Lecture #19

Digital To Analog,
PWM, Stepper Motors

18-348 Embedded System Engineering
Philip Koopman
Monday, 28-March-2016

Carnegie
) Electrical &Com ter g
i(py ghtgoole\zlogp!n DIKEme AII!€|9>|TSRGeserved Mellon

Example System: HVAC Compressor

COMPRESSOR COMPRESSOR
HET 1 OUTLET 2

COMPRESSOR
SUCTIONLME DISCHARGE LIRE Lot

COo0L
SUPPLY AR
T
EVAPORATOR . T
4 Expansion Valve CRIER

[http://www.solarpowerwindenergy.org] 2

HVAC Embedded Control

& Compressors (reciprocating & scroll)
¢ Smart loading and unloading of compressor
— Want to minimize motor turn on/turn off cycles
— May involve bypassing liquid so compressor keeps running but doesn’t compress
< Variable speed for better output temperature control
< Diagnostics and prognostics
— Prevent equipment damage (e.g., liquid entering compressor, compressor stall)
— Predict equipment failures (e.g., low refrigerant, motor bearings wearing out)

¢ Expansion Valve
< Smart control of amount of refrigerant evaporated
— Often a stepper motor
« Diagnostics and prognostics
— Low refrigerant, icing on cold coils, overheating of hot coils

& System coordination
< Coordinate expansion valve and compressor operation
e Coordinate multiple compressors
* Next lecture — talk about building-level system level diagnostics & coordination

Where Are We Now?

¢ Where we’ve been:
« Interrupts, concurrency, scheduling, RTOS

¢ Where we’re going today:
¢ Analog Output

¢ Where we’re going next:
« Analog Input
e Human I/O
« Very gentle introduction to control

e Test#2 and last project demo

Preview

< Digital To Analog Conversion
« Example implementation

¢ Understanding performance

e Low pass filters

¢ Waveform encoding

¢ PWM
« Digital way to “fake” analog
* How to use course processor PWM support hardware

* How a servo works

¢ How a stepper motor works
¢ Note: 3-D printers are mostly stepper motors + PWM

Big Picture — 1/0 Is Where The Work Gets Done!

MICROCONTROLLER \

Jenll B [V s m g SOFTWARE

AID N DIA
SENSORS CONVERSION CPU CONVERSION

HUMAN DIAGNOSTIC
INTERFACE TOOLS

AUXILIARY
SYSTEMS
(POWER,

COOLING)

ELECTROMECHANICAL
BACKUP & SAFETY

EXTERNAL
ENVIRONMENT

Analog = Digital = Analog Conversion

¢ The real world is analog
« Voltage, current are continuous
e Time is continuous

¢ But the computing world is discrete
 Bits, bytes

« Some sensors/actuators use digital values...
... but many deal with analog values

¢ A/D conversion “analog to digital”
¢ Getting analog inputs to digital form

¢ D/A conversion “digital to analog”
¢ Getting digital inputs to analog form

< Digital 1/0
* Sometimes you can fake analog values with digital (e.g., digital pulsing)

D/A Conversion

¢ “DAC” = “D/A Converter” = “Digital To Analog Converter”
¢ Given several bits of a digital value,
convert it to an analog value
« Usually voltage or current
« Many drives an actuator, further converting output into motion, heat, light, etc.
« Might be directly connected to CPU or accessed via a serial bus

Figure 11.33 Parallel i
DACs provide analog port PRI,
output for our Embedded
embedded microcomputer
microcomputer systems. system
port
[Valvano] T t

Voltage or

Digital
= current

General Idea Of A DAC

¢ Inputis bits

« k-bit value, often 8 bits but can be any integer number
 Signed or unsigned number (often unsigned)

¢ Output is an analog value (volts, amps)
 Digital value determines output
¢ Can be output many ways:
— Absolute voltage
— Offset added to reference voltage
— Current (MAmps, Amps)

Analog
Signal
3V

ov

Digital

Value

——15—— 3.0V
—— 14— 238V

S |—13—— 26V
D |——12—— 24V
® |—11——22v
& |[—10— 20V
O |—9——18V
% —8 — 16V
2 |——7 —— 14V
0§ —12v
i; — 5 —— 10V
o | —4—08V
© —3—06V
< | —2 —04v
— 11— 02V
—0 —— 0.0V

Digital
Representation

Analog Circuits Aren’t “ldeal”

¢ Real DACs have offset error, gain error, slew, ringing, nonlinearities...

