
Lecture #19

Digital To Analog,
PWM, Stepper Motors

18-348 Embedded System Engineering

Philip Koopman

Monday, 28-March-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Example System: HVAC Compressor

[http://www.solarpowerwindenergy.org]

Expansion Valve

3

HVAC Embedded Control
 Compressors (reciprocating & scroll)

• Smart loading and unloading of compressor
– Want to minimize motor turn on/turn off cycles
– May involve bypassing liquid so compressor keeps running but doesn’t compress

• Variable speed for better output temperature control
• Diagnostics and prognostics

– Prevent equipment damage (e.g., liquid entering compressor, compressor stall)
– Predict equipment failures (e.g., low refrigerant, motor bearings wearing out)

 Expansion Valve
• Smart control of amount of refrigerant evaporated

– Often a stepper motor

• Diagnostics and prognostics
– Low refrigerant, icing on cold coils, overheating of hot coils

 System coordination
• Coordinate expansion valve and compressor operation
• Coordinate multiple compressors
• Next lecture – talk about building-level system level diagnostics & coordination

4

Where Are We Now?
 Where we’ve been:

• Interrupts, concurrency, scheduling, RTOS

 Where we’re going today:
• Analog Output

 Where we’re going next:
• Analog Input

• Human I/O

• Very gentle introduction to control

• …

• Test #2 and last project demo

5

Preview
 Digital To Analog Conversion

• Example implementation

• Understanding performance

• Low pass filters

 Waveform encoding

 PWM
• Digital way to “fake” analog

• How to use course processor PWM support hardware

• How a servo works

 How a stepper motor works
• Note: 3-D printers are mostly stepper motors + PWM

6

Big Picture – I/O Is Where The Work Gets Done!

CPUSENSORS
A/D

CONVERSION
D/A

CONVERSION
ACTUATORS

HUMAN
INTERFACE

DIAGNOSTIC
TOOLS

AUXILIARY
SYSTEMS
(POWER,

COOLING)

FPGA/
ASIC SOFTWAREMEMORY

MICROCONTROLLER

ELECTROMECHANICAL
BACKUP & SAFETY

EXTERNAL
ENVIRONMENT

7

Analog Digital  Analog Conversion
 The real world is analog

• Voltage, current are continuous

• Time is continuous

 But the computing world is discrete
• Bits, bytes

• Some sensors/actuators use digital values…
… but many deal with analog values

 A/D conversion “analog to digital”
• Getting analog inputs to digital form

 D/A conversion “digital to analog”
• Getting digital inputs to analog form

 Digital I/O
• Sometimes you can fake analog values with digital (e.g., digital pulsing)

8

D/A Conversion
 “DAC” = “D/A Converter” = “Digital To Analog Converter”

 Given several bits of a digital value,
convert it to an analog value
• Usually voltage or current

• Many drives an actuator, further converting output into motion, heat, light, etc.

• Might be directly connected to CPU or accessed via a serial bus

[Valvano]

9

General Idea Of A DAC
 Input is bits

• k-bit value, often 8 bits but can be any integer number

• Signed or unsigned number (often unsigned)

 Output is an analog value (volts, amps)
• Digital value determines output

• Can be output many ways:
– Absolute voltage

– Offset added to reference voltage

– Current (mAmps, Amps)

0V

3V
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

3.0V
2.8V
2.6V
2.4V
2.2V
2.0V
1.8V
1.6V
1.4V
1.2V
1.0V
0.8V
0.6V
0.4V
0.2V
0.0V

A
n

al
og

 D

ig
ita

l C
on

ve
rs

io
n



Analog
Signal

Digital
Representation

Digital
Value

10

Analog Circuits Aren’t “Ideal”
 Real DACs have offset error, gain error, slew, ringing, nonlinearities…

[Valvano]

[Valvano]

11

Example 3-Bit DAC
 Operating Principle for “Summing DAC”:

• One switch per bit; bit closes switch when “on”; opens switch when “off”

• Different resistor values put different voltages out

• Net resistance (hence input voltage) subject to parallel resistance value

• Note: each resistor 2x previous resistor
– Each bit contributes half the voltage of the next higher bit

[Valvano]

12

DAC Performance
 Usually, DACs attempt to be linear:

• Notes: Vfullscale input in this equation has to be 1/256 above output “full scale”
– If all these bits are on, result is 255/256 of Vfullscale

• Voffset is supposed to be zero in most applications
• Doesn’t take into account non-ideal behaviors!

