal framework. Is this the next step to-
ward a better approach to time? Will this help sort out
some of the issues raised in 1?
3. Rapid construction of members of a design family
— Whereas rapid assessment of alternative allocations
requires independence of the model organization
from the allocation, rapid assessment of alternative
system models requires independence of functional
units (objects) from each other. It is naive to think that
the criteria for object selection as commonly espoused
and practiced (by ourselves, for example, in the trial
method) will achieve the necessary independence. Can
representations be constructed so that domain experts
can evaluate the appropriateness of a decomposition
in view of likely changes? Are information hiding and
inheritance the primary means with which to address
change? How is inheritance used in specifications?
And how do you capture domain expertise to cut down
the design space in the first place?
5. Conclusions
Models based on data flow are adequate for a view of a sys-
tem in execution. It is not feasible to design complex sys-
tems from this basis. Required are representations which
should, at minimum, characterize units by the services
they provide and require, and specify behavior in a man-
ner which is abstract yet unambiguous. Flexible, fine—
grained allocation is an important issue which appears to
be solvable in the near—term. This would complete a basic
capability in execution models which would enable a class
of system tradeoffs which require means to assess perfor-
mance and robustness.

The ability to characterize system behavior in ideal terms,
with detail added a little bit at a time in independent
chunks, is a fundamental requirement for the control of
complexity in system development and description [Par-
nas 86]. Basic issues with respect to the use of multiple
representations and to a realistic and usable notion of
time suggest it will be decades before this ability is routine-
ly established for modeling and designing distributed sys-
tems. Execution models are an appropriate basis on which
to build. In the future, execution models will be derived
from higher—level representations. The trial method is a
step in that direction. The methods for constructing mod-
els at the higher—Ilevels must be built incrementally and
must be directly shaped by the needs of the applications.

References

O SES/workbench is a registered trademark of Scientific
and Engineering Software, Inc.

[Coleman 92] Coleman, D., Hayes, F, and Bear, S. —
Introducing ObjectCharts or How to Use Statecharts in
Object—Oriented Design, IEEE Transactions on Soft-
ware Engineering, Vol. 18, No. 1, January, 1992.

[Harel 87] Harel, D. — Statecharts: A Visual Formalism
for Complex Systems, Sci. Computer Program, vol. 8, pp.
231-274, 1987.

[Hatley 88] Hatley, D. & Pirbhai, I. — Strategies for Real -
Time System Specification — Dorset House, 1988.

[Parnas 72] Parnas, D. L. — On the Criteria to be Used in
Decomposing Systems into Modules, Communications of
the ACM, December, 1972.

[Parnas 86] “” — A Rational Design Process: How and
Why to Fake it, IEEE Transactions on Software Engineer-
ing, Vol. 12, No. 2, February, 1986.

[Shlaer 92] Shlaer, S. and Mellor, S. — Object Lifecycles,
Modeling the Word in States, Yourdon Press, 1992.

[SPC 92] Consortium Requirements Engineering Guide-
book, Software Productivity Consortium. December,
1992.

[Spivey 92] Spivey, J. M. — The Z Notation, A Reference
Manual, 2nd ed., Prentice—Hall, 1992.

[SES 92] SES/Workbench — User’s Manual — Scientific

and Engineering Software, Inc., Austin, Tx., February,
1992.

Annex
Trial method summary and excerpts

Summary . .
1. The model specifies the acceptable behavior of a set of interacting objects with respect to the stimuli provided by and
the response to another set of (possibly interacting) objects.

2. The model consists of (object) instances which are members of classes. Classes are characterized by the services they
provide and require.

3. Instances are created by an a priori process which, while merely conceptual, has well—defined effects. It results in
unique object ids for the instances.

4. Instances can be related. Relationships between objects are modeled by mathematical relations between object ids.
S. Most services are mapped to events, which are the (primary) means by which objects communicate.
6. When an object receives an event, it may update its state and/or generate other events. The state is defined by an
extended finite state machine and by (the state transitions’ effects on) attributes.

Elevator Model Excerpts

1. The model specifies the acceptable behavior of a set of interacting objects with respect to ... another set of .. objects.

Figure 1. System and Environment Objects
Services of objects comprising the system and the environment.

Open, Close,

I R
Stop_Motor

Hall Direction Lamp

I

Reset_Car_Ca

2. ... classes are characterized by the services they provide and require.

Figure 2 — Services provided and required by Car and Car_Button
Provided Services
Class State—Changer Observer @T Observer Required Services
. Car Move Last_Floar? Arriving, Start_Motor, Stop_Motor, .., i&sct_Car_Call
Car_ Car_Button_Press, State(Call_Active) Car Call On, Off
Button Reset_Car_Call

Observer services are those which do not change the object’s state. For example, Last_Floor? provides an abstraction of
Car position to its clients. “@T observers” are in the style of [SPC 92] and allow clients to observe state changes without
explicitly invoking an observer service. More accurately, but still informally, Car_Call = @T State (Call_Active), that is,
an instance of the Car_Call event is generated when the Car_Button instance enters its Call_Active state. Additionally,
clients of Car_Button are free to invoke an observer service (State (Call_Active)) which returns whether or not the
instance is in the Call_Active state. The “@T” mechanism eliminates the need for “polling”. To promote better inde-

pendence of objects, the declaration of the State observer service explicitly denotes the (only) states the provider must
“export”.