Figure 11.35

Static and dynamic 1 offet . Digitl
performance measures 1 Gain B
error nput
of DACs. out - error Time
iy Delay Slew Ringing phases
[Valvano] E
A Vuul qf_
[Time
Digital input
Figure 11.36 Notingar Nonmonotonic
Nonlinear and T T
nonmenotonic DACs. Ve g |
i “—[deal
[Valvano] 1
L1 1 1 [|
L LI I
Digital input Digital input 10

Example 3-Bit DAC

¢ Operating Principle for “Summing DAC”:
« One switch per bit; bit closes switch when “on”; opens switch when “off”
« Different resistor values put different voltages out
* Net resistance (hence input voltage) subject to parallel resistance value
* Note: each resistor 2x previous resistor
— Each bit contributes half the voltage of the next

Figure 11.38 -5.00
Three-bit unsigned SSWOED 25kQ
summing DAC. ! N N —AM———
by —
SW02 | 50kQ
S D ! Vﬂlll
IN
bj—a
[Valvano] SW02 | 100k /
—S D—AWA—— 8kQ
IN
bn'—! =

11

DAC Performance
¢ Usually, DACs attempt to be linear:

Voul zVfullscale(b7'|'b6+bs+b4"'bs+bz+bl"'bo) +Voffsel
2 4 8 16 32 64 128 256

* Notes: Viuseare INPUL in this equation has to be 1/256 above output “full scale”
— If all these bits are on, result is 255/256 of V¢ scate

* Vet 1S SUPPOSed to be zero in most applications
» Doesn’t take into account non-ideal behaviors!

¢ Quantization effects — value
« Analog value isn’t exact
« Analog value is approximated via a “bin” or voltage quantum

» Binsize is ~1/2X of full scale (not quite because of the “fencepost” numbering
issue)

¢ Quantization effects — time
< Analog value produced periodically by CPU

< Not continuously as with real analog signal!
12

Generating An Analog Waveform — Computed

¢ Periodic output values
e Use timer-based interrupt
¢ (What is the problem with this particular example from Valvano?)

P’°9"?"“ 1.2 unsigned short wave({unsigned short t){
Periodic interrupt used FloHE FaailE, iy
to create the analog time=2*pi*((float)t}/1000.0;
output waveform. // integer t in msec into floating peoint time in seconds
result=2048.0+1000.0*cos(31.25*time)-500.0*sin{125.0*time);
return (unsigned short) result;}
#define Rate 2000
#define OCS 0Ox20
unsigned short Time; // Inc every lms
#pragma interrupt_handler TOCShandler|()
void ToOCShandler (wvoid) {
[Valvano] TFLG1=0C5; // ack CBF
TC5=TC5+Rate; // Executed every 1 ms
Time++;

DACout (wave (Time)) ;}

13

Generating An Analog Waveform — Table Based

/] 6811 /1 6812
#define Rate 2000 #define Rate 2000
#define 0C5 0x08 tdefine 0C5 0x20
tpragma interrupt_handler TOCShandler() tpragma interrupt_handler TOCShandler()
void TOCShandler (void)({ void POCShandler (void){
TFLG1=0C5; /] Ack interrupt TFLGL1=0C5; // ack C5F
TOC5=T0OC5+Rate; [/ Executed every 1 ms TC5=TC5+Rate; /! Executed every 1 ms
if({+41)==32) I=0; 1f((+41)==32) I=0;
DACout (wave[I]);) DACout (wave(I]);}

Program 11.5
Periodic interrupt used to create the analog output waveform.

Program 11.4 : .
. g unsigned short I; // incremented every lms
Simple data structure for - i i i
const unsigned short wave[32]= {
the waveform.

3048,2675,2472,2526, 2755, 2957, 2931, 2597,
[Valvano] 2048,1499,1165,1139,1341,1570, 1624, 1421,
1048,714,624, 863,1341, 1846, 2165, 2206, 2048,
1890,1931, 2250, 2755, 3233, 3472, 3382}

14

Encoding Waveforms - PCM

¢ Sample rate — how often are the
samples?
* Want samples at least twice as fast as
highest frequency component
(a.k.a. Nyquist Rate)

¢ PCM - Pulse Code Modulation
» Use the binary value in each sample
e Use as an unsigned value 13 -
— Typically put zero point in middle 2

- E.g. 0-15; 7 =0 Volts
0=-5Volts

: \
e Example: L “7" =0 Volts

CD-Audio is 16-bit PCM at 44 KHz 7 T A

(stereo — two channels) hj ' \ PCM

Encoded
_ ?
Why 44 KHz* VEIeS

[Wikipedia:PCM], modified 15

Delta Modulation

¢ Delta Modulation Analog +1,0, -1
« Use the difference from last sample Signal T N

« Uses fewer bits per sample... +1,0
... but assumes signal changes +1
gradually

« Bits per sample related to bandwidth
of signal — higher bandwidth means
bigger deltas (more bits per sample)

« Example on right is, perhaps, 3 bit
encoding: {-4,-3,-2,-1,0,1, 2,3}

* Values are twos complement rather
than unsigned

« Values must be added to running total
(i.e., integrated)

= =
= U

—_
w

L Delta
| -2 Encoded
Values

— =
.