 Quantization effects – value
• Analog value isn’t exact
• Analog value is approximated via a “bin” or voltage quantum
• Bin size is ~1/2K of full scale (not quite because of the “fencepost” numbering

issue)

 Quantization effects – time
• Analog value produced periodically by CPU
• Not continuously as with real analog signal!

offsetfullscaleout V
bbbbbbbb

VV 





 

256128643216842
01234567

13

Generating An Analog Waveform – Computed
 Periodic output values

• Use timer-based interrupt

• (What is the problem with this particular example from Valvano?)

[Valvano]

14

Generating An Analog Waveform – Table Based

[Valvano]

15

Encoding Waveforms – PCM
 Sample rate – how often are the

samples?
• Want samples at least twice as fast as

highest frequency component
(a.k.a. Nyquist Rate)

 PCM – Pulse Code Modulation
• Use the binary value in each sample

• Use as an unsigned value
– Typically put zero point in middle

– E.g. 0-15; 7 = 0 Volts
0 = -5 Volts

• Example:
CD-Audio is 16-bit PCM at 44 KHz
(stereo – two channels)

– Why 44 KHz?

[Wikipedia:PCM], modified

Analog
Signal

PCM
Encoded
Values

PCM
Encoded
Values

“7” = 0 Volts

16

Delta Modulation
 Delta Modulation

• Use the difference from last sample

• Uses fewer bits per sample…
… but assumes signal changes
gradually

• Bits per sample related to bandwidth
of signal – higher bandwidth means
bigger deltas (more bits per sample)

• Example on right is, perhaps, 3 bit
encoding: { -4, -3, -2, -1, 0, 1, 2, 3}

• Values are twos complement rather
than unsigned

• Values must be added to running total
(i.e., integrated)

 Other more sophisticated encodings
• Linear predictive coding

• Application-specific coding (MP3,
etc.)

Analog
Signal

“7” = 0 Volts

+2

+2

+1
+1 -1

-2

-2

-1

-1

+1, 0 0, -1

+1, 0, -1

Delta
Encoded
Values

17

It’s All About The Bandwidth – Bits Per Second
 Increasing # bits of resolution improves output waveform

• Reduces value quantization error

 Increasing sample rate improves output waveform
• Reduces time quantization error

[Valvano]

[Valvano]

PICTURES REVERSED

18

Low Pass Filters
 Can we get rid of the bumps in the output?

• Add more bits (expensive, doesn’t necessarily work very well)
..OR..

• Use a Low Pass Filter!

 Or, sometimes … do nothing (implicit low pass filter)
• Physical time constants of controlled system or actuators might smooth bumps!

[Wikipedia]

19

Pulse Modulation
 DACs are expensive – take a lot of area

• And even more if you want lots of analog output channels!
– The course processor doesn’t even have D/A outputs built into it

• So, how do you actually do D/A conversion without a DAC?

• Preferably using a single output pin?

• Preferably in a way that is lower noise than a DAC (e.g., purely digital)

 Can use purely digital output to “fake” analog output
• Pulse Density Modulation

– Use high speed bit stream to represent proportion of full scale value

• Pulse Width Modulation
– Send varying width of pulses to change power/duty cycle of actuator

• Others:
– Pulse Rate modulation (how often a pulse is sent)

20

Pulse Density Modulation
 Look at a sliding window of p pulses

• Bit value of 1 = “+1” Bit value of 0 = “-1”

• Signal value is the sum of the +1 and -1 values of the bits in the window

• Generally want very high bit rate for this to work (used in audio systems)
– Works on AC signals; can have offset error on slow or DC signals

• Get analog output with LP Filter (capacitor does analog work)

 How do you know signal is going down just after the peak?
• When first -1 enters sliding window, output starts going down

• Output is phase-shifted to the right by the sliding window size

Sliding
Window

[Wikipedia:PDM]

21

PDM Implementation Sketch
for(;;)
{ { if (<next sample time>) { <update desired_output> }

if (desired_output > current_output)
{ output(1); // Go up if we are currently too low

current_output += delta_value;
} else
{ output(0); // Go down if we are currently too high

current_output –= delta_value;
}
<wait for next output bit time; constant bit rate>

}

 Tradeoffs:
• With only two values, analog noise less of an issue (only “hi” and “lo”)
• Direct tradeoff of value quantization vs. time quantization

– Big window gives more values, but takes longer to make big changes
– Small window has less phase shift, but supports fewer total values
– It’s all about the bandwidth – bits per second is the limiting factor

22

Pulse Width Modulation
 Idea: represent value with high/low duty cycle

• Constant period, some high and some low within period

• e.g., 30% duty cycle: 3 msec high, 7 msec low (10 msec period)

• e.g., 90% duty cycle: 90 msec high, 10 msec low (100 msec period)

 Can be used to deliver varying levels of power
• This is how LED dimming works

• Often relies on time constant of
actuator to do LP Filtering
“for free”