3. Instances are created by a ... process which ... has well—defined effects ... [and] results in unique object ids for the
instances.

The instantiation “process” defines the function T_, which allows access to the object given the object id. The “pseudo—
attribute” self gives an instance access to itself. This “conceptual baggage” seems preferable to that which arises with the
alternative of a value—based approach to unique object identification.

Figure 3 — Instantiation
1_: Object_Id — Object
T_ = {oid:Object_Id, 0:Object ®
oid € Arrival_Sensor_Oid => o0 € Arrival_Sensor A -
oide Car_Oid=>o0€ Car A ..
oid € Schedule_Oid => o € Schedule }
Arrival_Sensor_Oid = {instance—for—arrival~sensor—1} U ... U {instance—~for~arrival—sensor—n}
Car_Oid = ...
Object_Id = Arrival_Sensor_Oid U ... Schedule_Oid
Object = {instance —for—arrival—sensor—1} U ... U {instance ~for—schedule—1}
To Arrival_Sensor, add : self : Arrival_Sensor_Oid
To Car, add:...

The instantiation process must satisfy any constraints specified for relationships.

4, Instances can be related. Relationships between objects are modeled by mathematical relations between object ids.

Figure 4. Relationships

Foor_Name Building
48 4in: has:B>H
Is_On:NP—& 1=

r— - Floor » | Hoistway |
consists of
\ c=D
1 houses:
Direction:
o-c
A _Direction | houses: H>
: ocoasists
l is oa: idi of:CDy
ipi
P physically
l Direction: controls: Mx-C
A_Dkection /
2 - / Floor,
l [A_DicectionRANGE} Arival / Number
Sensor
' logically controls: / Lats of :
2
I Hall Button I {A_Direction’RANGE}

4di: EDL—(Ferl) identifies an direction indicator
dpd: (PerB)-A8 Lidentifies a position indicator System Class

Arcs between classes represent relationships and are labeled, at minimum, with the relationship name and the “signa-
ture”. (Some substitutes for the Z symbols are required and are listed in Table 1.) For example, Motor_physically_con-
trols_Car is a bijective function since the car uniquely determines the motor, and vice versa. Arcs may also be labeled

with indicators for cardinality and for differentiating instances. For example, the ternary relationship idi, formally de-
fined as:

idi: Hall_Direction_Lamp_Oid ~— (Floor_QOid + Hoistway_Qid)
Constraints are TwolLampsPerFloor A LampsDifferentiatedByDirection.
TwoLampsPerFloor = ¥ (d:Hall_Direction_Lamp_Oid,f:Floor_Oid , h:Hoistway_Qid) € idi ® (#(idip-f++h) =2)
LampsDifferentiatedByDirection =
V (f:Floor_Oid,h:Hoistway_Oid,d;,d; :Hall_Direction_Lamp_Oid) € (idi B> f — h) (Td;.direction 5 Tdy.direction)
is modeling the constraint that there are two lamps of (different directions) per hoistway per floor.

5. Most services are mapped to events, which are the (primary) means by which objects communicate.

Figure 5. Mapping Services to Events
Service view Event view
Provides

Sender
Requires

Last_Floor?

(:A Fioor ID) 'j _STOP_SERVICE

STOP_SERV!
Lamp_Direction _D_etmme.d
Move(:A_Car_Dir

QRetermined
getion)

w

0O

C

h

e

elemined | d

Destination? u

(:A_Floor_ID) |
———-——-———. Li

[m-—cn.m:-o_wJ

Move(:A_Car_Dir

ﬁ:jon)

State—changing services and @T observer services map to events. Events are issued by a sender, received by one or
more receivers, and may cause a state transition. (Conventional observer services are excluded from the definition of
events (not given here) only to make the construction rules for state transition specifications easier to define. Such
services, such as Last_Floor? and Destination?, still, of course, constitute “object communication”.)

6. Whenan object receives an event, it may update its state and/or generate other events. The state is defined by an extended
[finite state machine and by (the state transitions’ effects on) attributes.

Figure 6a lists a subset of the Schedule object’s services, its attributes, and StateChart. There is the intuitively obvious
correspondence between the service named “Destination?” and the attribute named “destination”. Figure 6¢ gives the
specifications for a subset of the transitions (hall—call, closer—hall—call, no—destination) in the StateChart.