—_
]
I
+
N
\

“7" =0 Volts \L\'l

= N W s U1y N 0O

¢ Other more sophisticated encodings
« Linear predictive coding
« Application-specific coding (MP3,
etc.)

Oll]l]llllllllllll]

16

It’s All About The Bandwidth — Bits Per Second

& Increasing # bits of resolution improves output waveform

« Reduces value quantization error
Figure 11.46 Generated waveform T,

The waveform on the
right was created by a |
DAC with one more bit Vo |
than the left.

T Desired waveform T Desired waveform
[Valvano] “\ | N Iy A | ﬁl N T |
rrrrrrrrrrrrrruri rrrrrrrrrrrrrri
] . Time Time T
¢ Increasing sample rate improves output waveform
« Reduces time quantization error PICTURES REVERSED
Figure 1147 Genenated wavel
The waveform on the STEREL WO Generated waveform
right was created by a
sstemwith twicethe v Vi
output rate than the left,
[Valvano] Desired waveform
I Y I |
rrrrrrrrrrrrrrd T T T rrr T
Time Time 17

Low Pass Filters

¢ Can we get rid of the bumps in the output?
« Add more bits (expensive, doesn’t necessarily work very well)
..OR..
e Use a Low Pass Filter!

10 T .l r T T

Cutoff frequency R
0 &

1 Vin Q—MTO Vout
-3.01 dB
0 b |
.20 F Slope: -20 dB/decade | T C
=30 J
o O

=40

Gain (dB)

[Wikipedia]

=50 F
Passhand Stopband

60
0.001 0.01 (18] 1 10 100 1000

Angular frequency (rad/s)

¢ Or, sometimes ... do nothing (implicit low pass filter)
« Physical time constants of controlled system or actuators might smooth bumps!18

Pulse Modulation

¢ DAC:s are expensive — take a lot of area
« And even more if you want lots of analog output channels!
— The course processor doesn’t even have D/A outputs built into it
¢ So, how do you actually do D/A conversion without a DAC?

« Preferably using a single output pin?
» Preferably in a way that is lower noise than a DAC (e.g., purely digital)

¢ Can use purely digital output to “fake” analog output
¢ Pulse Density Modulation
— Use high speed bit stream to represent proportion of full scale value

e Pulse Width Modulation
— Send varying width of pulses to change power/duty cycle of actuator

e Others:
— Pulse Rate modulation (how often a pulse is sent)

19

Pulse Density Modulation

¢ Look at a sliding window of p pulses
* Bitvalue of 1 = “+1” Bit value of 0 = “-1”
 Signal value is the sum of the +1 and -1 values of the bits in the window

« Generally want very high bit rate for this to work (used in audio systems)
— Works on AC signals; can have offset error on slow or DC signals
» Get analog output with LP Filter (capacitor does analog work)

Sliding
Window

[Wikipedia:PDM]

¢ How do you know signal is going down just after the peak?
e When first -1 enters sliding window, output starts going down
¢ Output is phase-shifted to the right by the sliding window size

20

PDM Implementation Sketch

for(::)
{ { if (<next sample time>) { <update desired_output> }
if (desired_output > current_output)
{ output(l); // Go up if we are currently too low
current_output += delta_value;
} else
{ output(0); // Go down if we are currently too high
current_output —= delta_value;

}

<wait for next output bit time; constant bit rate>

}

¢ Tradeoffs:
« With only two values, analog noise less of an issue (only “hi” and “lo™)
« Direct tradeoff of value quantization vs. time quantization
— Big window gives more values, but takes longer to make big changes
— Small window has less phase shift, but supports fewer total values
— It’s all about the bandwidth — bits per second is the limiting factor

21

Pulse Width Modulation

¢ ldea: represent value with high/low duty cycle
« Constant period, some high and some low within period
e e.g., 30% duty cycle: 3 msec high, 7 msec low (10 msec period)
e e.g., 90% duty cycle: 90 msec high, 10 msec low (100 msec period)

¢ Can be used to deliver varying levels of power
* This is how LED dimming works [FIGUREX

« Often relies on time constant of [or=teniows ofr=toutew -
i?mtrzre ’t’o do LP Filtering) ﬂ H H H‘

