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Overview: Software Fault Tolerance

¢ Introduction
* Clusters: Fault Tolerant Computing and Software Reliability

¢ Key concepts
e Source of errors
 Based on traditional hardware fault tolerance

* Very immature field

¢ Tools / techniques / metrics

* Recovery Blocks, N-Version Programming, Self-Checking
Software

* Metrics and methods 1n this area are very immature
¢ Relationship to other topics
 List “surrounding’ topics

¢ Conclusions & future work
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What is Software Fault Tolerance

¢ Fault Tolerance - how to provide, by redundancy,
service complying with the specification in spite of faults
having occurred or occurring. (Laprie 96)
 Software Fault Tolerance - how to provide service complying with
the specification in spite of faults
¢ Key Concepts

» Software Faults are design errors

Software Fault Tolerance based on hardware fault tolerance

N-version Programming

Recovery Blocks

Checkpoint and Recovery

Design Diversity



Design Errors

¢ Software errors originate from design faults
e programmer mistakes

« misinterpreted specification

¢ Hardware errors can originate from design.,
environment, etc.

e Hardware errors mostly from manufacturing

¢ Does software have to have bugs?

¢ Does design faults only represent unique problem
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SW FT based on HW FT

¢ Software fails due to design faults

¢ Hardware fault tolerance based on manufacturing
faults

¢ N-version software compares to N-way redundant
hardware?

¢ Problems with this approach?
¢ Self-checking software is more common in practice

« How fault tolerant is self-checking software?

¢ Fault tolerant software is based on multiple versions
and design diversity



Not Ready For Prime Time

¢ Recovery Block is almost anecdotal

¢ N-Version programming is weighed down in
disagreement

¢ Can self-checking recover from unexpected faults?
¢ Need new directions and new thoughts

¢ Do any of these method work for non-hardware non-
transient faults?

¢ Might solve some multi-processor inconsistency
problems



Tools / Techniques

¢ Tools are non-existent
¢ Methods:

* N-Version software
— multiple implementations of the same specification
— possibly in different languages
— pray for non-correlated errors in the software
— requires design diversity --- pushes problem up to specification level

* Recovery Blocks
— put a consistency check at the end of a block
— make sure the answer “makes sense”
— retry the block 1f it doesn’t work!

— Solves transient failures



Tools / Techniques

¢ Methods Continued
 Self-Checking software

— uses multiple versions to do self checking of results
— mentioned by Laprie but not described in the literature

¢ Failure Detection
* Detecting the failure 1s a challenge
« Many faults are latent way the fault actually occurs
 Latent faults show up (a lot) later

* Can use a watchdog to figure out 1f the “program” crashed



Metrics

¢ Software fault metrics
* Metrics for software errors:
— best metrics may be from Ballista project
— other metrics have horrible data sets
« Same i1ssue with software models
— models have poor prediction of faults
—recommended that you only use the lower bound in the model
* Field data 1s this area 1s bad

— Tandem has some data about their Non-Stop systems, but
limited applicability

— proves one point: good software 1s possible
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Relationship To Other Topic Areas

¢ Fault Tolerance
 This 1s a subtopic of fault tolerance

 estimated that 60-90% of current computer errors are from
software

¢ Ultra Fault Tolerant

 Needs Software fault tolerance to work

» Probably not going to happen soon
¢ Hardware Fault Tolerance

 currently based on hardware fault tolerance

* needs to be able to withstand some small amount of hardware
faults

* may need to interact with hardware for hardware fault tolerant

¢ Software Methodology plays big role
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Conclusions & Future Work

¢ This area is very immature
* Mostly 1t doesn’t work
« Can solve some transient faults
¢ Engineering Tradeofts
 expensive to develop fault tolerant software

* recovery blocks may be slow since they are serial re-execute

¢ The methods proposed so far are based on hardware
fault tolerance

¢ Currently there seems to be no method to really
guarantee fault tolerance

¢ Does software really have to have bugs?

 How do Tandem and Stratus get it “right”?
* IBM doesn’t do too bad either



Flame War: N-Version Software FT

¢ “This sentence is what is cool about this paper” --itis a
flame war!!
¢ N-Version software
 replicates N-way redundant hardware
 requires design diversity, possibly from the spec
 but software errors are correlated
¢ Does N-version software fault tolerance work?

* Questionable at best
e [ wouldn’t want to bet my life on it!
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