Figure 6a — Schedule : Services, Observed attributes, and StateChart
State—changing services: End_a_Stop
Qbserver services; Destination? (:out A_Floor_Id), ...
Required services: Car_Call, Hall Call, Move (:A_Car_Direction), Reset_Hall_Call...
Observed attribute; destination : A_Floor_Id defined in: Going_Around

: car—call & closer—car—call
—car—cal)]
StateChart: | Empty hall—call ,| Going Around 12> closer—hall—cal
no—destination next—destination

Figure 6b defines the attributes unavailable to client objects. The concept of a ring simplifies the specification of a sim-
ple scheduler and in particular allows the state machine to ascribe a single (albeit unusual) direction to car movement. It

is used to a limited extent by the transitions listed in Figure 6c; it has a more profound effect on the next—destination
transition (whose specification is not shown).

Figure 6b ~ Hidden Attributes
Ring_Domain = 1.2*(NFloors —1)

Ring_Entry : A_Floor_Id + A_Direction
Ring: seq{Ring_Entry]
Ring = { 1+ (2++ UP), 2+~ (3~ UP), ..., NFloors—1 ~ (NFloors ++UP),
NFloors ~+ (NFloors—1 —+ DOWN), NFloors+1 ~ (NFloors—2 — DOWN), ..., #Ring_Domain + (1 —+ DOWN)}

/* Each maplet in the range of the Ring sequence represents a floor and the direction the car must
move to arrive at that floor, respectively. */

read Is as last_stop_r : Ring_Domain defined in: All /* last floor at which car stopped */;
read Id as last_destination_r: Ring_Domain defined in: All /* destination */;
vi(p) = first (Ring (p)) /* “floor” part of entry */

divf(p) =second (Ring (p)) /* “direction into floor” part of entry */

Figure 6c
The ASSERT comments in the post—conditions for the hall—call and closer—hall—call transitions emphasize the
straightforward nature of the post—oconditions from the clients’ view — an idle car heads for the fioor where the only
call is. From the Schedule object’s point of view, however, things are a bit more complicated, since a hidden attribute
(4, i.e., last destination) must be updated.
If the Schedule object is in the Going_Around state, a hall call event will only change the destination if it is from a floor
en route to and in the same direction as, the current destination and car direction, respectively.

The no—destination transition is taken when a stop is completed and there are no outstanding calls. The specifications
use the relationship HallButton_is_on_Floor to get floor information for a given Hall Button object.

Terms in Post—conditions:

Appropriate_Direction = (d = divf(ld))
Dest_Increment = abs (f — vi(ls))

{i]Between(el,e2] = i > min (c1,62) A i < max(cl,c2)
HB(mode) = Thb @ hb:Hall_Button_Oid
A Thb.direction = mode A T(HallButton_is_on_Floor(Thb.self)).floor_name = C.Last_Floor?

Other terms:

& Car_Calls: 9 A_Floor_Id = {To.floor_number
% Hall_Calls: ? A_Floor_Id x A_Direction = {(Tfo.floor_name ++ Tbo.direction) ®

(Tbo —+ Tfo) € HaliButton_is_on_Floor A Tbo.State = Call_Active}

For r;s;,t; : Ring_Domain :
0 After_[r:Ring_Domain]_Where[Predicate[:]] =
r; ® Predicate (r))and (~3 rp @
0O (sy)_Is_Nearer_To(s;)_Than_(s3) = Ring_Distance(sy,s;) < Ring_Distance(sy,s3)
O Ring_Distance (t1,t2) : Ring_Domain X Ring_Domain — 0..#Ring_Domain—1 =
{(tl,tp;): ift] < tythenty ~ t; clse #Ring_Domain -t +t3}

Predicate(rz) A (r2)_Is_Nearer_To(r)_Than_(r1))

s 3J_Other_Floors_to_Secrvice = Car_Calls # {} v ({Last_Floor?} < Hall_Calis) = {}
& /* After_[rRing_Domain]_Where[Predicate[:])denotes the next entryin the ring where Predicate is true. The “free variable” in the predi-
cate is indicated by “:". The value of the (After_Where) expression is of type Ring_Domain and is equal to the variable’s bound value. */

Figure 6c Transition Specifications
Transition | Iransition Event Pre—condition Event(s) Post—conditions
States Name Received Sent
Empty aee

-> - destination’ = vi(ld')
Going_ fhall—call HB.Hall_Call(f,d) C.Move(divf(ld’)) Id’=After_{ld]_Where_{vi(:)=f]
Around /* ASSERT: destination’ = f */
Sr.:::ﬁa closer— tjBetween - destination’ = vi(id')

- hall—call HB.Hall_Call(f,d) {Last_Floor?,vf(1d)] Id’ = Is + Dest_Increment
Going_ A /* ASSERT: destination’ = f */
Around Appropriate_Direction
Going_ no— HB(UP). {}

Around destination End_a_Stop 3_Other_Floors_to_Service Reset_Hall_Cali;

- HB(DOWN).

Empty Reset_Hall_Call
where f=1 (HallButton_is_on_Floor(HB self)).floor_name ; d = HB.direction

0 € Car_Button_Oid A To.State = Call_Active}

Table 1 — Substitute Z Symbols
Symbol Name

< domain anti—restriction
(—) function

— surjective function (onto)

- injective function (1—1)

= bijective function (1—1 & onto)

- finite function

P power set

[range restriction