» Can be used, for example,
to control cooling fan speed

— Physical inertia of the fan
integrates pulses into

an average fan speed 2 J M M M H

[Barr01] 22

]
o
]
L]
]
.
i
i

PWM Block Diagram

¢ See Chapter 12 of MC8S12 data sheet for details
PWMBB6C

PWM Channels

Channel 5

i » PWMS
PWM Clock Period and Duty

T Channel 4

Period and Duty -

Channel 2

Period and Duty

Channel 2

PWM2
Enable Period and Duty

Polarity Channel 1

= PWM1
Pericd and Duty| | Counter

Channel 0

Period and Duty -

Bus Clock Clock Select

PWM4

Cantrol

PWM3

Alignment

Iy

PWMO

Figure 12-1. PWM8B6CV1 Block Diagram

24

PWM Registers

¢ MODRRX - Timer vs. PWM channel x (1 =PWM)
¢ PWMEX - enable PWM channel x (1 PWM)
¢ PWMPOLX - polarity
e 0 =low followed by high (first part of pulse is low)
¢ 1 =high followed by low (first part of pulse is high)
¢ PWMPRCLK - clock prescaler (similar to other clock prescalers)
¢ PWMCLK - clock select for PWM (Clock A/B or Clock SA/SB)
» Clocks SA/SB are scaled versions of Clock A, Clock B
e E.g., PWMSCLA is scaling value for Clock A — lets it run up to 512x slower
¢ PWMCTL - control register concatenation
« Concatenates pairs of 8-bit counters to give 16-bit counters
e CON23: channel 2 register is high-order byte of a 16-bit channel
¢ PWMPERKX - period for channel
¢ PWMDTYXx - duty cycle for channel
¢ PWMSDN - optional pin for emergency shutdown of pulses
* Interrupt vector $FF8C
« Why do you want emergency shutdown of pulses?

25

Figure 6.24 +———— PWMPER, ———
PWM output generated +— PWMDTY, —>
when PPOL=1. PT,
MC9S12C32 assembly /] MC9812C32 C
PUM_Tnit3 ;1s PiM on PT3 [/ 1s PWM on PT3
bset MODRR,#508 ;PTO with PWM void PN_Init(void){
bset PWME,#508 ;enable chan 3 MODRR |= 0x08; // PT3 with Pwlt
bset PWMPOL,#$08 ;high then low PWME |= 0x08; // enable channel 3
belr PWMCLK, #3508 ;Clock B PWMPOL |= 0x08; // PT3 high then low
bset PWMCTL,#520 ;concat 2+3 PWMCLK &=~0x08; // Clock B
ldaa PWMPRCLE PWMCTL \= 0x20; [/ Concatenate 243
anda #58F PWMPRCLK = (PWMPRCLK&0xBF) \OXGO; /] B=E/64
oraa #560 PWMPER23 = 62500; // ls period
staa PWMPRCLK 1B=E/b4 PINDTY23 = 0; // initially off
movw #62500, PWMPER23 ;1s period }
movw KO, PUMDTY23 ioff /] Set the duty cycle on PT3 output
rts void PWM_Duty(unsigned short duty){
PIM_Duty3 iRegD is duty cycle PWMDTY23 = duty; // 0 to 62500
std PWMDTY0 ;0 to 62500 }
rts

Program 6.21 [Valvano]
Implementation of an 8-bit PWM output.

How Do Servos Work?

¢ Uses PWM to set position between “zero” and “full”
¢ PWM sets commanded position
« Potentiometer used to measure actual position
» Servo self-adjusts to keep actual position at/near commanded position

— Closed loop control; maintains position even if external forces trv to move servo
}+— Period 20 ms —=]

] [] []

—

Qutput Spline.,_ Drive Gears : ' Pulse Width 1 ms (min.) -2 ms (max.)
3 A
& /|
Servo Case\ . |

Control Cirm{it

KMinimum Pulse —|_| |_| |_| ’

= "BuiseWidth1 ms

Neutral Position —|_| |_| |_|

© “PulseWidth 1.5 ms

Maximum Pulse

OICI0

= PuseWidth2ms

http://www.servocity.com/html/how_do_servos_work_.html
27

Is PWM A Free Ride?

+ Digital values have very low amplitude noise
< Analog values — noise shows up in any disturbance
« Digital values — noise only if signal crosses threshold

¢ Isitafree lunch?
* No-still have noise in timing
— Clock edges can move around depending on value noise, ringing, etc.