• Can be used, for example,
to control cooling fan speed

– Physical inertia of the fan
integrates pulses into
an average fan speed

[Barr01]

23

24

PWM Block Diagram
 See Chapter 12 of MC8S12 data sheet for details

25

PWM Registers
 MODRRx – Timer vs. PWM channel x (1 = PWM)
 PWMEx – enable PWM channel x (1 PWM)
 PWMPOLx – polarity

• 0 = low followed by high (first part of pulse is low)
• 1 = high followed by low (first part of pulse is high)

 PWMPRCLK – clock prescaler (similar to other clock prescalers)
 PWMCLK – clock select for PWM (Clock A/B or Clock SA/SB)

• Clocks SA/SB are scaled versions of Clock A, Clock B
• E.g., PWMSCLA is scaling value for Clock A – lets it run up to 512x slower

 PWMCTL – control register concatenation
• Concatenates pairs of 8-bit counters to give 16-bit counters
• CON23: channel 2 register is high-order byte of a 16-bit channel

 PWMPERx – period for channel
 PWMDTYx – duty cycle for channel
 PWMSDN – optional pin for emergency shutdown of pulses

• Interrupt vector $FF8C
• Why do you want emergency shutdown of pulses?

[Valvano]

27

How Do Servos Work?
 Uses PWM to set position between “zero” and “full”

• PWM sets commanded position

• Potentiometer used to measure actual position

• Servo self-adjusts to keep actual position at/near commanded position
– Closed loop control; maintains position even if external forces try to move servo

http://www.servocity.com/html/how_do_servos_work_.html

28

Is PWM A Free Ride?
 Digital values have very low amplitude noise

• Analog values – noise shows up in any disturbance
• Digital values – noise only if signal crosses threshold

 Is it a free lunch?
• No– still have noise in timing

– Clock edges can move around depending on value noise, ringing, etc.

• Quantization noise in timing…
– Based on PWM clocks putting edge in the right place
– Based on PDM having consistent clock lengths

• Need enough bits in the PWM counter to manage cimting (8 bits or 16 bits)

 If you are receiving PWM with a digital device need to do pulse capture
• Done using Pulse Accumulator hardware (or relevant software)
• Can be used to measure frequency (time between edges)
• Can be used to measure duty cycle (proportion of high to low times)

– This is in Valvano, but not something we’ll cover beyond this mention

29

Solonoids
 Used to generate a short-stroke linear motion

• Release driven by spring, gravity, or second solonoid on same armature

30

Stepper Motors
 Many simple embedded systems use stepper motors

• Uses a digital (on/off) interface

• Permits rotating motor to one of a set of rotational positions

• Gives good positional stability without use of shaft encoder/feedback

• General motor control is a whole other lecture (or set of lectures)

[Valvano]

31

Stepper Motor General Idea
 Magnetic rotors spin, driven by electromagnetic stators

• Stator Poles alternate North and South to force motors to spin

• (animation on following slides)

• Resolution:
– 20 steps per revolution  18 degrees per step

– 200 steps per revolution  1.8 degrees per step

– # steps per revolution = # stator coils (phases) * # teeth

[Valvano]

32

Photos Of Stepper Motors
 http://www.doc.ic.ac.uk/~ih/doc/stepper/kp4m4/

33

[Valvano]

34

[Valvano]

35

[Valvano]

36

[Valvano]

37

Stepper Motor Ramp Up & Ramp Down
 Stepper motor changes speed as it moves

• Magnetic pole changes have to coordinate with current speed
• Motor spec & math gives you a speed profile

 What happens if you don’t know where you are?
• Lose power
• Controller resets
• Something jams and you lose steps?

[Austin04]

38

Stepper Motor Drive Circuit
 Note: not the same motor type as other Valvano pictures

• A/A’ and B/B’ are always a high/low pair

• High turns coil on; Low turns coil off

• 1N914 diodes protect against back-EMF overvoltage when turning coil off

[Valvano]

39

Stepper Motors Are A Robot Gateway Device
 Makerbot – stepper motors to position things

• The vibration from making “steps” makes noise. Can you do something fun
with that?

http://store.makerbot.com/thing-o-matic-kit-mk7.html

40

Review
 Digital To Analog Conversion

• Example implementation – how DAC actually works
• Performance aspects: especially quantization issues

 Encoding waveforms to feed to a DAC
• Low pass filter on outputs

 Pulse Modulation
• Pulse Density Modulation vs. Pulse Width Modulation
• How PWM works in general
• For lab, be able to program the PWM hardware
• How a servo works

 Stepper motor
• Simplest kind of motor to use; have an idea of what’s going on with phases
• And how a solonoid works

