Software Fault
Tolerance

18-849b Dependable Embedded Systems
Chris Inacio
February 11, 1999

Required Reading: Flame War

o
Best Tutorial: Chapter 2 Software Fault Tolerance C arnegle
Authoritative Books: Software Fault Tolerance, Ed: Lyu Mel]On

Overview: Software Fault Tolerance

¢ Introduction
* Clusters: Fault Tolerant Computing and Software Reliability

¢ Key concepts
e Source of errors
 Based on traditional hardware fault tolerance

* Very immature field

¢ Tools / techniques / metrics

* Recovery Blocks, N-Version Programming, Self-Checking
Software

* Metrics and methods 1n this area are very immature
¢ Relationship to other topics
 List “surrounding’ topics

¢ Conclusions & future work
2

YOU ARE HERE MAP

Traditional
Reliability

Checkpoint/
Recovery

Error
‘ Real-Time Coding
/10
\ FAULT
TOLERANT
Embedded COMPUTING
Communications
\ SW
Distributed Fault
Dependability Tolerance

SW Testing

Formal Methods

SW RELIABILITY

What is Software Fault Tolerance

¢ Fault Tolerance - how to provide, by redundancy,
service complying with the specification in spite of faults
having occurred or occurring. (Laprie 96)
 Software Fault Tolerance - how to provide service complying with
the specification in spite of faults
¢ Key Concepts

» Software Faults are design errors

Software Fault Tolerance based on hardware fault tolerance

N-version Programming

Recovery Blocks

Checkpoint and Recovery

Design Diversity

Design Errors

¢ Software errors originate from design faults
e programmer mistakes

« misinterpreted specification

¢ Hardware errors can originate from design.,
environment, etc.

e Hardware errors mostly from manufacturing

¢ Does software have to have bugs?

¢ Does design faults only represent unique problem

I HIRED BOB THE HA W T1L DOUBLE HE CAN'T I (WONDER

DINOSAUR TO BEAT YOU YOUR FEE IF YOU REALLY PAY HOW MUCH

WITH KIS TATIL ONTIL THUMP DILBERT YOU “INFINITY THAT ISON

YOU GIVE ME THE PROJECT INSTEAD. TLL TRIPLE PLUS ONE." AN HOURLY
A REQUIREMENTS.

{ YOUR FEE!

9-33 © 1994 United Foalure Syndcate, nc

SW FT based on HW FT

¢ Software fails due to design faults

¢ Hardware fault tolerance based on manufacturing
faults

¢ N-version software compares to N-way redundant
hardware?

¢ Problems with this approach?
¢ Self-checking software is more common in practice

« How fault tolerant is self-checking software?

¢ Fault tolerant software is based on multiple versions
and design diversity

Not Ready For Prime Time

¢ Recovery Block is almost anecdotal

¢ N-Version programming is weighed down in
disagreement

¢ Can self-checking recover from unexpected faults?
¢ Need new directions and new thoughts

¢ Do any of these method work for non-hardware non-
transient faults?

¢ Might solve some multi-processor inconsistency
problems

Tools / Techniques

¢ Tools are non-existent
¢ Methods:

* N-Version software
— multiple implementations of the same specification
— possibly in different languages
— pray for non-correlated errors in the software
— requires design diversity --- pushes problem up to specification level

* Recovery Blocks
— put a consistency check at the end of a block
— make sure the answer “makes sense”
— retry the block 1f it doesn’t work!

— Solves transient failures

Tools / Techniques

¢ Methods Continued
 Self-Checking software

— uses multiple versions to do self checking of results
— mentioned by Laprie but not described in the literature

¢ Failure Detection
* Detecting the failure 1s a challenge
« Many faults are latent way the fault actually occurs
 Latent faults show up (a lot) later

* Can use a watchdog to figure out 1f the “program” crashed

Metrics

¢ Software fault metrics
* Metrics for software errors:
— best metrics may be from Ballista project
— other metrics have horrible data sets
« Same i1ssue with software models
— models have poor prediction of faults
—recommended that you only use the lower bound in the model
* Field data 1s this area 1s bad

— Tandem has some data about their Non-Stop systems, but
limited applicability

— proves one point: good software 1s possible

10

Relationship To Other Topic Areas

¢ Fault Tolerance
 This 1s a subtopic of fault tolerance

 estimated that 60-90% of current computer errors are from
software

¢ Ultra Fault Tolerant

 Needs Software fault tolerance to work

» Probably not going to happen soon
¢ Hardware Fault Tolerance

 currently based on hardware fault tolerance

* needs to be able to withstand some small amount of hardware
faults

* may need to interact with hardware for hardware fault tolerant

¢ Software Methodology plays big role

11

Conclusions & Future Work

¢ This area is very immature
* Mostly 1t doesn’t work
« Can solve some transient faults
¢ Engineering Tradeofts
 expensive to develop fault tolerant software

* recovery blocks may be slow since they are serial re-execute

¢ The methods proposed so far are based on hardware
fault tolerance

¢ Currently there seems to be no method to really
guarantee fault tolerance

¢ Does software really have to have bugs?

 How do Tandem and Stratus get it “right”?
* IBM doesn’t do too bad either

Flame War: N-Version Software FT

¢ “This sentence is what is cool about this paper” --itis a
flame war!!
¢ N-Version software
 replicates N-way redundant hardware
 requires design diversity, possibly from the spec
 but software errors are correlated
¢ Does N-version software fault tolerance work?

* Questionable at best
e [wouldn’t want to bet my life on it!

13