¢ Quantization noise in timing...
— Based on PWM clocks putting edge in the right place
— Based on PDM having consistent clock lengths
¢ Need enough bits in the PWM counter to manage cimting (8 bits or 16 bits)

< If you are receiving PWM with a digital device need to do pulse capture
¢ Done using Pulse Accumulator hardware (or relevant software)
« Can be used to measure frequency (time between edges)
« Can be used to measure duty cycle (proportion of high to low times)

— This is in Valvano, but not something we’ll cover beyond this mention
28

Solonoids

¢ Used to generate a short-stroke linear motion
» Release driven by spring, gravity, or second solonoid on same armature

Figure 8.64 Solenoid
Mechanical drawing of

asolenoid showing that Electromagnetic
the EM coil causes the ~ coil windings
armature to move,

Direction
of motion

Frame
Coil terminal

Armature

Coil terminal

29

Stepper Motors

¢ Many simple embedded systems use stepper motors
» Uses a digital (on/off) interface
 Permits rotating motor to one of a set of rotational positions
» Gives good positional stability without use of shaft encoder/feedback
« General motor control is a whole other lecture (or set of lectures)

Figure 8.79
Three stepper motors

[Valvano]

Stepper Motor General Idea

¢ Magnetic rotors spin, driven by electromagnetic stators
« Stator Poles alternate North and South to force motors to spin
 (animation on following slides)

Figure 8.82

Simple stepper motor
with 20 steps per
revolution.

Electromagnets Tooth pitch

— 20 steps per revolution =» 18 degrees per step
— 200 steps per revolution =» 1.8 degrees per step
— # steps per revolution = # stator coils (phases) * # teeth

[Valvano]

31

Photos Of Stepper Motors

¢ http://www.doc.ic.ac.uk/~ih/doc/stepper/kp4dma/

KP4M4-001 Stepper Motor

+12v de, four-phase, unipolar, permanent magnet, 3.6° per step

-

—00 >

-

36+ i+ 32

Figure 8.83
Stable state 1.

Phase,
+o—— ———o+
Phase,
o
[Valvano]
33
Figure 8.84
Unstable state as rotor
goes from state 1 to
state 2.
-0
Phase,
+0o

[Valvano]

34

Figure 8.85
Stable state 2.
Phase,
-0 ———o0 +
Phase,
+ O
[Valvano]
35
Figure 8.86
Stable state 3.
7
Phase,
—o | o
Phase, Iy
+ O

[Valvano]

36

Stepper Motor Ramp Up & Ramp Down

& Stepper motor changes speed as it moves
< Magnetic pole changes have to coordinate with current speed
* Motor spec & math gives you a speed profile

| slope =o'y 7.‘;_‘ _T‘: slogse = a |'..
i~ P
||L‘f: 5 ,:—&']
ofiC, == 1 \
T Area
: : - Area =0 [%
wliCy Py | =«
Arga=ix |
o =gyt HGf Yy mt Cmad T
pulie [TRE pulis pulis na pulie
| — .
Figure 1: Ramp geometry: move of m=12 steps [Austinds]
¢ What happens if you don’t know where you are?

e Lose power
e Controller resets
¢ Something jams and you lose steps?

37

Stepper Motor Drive Circuit

¢ Note: not the same motor type as other Valvano pictures
* AJA’ and B/B’ are always a high/low pair
« High turns coil on; Low turns coil off
« 1N914 diodes protect against back-EMF overvoltage when turning coil off

Single chip
microcontroller

Stepper Motor

754492

+5
Current flow

|

+

5
IN914

—

L]

Figure 8.80
Simple stepper interface

PR3 High Low é ?
T o B IN914) ;'
port ! $
ppa _Low [l‘x/ on 4
+5 4
ROM |N‘JIJ$; B
High [™~._ Low
PBI * 1o
L~ .5 1001
INU14 :I:l]]l
B |O110
PRO Low]\x\\ O1r $ 1010

=

4 phase
permanent
maginet
stepper
motor

A" | Clockwise rotation

Shaft

[Valvano]

38

Stepper Motors Are A Robot Gateway Device

¢ Makerbot — stepper motors to position things

« The vibration from making “steps” makes noise. Can you_do something fun
with that?

-

-8

http://store.makerbot.com/thing-o-matic-kit-mk7.html 39

Review

+ Digital To Analog Conversion
« Example implementation — how DAC actually works
« Performance aspects: especially quantization issues

¢ Encoding waveforms to feed to a DAC
« Low pass filter on outputs

¢ Pulse Modulation
¢ Pulse Density Modulation vs. Pulse Width Modulation
e How PWM works in general
< For lab, be able to program the PWM hardware
* How a servo works

¢ Stepper motor
« Simplest kind of motor to use; have an idea of what’s going on with phases

* And how a solonoid works

40

